unplugged-kernel/drivers/input/touchscreen/synaptics_i2c_rmi4/rmi_fw_update.c

1817 lines
46 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2012 Synaptics Incorporated.
*/
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
/* #include <linux/input/synaptics_dsx.h> */
#include "SynaImage.h"
#include "include/synaptics_dsx_rmi4_i2c.h"
#include "tpd.h"
#define DEBUG_FW_UPDATE
#define SHOW_PROGRESS
#define FW_IMAGE_NAME "SynaImage.h"
#define CHECKSUM_OFFSET 0x00
#define BOOTLOADER_VERSION_OFFSET 0x07
#define IMAGE_SIZE_OFFSET 0x08
#define CONFIG_SIZE_OFFSET 0x0C
#define PRODUCT_ID_OFFSET 0x10
#define PRODUCT_INFO_OFFSET 0x1E
#define FW_IMAGE_OFFSET 0x100
#define PRODUCT_ID_SIZE 10
#define BOOTLOADER_ID_OFFSET 0
#define FLASH_PROPERTIES_OFFSET 2
#define BLOCK_SIZE_OFFSET 3
#define FW_BLOCK_COUNT_OFFSET 5
#define SYN_I2C_RETRY_TIMES 10
#define F01_STD_QUERY_LEN 21
#define REG_MAP (1 << 0)
#define UNLOCKED (1 << 1)
#define HAS_CONFIG_ID (1 << 2)
#define HAS_PERM_CONFIG (1 << 3)
#define HAS_BL_CONFIG (1 << 4)
#define HAS_DISP_CONFIG (1 << 5)
#define HAS_CTRL1 (1 << 6)
#define BLOCK_NUMBER_OFFSET 0
#define BLOCK_DATA_OFFSET 2
#define UI_CONFIG_AREA 0x00
#define PERM_CONFIG_AREA 0x01
#define BL_CONFIG_AREA 0x02
#define DISP_CONFIG_AREA 0x03
#define SENSOR_ID_VALID (1 << 31)
enum flash_command {
CMD_WRITE_FW_BLOCK = 0x2,
CMD_ERASE_ALL = 0x3,
CMD_READ_CONFIG_BLOCK = 0x5,
CMD_WRITE_CONFIG_BLOCK = 0x6,
CMD_ERASE_CONFIG = 0x7,
CMD_READ_SENSOR_ID = 0x8,
CMD_ERASE_BL_CONFIG = 0x9,
CMD_ERASE_DISP_CONFIG = 0xA,
CMD_ENABLE_FLASH_PROG = 0xF,
};
enum glass_vendor {
LENSON = 0,
TPK = 1,
};
#define SLEEP_MODE_NORMAL (0x00)
#define SLEEP_MODE_SENSOR_SLEEP (0x01)
#define SLEEP_MODE_RESERVED0 (0x02)
#define SLEEP_MODE_RESERVED1 (0x03)
#define ENABLE_WAIT_MS (1 * 1000)
#define WRITE_WAIT_MS (3 * 1000)
#define ERASE_WAIT_MS (5 * 1000)
#define MIN_SLEEP_TIME_US 50
#define MAX_SLEEP_TIME_US 100
struct kobject *properties_kobj_fwupdate;
static ssize_t fwu_sysfs_show_image(struct file *data_file,
struct kobject *kobj,
struct bin_attribute *attributes, char *buf,
loff_t pos, size_t count);
static ssize_t fwu_sysfs_store_image(struct file *data_file,
struct kobject *kobj,
struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count);
static int fwu_wait_for_idle(int timeout_ms);
struct image_header {
unsigned int checksum;
unsigned int image_size;
unsigned int config_size;
unsigned char options;
unsigned char bootloader_version;
unsigned char product_id[SYNAPTICS_RMI4_PRODUCT_ID_LENGTH + 1];
unsigned char product_info[SYNAPTICS_RMI4_PRODUCT_INFO_SIZE];
};
struct pdt_properties {
union {
struct {
unsigned char reserved_1 : 6;
unsigned char has_bsr : 1;
unsigned char reserved_2 : 1;
} __packed;
unsigned char data[1];
};
};
struct f01_device_status {
union {
struct {
unsigned char status_code : 4;
unsigned char reserved : 2;
unsigned char flash_prog : 1;
unsigned char unconfigured : 1;
} __packed;
unsigned char data[1];
};
};
struct f01_device_control {
union {
struct {
unsigned char sleep_mode : 2;
unsigned char nosleep : 1;
unsigned char reserved : 2;
unsigned char charger_connected : 1;
unsigned char report_rate : 1;
unsigned char configured : 1;
} __packed;
unsigned char data[1];
};
};
struct f34_flash_control {
union {
struct {
unsigned char command : 4;
unsigned char status : 3;
unsigned char program_enabled : 1;
} __packed;
unsigned char data[1];
};
};
struct f34_flash_properties {
union {
struct {
unsigned char regmap : 1;
unsigned char unlocked : 1;
unsigned char has_configid : 1;
unsigned char has_perm_config : 1;
unsigned char has_bl_config : 1;
unsigned char has_display_config : 1;
unsigned char has_blob_config : 1;
unsigned char reserved : 1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_fwu_handle {
bool initialized;
char product_id[SYNAPTICS_RMI4_PRODUCT_ID_LENGTH + 1];
unsigned int image_size;
unsigned int data_pos;
unsigned int sensor_id;
unsigned char intr_mask;
unsigned char bootloader_id[2];
unsigned char productinfo1;
unsigned char productinfo2;
unsigned char *ext_data_source;
unsigned char *read_config_buf;
const unsigned char *firmware_data;
const unsigned char *config_data;
unsigned short block_size;
unsigned short fw_block_count;
unsigned short config_block_count;
unsigned short perm_config_block_count;
unsigned short bl_config_block_count;
unsigned short disp_config_block_count;
unsigned short config_size;
unsigned short config_area;
unsigned short addr_f34_flash_control;
unsigned short addr_f01_interrupt_register;
struct synaptics_rmi4_fn_desc f01_fd;
struct synaptics_rmi4_fn_desc f34_fd;
struct synaptics_rmi4_exp_fn_ptr *fn_ptr;
struct synaptics_rmi4_data *rmi4_data;
struct f34_flash_control flash_control;
struct f34_flash_properties flash_properties;
};
static struct bin_attribute dev_attr_data = {
.attr = {
.name = "data", .mode = (0644),
},
.size = 0,
.read = fwu_sysfs_show_image,
.write = fwu_sysfs_store_image,
};
static struct device_attribute attrs[] = {
/*
* __ATTR(doreflash, (0444), synaptics_rmi4_show_error,
* fwu_sysfs_do_reflash_store),
*
* __ATTR(writeconfig, (0444), synaptics_rmi4_show_error,
* fwu_sysfs_write_config_store),
* __ATTR(readconfig, (0444), synaptics_rmi4_show_error,
* fwu_sysfs_read_config_store),
*
* __ATTR(configarea, 0222,
* synaptics_rmi4_show_error,
* fwu_sysfs_config_area_store),
* __ATTR(imagesize, 0222,
* synaptics_rmi4_show_error,
* fwu_sysfs_image_size_store),
*
* __ATTR(blocksize, 0444, fwu_sysfs_block_size_show,
* synaptics_rmi4_store_error),
* __ATTR(fwblockcount, 0444, fwu_sysfs_firmware_block_count_show,
* synaptics_rmi4_store_error),
* __ATTR(configblockcount, 0444,
* fwu_sysfs_configuration_block_count_show,
* synaptics_rmi4_store_error),
* __ATTR(permconfigblockcount, 0444,
* fwu_sysfs_perm_config_block_count_show,
* synaptics_rmi4_store_error),
* __ATTR(blconfigblockcount, 0444,
* fwu_sysfs_bl_config_block_count_show,
* synaptics_rmi4_store_error),
* __ATTR(dispconfigblockcount, 0444,
* fwu_sysfs_disp_config_block_count_show,
* synaptics_rmi4_store_error),
*/
};
static struct synaptics_rmi4_fwu_handle *fwu;
static struct completion remove_complete;
static unsigned int extract_uint(const unsigned char *ptr)
{
return (unsigned int)ptr[0] + (unsigned int)ptr[1] * 0x100 +
(unsigned int)ptr[2] * 0x10000 +
(unsigned int)ptr[3] * 0x1000000;
}
static void parse_header(struct image_header *header,
const unsigned char *fw_image)
{
header->checksum = extract_uint(&fw_image[CHECKSUM_OFFSET]);
header->bootloader_version = fw_image[BOOTLOADER_VERSION_OFFSET];
header->image_size = extract_uint(&fw_image[IMAGE_SIZE_OFFSET]);
header->config_size = extract_uint(&fw_image[CONFIG_SIZE_OFFSET]);
memcpy(header->product_id, &fw_image[PRODUCT_ID_OFFSET],
SYNAPTICS_RMI4_PRODUCT_ID_LENGTH);
header->product_id[SYNAPTICS_RMI4_PRODUCT_ID_LENGTH] = 0;
memcpy(header->product_info, &fw_image[PRODUCT_INFO_OFFSET],
SYNAPTICS_RMI4_PRODUCT_INFO_SIZE);
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev,
"Firwmare size %d, config size %d\n", header->image_size,
header->config_size);
#endif
}
static int fwu_check_version(void)
{
int retval;
unsigned char firmware_id[4];
unsigned char config_id[4];
struct i2c_client *i2c_client = fwu->rmi4_data->i2c_client;
/* device firmware id */
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->f01_fd.query_base_addr + 18,
firmware_id, sizeof(firmware_id));
if (retval < 0) {
TPD_DMESG("Failed to read firmware ID (code %d).\n", retval);
return retval;
}
firmware_id[3] = 0;
TPD_DMESG("Device firmware ID%d\n", extract_uint(firmware_id));
/* device config id */
retval = fwu->fn_ptr->read(fwu->rmi4_data, fwu->f34_fd.ctrl_base_addr,
config_id, sizeof(config_id));
if (retval < 0) {
dev_info(&i2c_client->dev,
"Failed to read config ID (code %d).\n", retval);
return retval;
}
TPD_DMESG("Device config ID 0x%02X, 0x%02X, 0x%02X, 0x%02X\n",
config_id[0], config_id[1], config_id[2], config_id[3]);
/* .img config id */
TPD_DMESG(".img config ID 0x%02X, 0x%02X, 0x%02X, 0x%02X\n",
fwu->config_data[0], fwu->config_data[1], fwu->config_data[2],
fwu->config_data[3]);
if (config_id[0] == fwu->config_data[0] &&
config_id[1] == fwu->config_data[1] &&
config_id[2] == fwu->config_data[2] &&
config_id[3] == fwu->config_data[3]) {
TPD_DMESG(
"Both the device and .img is the same version, no need to update!\n");
return -1;
}
return 0;
}
static int fwu_read_f01_device_status(struct f01_device_status *status)
{
int retval;
retval = fwu->fn_ptr->read(fwu->rmi4_data, fwu->f01_fd.data_base_addr,
status->data, sizeof(status->data));
if (retval < 0) {
TPD_DMESG("%s: Failed to read F01 device status\n", __func__);
return retval;
}
return 0;
}
static int fwu_read_f34_queries(void)
{
int retval;
unsigned char count = 4;
unsigned char buf[10];
struct i2c_client *i2c_client = fwu->rmi4_data->i2c_client;
retval = fwu->fn_ptr->read(fwu->rmi4_data, fwu->f34_fd.query_base_addr +
BOOTLOADER_ID_OFFSET,
fwu->bootloader_id,
sizeof(fwu->bootloader_id));
if (retval < 0) {
TPD_DMESG("%s: Failed to read bootloader ID\n", __func__);
return retval;
}
retval = fwu->fn_ptr->read(
fwu->rmi4_data,
fwu->f34_fd.query_base_addr + FLASH_PROPERTIES_OFFSET,
fwu->flash_properties.data, sizeof(fwu->flash_properties.data));
if (retval < 0) {
dev_info(&i2c_client->dev,
"%s: Failed to read flash properties\n", __func__);
return retval;
}
dev_info(&i2c_client->dev, "%s perm:%d, bl%d, display:%d\n", __func__,
fwu->flash_properties.has_perm_config,
fwu->flash_properties.has_bl_config,
fwu->flash_properties.has_display_config);
if (fwu->flash_properties.has_perm_config)
count += 2;
if (fwu->flash_properties.has_bl_config)
count += 2;
if (fwu->flash_properties.has_display_config)
count += 2;
retval = fwu->fn_ptr->read(fwu->rmi4_data, fwu->f34_fd.query_base_addr +
BLOCK_SIZE_OFFSET,
buf, 2);
if (retval < 0) {
dev_info(&i2c_client->dev,
"%s: Failed to read block size info\n", __func__);
return retval;
}
batohs(&fwu->block_size, &(buf[0]));
retval =
fwu->fn_ptr->read(fwu->rmi4_data, fwu->f34_fd.query_base_addr +
FW_BLOCK_COUNT_OFFSET,
buf, count);
if (retval < 0) {
dev_info(&i2c_client->dev,
"%s: Failed to read block count info\n", __func__);
return retval;
}
batohs(&fwu->fw_block_count, &(buf[0]));
batohs(&fwu->config_block_count, &(buf[2]));
count = 4;
if (fwu->flash_properties.has_perm_config) {
batohs(&fwu->perm_config_block_count, &(buf[count]));
count += 2;
}
if (fwu->flash_properties.has_bl_config) {
batohs(&fwu->bl_config_block_count, &(buf[count]));
count += 2;
}
if (fwu->flash_properties.has_display_config)
batohs(&fwu->disp_config_block_count, &(buf[count]));
fwu->addr_f34_flash_control = fwu->f34_fd.data_base_addr +
BLOCK_DATA_OFFSET + fwu->block_size;
return 0;
}
static int fwu_read_interrupt_status(void)
{
int retval;
unsigned char interrupt_status;
retval = fwu->fn_ptr->read(fwu->rmi4_data,
fwu->addr_f01_interrupt_register,
&interrupt_status, sizeof(interrupt_status));
if (retval < 0) {
TPD_DMESG("%s: Failed to read flash status\n", __func__);
return retval;
}
return interrupt_status;
}
static int fwu_read_f34_flash_status(void)
{
int retval;
retval = fwu->fn_ptr->read(fwu->rmi4_data, fwu->addr_f34_flash_control,
fwu->flash_control.data,
sizeof(fwu->flash_control.data));
if (retval < 0) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to read flash status\n", __func__);
return retval;
}
return fwu->flash_control.data[0];
}
static int fwu_reset_device(void)
{
int retval;
unsigned char reset = 0x01;
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev, "Reset device\n");
#endif
retval = fwu->fn_ptr->write(fwu->rmi4_data, fwu->f01_fd.cmd_base_addr,
&reset, sizeof(reset));
if (retval < 0) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to reset device (addr : 0x%02x)\n",
__func__, fwu->f01_fd.cmd_base_addr);
return retval;
}
fwu_wait_for_idle(WRITE_WAIT_MS);
retval = fwu->rmi4_data->reset_device(fwu->rmi4_data);
if (retval < 0) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to reset core driver after reflash\n",
__func__);
return retval;
}
return 0;
}
static int fwu_write_f34_command(unsigned char cmd)
{
int retval;
retval = fwu->fn_ptr->write(fwu->rmi4_data, fwu->addr_f34_flash_control,
&cmd, sizeof(cmd));
if (retval < 0) {
TPD_DMESG("%s: Failed to write command 0x%02x\n", __func__,
cmd);
return retval;
}
return 0;
}
static unsigned char fwu_check_flash_status(void)
{
fwu_read_f34_flash_status();
return fwu->flash_control.status;
}
static int fwu_wait_for_idle(int timeout_ms)
{
int count = 0;
int timeout_count = ((timeout_ms * 1000) / MAX_SLEEP_TIME_US) + 1;
do {
if (fwu_read_interrupt_status() > 0)
/* if( (fwu_read_f34_flash_status())&0x7f==0x00) */
return 0;
usleep_range(MIN_SLEEP_TIME_US, MAX_SLEEP_TIME_US);
count++;
} while (count < timeout_count);
TPD_DMESG("%s: Timed out waiting for idle status\n", __func__);
return -ETIMEDOUT;
}
static int fwu_scan_pdt(void)
{
int retval;
unsigned char ii;
unsigned char intr_count = 0;
unsigned char intr_off;
unsigned char intr_src;
unsigned short addr;
bool f01found = false;
bool f34found = false;
struct synaptics_rmi4_fn_desc rmi_fd;
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev, "Scan PDT\n");
#endif
for (addr = PDT_START; addr > PDT_END; addr -= PDT_ENTRY_SIZE) {
retval = fwu->fn_ptr->read(fwu->rmi4_data, addr,
(unsigned char *)&rmi_fd,
sizeof(rmi_fd));
if (retval < 0)
return retval;
if (rmi_fd.fn_number) {
TPD_DMESG("%s: Found F%02x\n", __func__,
rmi_fd.fn_number);
switch (rmi_fd.fn_number) {
case SYNAPTICS_RMI4_F01:
f01found = true;
fwu->f01_fd = rmi_fd;
fwu->addr_f01_interrupt_register =
fwu->f01_fd.data_base_addr + 1;
break;
case SYNAPTICS_RMI4_F34:
f34found = true;
fwu->f34_fd = rmi_fd;
fwu->intr_mask = 0;
intr_src = rmi_fd.intr_src_count;
intr_off = intr_count % 8;
for (ii = intr_off;
ii < ((intr_src & MASK_3BIT) + intr_off);
ii++)
fwu->intr_mask |= 1 << ii;
break;
}
} else
break;
intr_count += (rmi_fd.intr_src_count & MASK_3BIT);
}
if (!f01found || !f34found) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to find both F01 and F34\n", __func__);
return -EINVAL;
}
fwu_read_interrupt_status();
return 0;
}
static int fwu_write_blocks(unsigned char *block_ptr, unsigned short block_cnt,
unsigned char command)
{
int retval;
unsigned char block_offset[] = {0, 0};
unsigned short block_num;
#ifdef SHOW_PROGRESS
unsigned int progress = (command == CMD_WRITE_CONFIG_BLOCK) ? 10 : 100;
#endif
retval = fwu->fn_ptr->write(fwu->rmi4_data, fwu->f34_fd.data_base_addr +
BLOCK_NUMBER_OFFSET,
block_offset, sizeof(block_offset));
/* TPD_DMESG("write block number"); */
if (retval < 0) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write to block number registers\n",
__func__);
return retval;
}
for (block_num = 0; block_num < block_cnt; block_num++) {
#ifdef SHOW_PROGRESS
if (block_num % progress == 0) {
TPD_DMESG("%s: update %s %3d / %3d\n", __func__,
command == CMD_WRITE_CONFIG_BLOCK
? "config"
: "firmware",
block_num, block_cnt);
}
#endif
/* TPD_DMESG("before write BLOCK_DATA_OFFSET"); */
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->f34_fd.data_base_addr +
BLOCK_DATA_OFFSET,
block_ptr, fwu->block_size);
if (retval < 0) {
TPD_DMESG("%s: Failed to write block data (block %d)\n",
__func__, block_num);
return retval;
}
retval = fwu_write_f34_command(command);
if (retval < 0) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to write command for block %d\n",
__func__, block_num);
return retval;
}
retval = fwu_wait_for_idle(WRITE_WAIT_MS);
if (retval < 0) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Failed to wait for idle status (block %d)\n",
__func__, block_num);
return retval;
}
retval = fwu_check_flash_status();
if (retval != 0) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Flash block %d status %d\n", __func__,
block_num, retval);
return -1;
}
block_ptr += fwu->block_size;
}
#ifdef SHOW_PROGRESS
dev_info(&fwu->rmi4_data->i2c_client->dev, "%s: update %s %3d / %3d\n",
__func__,
command == CMD_WRITE_CONFIG_BLOCK ? "config" : "firmware",
block_cnt, block_cnt);
#endif
return 0;
}
static int fwu_write_firmware(void)
{
return fwu_write_blocks((unsigned char *)fwu->firmware_data,
fwu->fw_block_count, CMD_WRITE_FW_BLOCK);
}
static int fwu_write_configuration(void)
{
return fwu_write_blocks((unsigned char *)fwu->config_data,
fwu->config_block_count,
CMD_WRITE_CONFIG_BLOCK);
}
static int fwu_write_bootloader_id(void)
{
int retval;
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev, "Write bootloader ID\n");
#endif
retval = fwu->fn_ptr->write(
fwu->rmi4_data, fwu->f34_fd.data_base_addr + BLOCK_DATA_OFFSET,
fwu->bootloader_id, sizeof(fwu->bootloader_id));
TPD_DMESG("bootloader ID=%s\n", fwu->bootloader_id);
TPD_DMESG("f34_data_addr=%x\n",
fwu->f34_fd.data_base_addr + BLOCK_DATA_OFFSET);
if (retval < 0) {
TPD_DMESG("%s: Failed to write bootloader ID\n", __func__);
return retval;
}
return 0;
}
static int fwu_enter_flash_prog(void)
{
int retval;
struct f01_device_status f01_device_status;
struct f01_device_control f01_device_control;
#ifdef DEBUG_FW_UPDATE
dev_info(&fwu->rmi4_data->i2c_client->dev, "Enter bootloader mode\n");
#endif
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0)
return retval;
if (f01_device_status.flash_prog) {
TPD_DMESG("%s: Already in flash prog mode\n", __func__);
return 0;
}
retval = fwu_write_bootloader_id();
if (retval < 0)
return retval;
retval = fwu_write_f34_command(CMD_ENABLE_FLASH_PROG);
if (retval < 0)
return retval;
retval = fwu_wait_for_idle(ENABLE_WAIT_MS);
if (retval < 0)
return retval;
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0)
return retval;
if (!f01_device_status.flash_prog) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Program enabled bit not set\n", __func__);
return -EINVAL;
}
retval = fwu_scan_pdt();
if (retval < 0)
return retval;
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0)
return retval;
if (!f01_device_status.flash_prog) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Not in flash prog mode\n", __func__);
return -EINVAL;
}
retval = fwu_read_f34_queries();
if (retval < 0)
return retval;
retval = fwu->fn_ptr->read(fwu->rmi4_data, fwu->f01_fd.ctrl_base_addr,
f01_device_control.data,
sizeof(f01_device_control.data));
if (retval < 0) {
TPD_DMESG("%s: Failed to read F01 device control\n", __func__);
return retval;
}
f01_device_control.nosleep = true;
f01_device_control.sleep_mode = SLEEP_MODE_NORMAL;
retval = fwu->fn_ptr->write(fwu->rmi4_data, fwu->f01_fd.ctrl_base_addr,
f01_device_control.data,
sizeof(f01_device_control.data));
if (retval < 0) {
TPD_DMESG("%s: Failed to write F01 device control\n", __func__);
return retval;
}
return retval;
}
static int fwu_do_reflash(void)
{
int retval;
retval = fwu_enter_flash_prog();
if (retval < 0)
return retval;
TPD_DMESG("%s: Entered flash prog mode\n", __func__);
retval = fwu_write_bootloader_id();
if (retval < 0)
return retval;
TPD_DMESG("%s: Bootloader ID written\n", __func__);
retval = fwu_write_f34_command(CMD_ERASE_ALL);
if (retval < 0)
return retval;
TPD_DMESG("%s: Erase all command written\n", __func__);
/* while (1); */
retval = fwu_wait_for_idle(ERASE_WAIT_MS);
if (retval < 0)
return retval;
TPD_DMESG("%s: Idle status detected\n", __func__);
if (fwu->firmware_data) {
retval = fwu_write_firmware();
mdelay(100);
if (retval < 0)
return retval;
pr_notice("%s: Firmware programmed\n", __func__);
}
if (fwu->config_data) {
retval = fwu_write_configuration();
if (retval < 0)
return retval;
pr_notice("%s: Configuration programmed\n", __func__);
}
return retval;
}
char buf[] = {
/* #inlcude ".h" */
};
static int fwu_read_sensor_id(void)
{
int retval;
unsigned char sensor_id[2];
unsigned char snsrid_pinmux[] = {0x05, 0x00};
unsigned char snsrid_pullupmux[] = {0x05, 0x00};
if ((fwu->sensor_id & SENSOR_ID_VALID) != 0)
return 0;
retval = fwu_enter_flash_prog();
if (retval < 0)
goto reset;
retval = fwu->fn_ptr->write(fwu->rmi4_data, fwu->f34_fd.data_base_addr +
BLOCK_DATA_OFFSET,
snsrid_pinmux, sizeof(snsrid_pinmux));
if (retval < 0) {
TPD_DMESG("%s: Failed to write sensor ID\n", __func__);
goto reset;
}
retval = fwu->fn_ptr->write(fwu->rmi4_data,
fwu->f34_fd.data_base_addr +
BLOCK_DATA_OFFSET + 2,
snsrid_pullupmux, sizeof(snsrid_pullupmux));
if (retval < 0) {
TPD_DMESG("%s: Failed to write sensor ID\n", __func__);
goto reset;
}
retval = fwu_write_f34_command(CMD_READ_SENSOR_ID);
if (retval < 0)
goto reset;
retval =
fwu->fn_ptr->read(fwu->rmi4_data, fwu->f34_fd.data_base_addr +
BLOCK_DATA_OFFSET + 4,
sensor_id, sizeof(sensor_id));
if (retval < 0) {
TPD_DMESG("%s: Failed to read sensor ID\n", __func__);
goto reset;
}
fwu->sensor_id = sensor_id[0] + (sensor_id[1] << 8);
fwu->sensor_id |= SENSOR_ID_VALID;
#ifdef DEBUG_FW_UPDATE
TPD_DMESG("Read sensor ID %u\n", fwu->sensor_id & ~SENSOR_ID_VALID);
#endif
reset:
fwu_reset_device();
return retval;
}
static int fwu_start_reflash(void)
{
int retval;
struct image_header header;
const unsigned char *fw_image;
const struct firmware *fw_entry = NULL;
struct f01_device_status f01_device_status;
TPD_DMESG("%s: Start of reflash process\n", __func__);
/* mt65xx_eint_mask(CUST_EINT_TOUCH_PANEL_NUM); */
if (fwu->ext_data_source)
fw_image = fwu->ext_data_source;
else {
TPD_DMESG("%s: Requesting firmware image %s\n", __func__,
FW_IMAGE_NAME);
retval = fwu_read_sensor_id();
if (retval < 0)
return -EINVAL;
switch (fwu->sensor_id & 0xFFFF) {
case LENSON:
fw_image = synaImage;
break;
case TPK:
fw_image = synaImage2;
break;
default:
TPD_DMESG("%s: Unknown touch sensor id: %d\n", __func__,
(u16)fwu->sensor_id);
return -EINVAL;
}
TPD_DMESG("%s: Sensor ID=%d\n", __func__, (u16)fwu->sensor_id);
}
parse_header(&header, fw_image);
if (header.image_size)
fwu->firmware_data = fw_image + FW_IMAGE_OFFSET;
if (header.config_size)
fwu->config_data =
fw_image + FW_IMAGE_OFFSET + header.image_size;
fwu->fn_ptr->enable(fwu->rmi4_data, false);
retval = fwu_check_version();
if (retval < 0)
goto exit;
retval = fwu_do_reflash();
if (retval < 0)
TPD_DMESG("%s: Failed to do reflash\n", __func__);
msleep(50);
/* reset device */
fwu_reset_device();
/* check device status */
retval = fwu_read_f01_device_status(&f01_device_status);
if (retval < 0)
goto exit;
dev_info(&fwu->rmi4_data->i2c_client->dev, "Device is in %s mode\n",
f01_device_status.flash_prog == 1 ? "bootloader" : "UI");
if (f01_device_status.flash_prog)
dev_info(&fwu->rmi4_data->i2c_client->dev, "Flash status %d\n",
f01_device_status.status_code);
if (f01_device_status.flash_prog) {
dev_info(&fwu->rmi4_data->i2c_client->dev,
"%s: Device is in flash prog mode 0x%02X\n", __func__,
f01_device_status.status_code);
retval = 0;
goto exit;
}
fwu->fn_ptr->enable(fwu->rmi4_data, true);
if (fw_entry)
release_firmware(fw_entry);
pr_notice("%s: End of reflash process\n", __func__);
exit:
/* mt65xx_eint_unmask(CUST_EINT_TOUCH_PANEL_NUM); */
return retval;
}
int synaptics_fw_updater(unsigned char *fw_data)
{
int retval;
if (!fwu)
return -ENODEV;
if (!fwu->initialized)
return -ENODEV;
fwu->ext_data_source = fw_data;
fwu->config_area = UI_CONFIG_AREA;
retval = fwu_start_reflash();
return retval;
}
EXPORT_SYMBOL(synaptics_fw_updater);
static ssize_t fwu_sysfs_show_image(struct file *data_file,
struct kobject *kobj,
struct bin_attribute *attributes, char *buf,
loff_t pos, size_t count)
{
struct synaptics_rmi4_data *rmi4_data = fwu->rmi4_data;
if (count < fwu->config_size) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Not enough space (%zu bytes) in buffer\n",
__func__, count);
return -EINVAL;
}
memcpy(buf, fwu->read_config_buf, fwu->config_size);
return fwu->config_size;
}
static ssize_t fwu_sysfs_store_image(struct file *data_file,
struct kobject *kobj,
struct bin_attribute *attributes,
char *buf, loff_t pos, size_t count)
{
memcpy((void *)(&fwu->ext_data_source[fwu->data_pos]),
(const void *)buf, count);
fwu->data_pos += count;
return count;
}
static void synaptics_rmi4_fwu_attn(struct i2c_client *client,
unsigned char intr_mask)
{
if (fwu->intr_mask & intr_mask)
fwu_read_f34_flash_status();
}
static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data,
unsigned short length)
{
return tpd_i2c_read_data(rmi4_data->i2c_client, addr, data, length);
}
static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data,
unsigned short length)
{
return tpd_i2c_write_data(rmi4_data->i2c_client, addr, data, length);
}
static int synaptics_rmi4_irq_enable(struct synaptics_rmi4_data *rmi4_data,
bool enable)
{
int retval = 0;
unsigned char intr_status;
if (enable) {
if (rmi4_data->irq_enabled)
return retval;
/* Clear interrupts first */
retval = synaptics_rmi4_i2c_read(
rmi4_data, rmi4_data->f01_data_base_addr + 1,
&intr_status, rmi4_data->num_of_intr_regs);
if (retval < 0)
return retval;
rmi4_data->irq_enabled = true;
} else {
if (rmi4_data->irq_enabled) {
disable_irq(rmi4_data->irq);
free_irq(rmi4_data->irq, rmi4_data);
rmi4_data->irq_enabled = false;
}
}
return retval;
}
static int synaptics_rmi4_alloc_fh(struct synaptics_rmi4_fn **fhandler,
struct synaptics_rmi4_fn_desc *rmi_fd,
int page_number)
{
if (!(*fhandler))
*fhandler = kmalloc(sizeof(**fhandler), GFP_KERNEL);
if (!(*fhandler))
return -ENOMEM;
(*fhandler)->full_addr.data_base =
(rmi_fd->data_base_addr | (page_number << 8));
(*fhandler)->full_addr.ctrl_base =
(rmi_fd->ctrl_base_addr | (page_number << 8));
(*fhandler)->full_addr.cmd_base =
(rmi_fd->cmd_base_addr | (page_number << 8));
(*fhandler)->full_addr.query_base =
(rmi_fd->query_base_addr | (page_number << 8));
return 0;
}
static int synaptics_rmi4_f11_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char ii;
unsigned char intr_offset;
unsigned char abs_data_size;
unsigned char abs_data_blk_size;
unsigned char query[F11_STD_QUERY_LEN];
unsigned char control[F11_STD_CTRL_LEN];
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base, query,
sizeof(query));
if (retval < 0)
return retval;
/* Maximum number of fingers supported */
if ((query[1] & MASK_3BIT) <= 4)
fhandler->num_of_data_points = (query[1] & MASK_3BIT) + 1;
else if ((query[1] & MASK_3BIT) == 5)
fhandler->num_of_data_points = 10;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.ctrl_base, control,
sizeof(control));
if (retval < 0)
return retval;
/* Maximum x and y */
rmi4_data->sensor_max_x = ((control[6] & MASK_8BIT) << 0) |
((control[7] & MASK_4BIT) << 8);
rmi4_data->sensor_max_y = ((control[8] & MASK_8BIT) << 0) |
((control[9] & MASK_4BIT) << 8);
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Function %02x max x = %d max y = %d\n", __func__,
fhandler->fn_number, rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) + intr_offset); ii++)
fhandler->intr_mask |= 1 << ii;
abs_data_size = query[5] & MASK_2BIT;
abs_data_blk_size = 3 + (2 * (abs_data_size == 0 ? 1 : 0));
fhandler->size_of_data_register_block = abs_data_blk_size;
return retval;
}
/*
* synaptics_rmi4_f12_init()
*
* Called by synaptics_rmi4_query_device().
*
* This function parses information from the Function 12 registers and
* determines the number of fingers supported, offset to the data1
* register, x and y data ranges, offset to the associated interrupt
* status register, interrupt bit mask, and allocates memory resources
* for finger data acquisition.
*/
static int synaptics_rmi4_f12_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char ii;
unsigned char intr_offset;
unsigned char ctrl_8_offset;
unsigned char ctrl_23_offset;
struct synaptics_rmi4_f12_query_5 query_5;
struct synaptics_rmi4_f12_query_8 query_8;
struct synaptics_rmi4_f12_ctrl_8 ctrl_8;
struct synaptics_rmi4_f12_ctrl_23 ctrl_23;
struct synaptics_rmi4_f12_finger_data *finger_data_list;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base + 5,
query_5.data, sizeof(query_5.data));
if (retval < 0)
return retval;
ctrl_8_offset = query_5.ctrl0_is_present + query_5.ctrl1_is_present +
query_5.ctrl2_is_present + query_5.ctrl3_is_present +
query_5.ctrl4_is_present + query_5.ctrl5_is_present +
query_5.ctrl6_is_present + query_5.ctrl7_is_present;
ctrl_23_offset = ctrl_8_offset + query_5.ctrl8_is_present +
query_5.ctrl9_is_present + query_5.ctrl10_is_present +
query_5.ctrl11_is_present + query_5.ctrl12_is_present +
query_5.ctrl13_is_present + query_5.ctrl14_is_present +
query_5.ctrl15_is_present + query_5.ctrl16_is_present +
query_5.ctrl17_is_present + query_5.ctrl18_is_present +
query_5.ctrl19_is_present + query_5.ctrl20_is_present +
query_5.ctrl21_is_present + query_5.ctrl22_is_present;
retval = synaptics_rmi4_i2c_read(
rmi4_data, fhandler->full_addr.ctrl_base + ctrl_23_offset,
ctrl_23.data, sizeof(ctrl_23.data));
if (retval < 0)
return retval;
/* Maximum number of fingers supported */
fhandler->num_of_data_points = ctrl_23.max_reported_objects;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base + 8,
query_8.data, sizeof(query_8.data));
if (retval < 0)
return retval;
/* Determine the presence of the Data0 register */
fhandler->data1_offset = query_8.data0_is_present;
retval = synaptics_rmi4_i2c_read(
rmi4_data, fhandler->full_addr.ctrl_base + ctrl_8_offset,
ctrl_8.data, sizeof(ctrl_8.data));
if (retval < 0)
return retval;
/* Maximum x and y */
rmi4_data->sensor_max_x =
((unsigned short)ctrl_8.max_x_coord_lsb << 0) |
((unsigned short)ctrl_8.max_x_coord_msb << 8);
rmi4_data->sensor_max_y =
((unsigned short)ctrl_8.max_y_coord_lsb << 0) |
((unsigned short)ctrl_8.max_y_coord_msb << 8);
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Function %02x max x = %d max y = %d\n", __func__,
fhandler->fn_number, rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
rmi4_data->num_of_rx = ctrl_8.num_of_rx;
rmi4_data->num_of_tx = ctrl_8.num_of_tx;
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) + intr_offset); ii++)
fhandler->intr_mask |= 1 << ii;
/* Allocate memory for finger data storage space */
fhandler->data_size = fhandler->num_of_data_points *
sizeof(struct synaptics_rmi4_f12_finger_data);
finger_data_list = kmalloc(fhandler->data_size, GFP_KERNEL);
fhandler->data = (void *)finger_data_list;
return retval;
}
static void synaptics_rmi4_f1a_kfree(struct synaptics_rmi4_fn *fhandler)
{
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
if (f1a) {
kfree(f1a->button_data_buffer);
kfree(f1a->button_map);
kfree(f1a);
fhandler->data = NULL;
}
}
static int synaptics_rmi4_f1a_alloc_mem(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
struct synaptics_rmi4_f1a_handle *f1a;
f1a = kzalloc(sizeof(*f1a), GFP_KERNEL);
if (!f1a)
return -ENOMEM;
fhandler->data = (void *)f1a;
retval = synaptics_rmi4_i2c_read(
rmi4_data, fhandler->full_addr.query_base,
f1a->button_query.data, sizeof(f1a->button_query.data));
if (retval < 0) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Failed to read query registers\n", __func__);
return retval;
}
f1a->button_count = f1a->button_query.max_button_count + 1;
f1a->button_bitmask_size = (f1a->button_count + 7) / 8;
f1a->button_data_buffer =
kcalloc(f1a->button_bitmask_size,
sizeof(*(f1a->button_data_buffer)), GFP_KERNEL);
if (!f1a->button_data_buffer)
return -ENOMEM;
f1a->button_map = kcalloc(f1a->button_count, sizeof(*(f1a->button_map)),
GFP_KERNEL);
if (!f1a->button_map)
return -ENOMEM;
return 0;
}
static int synaptics_rmi4_f1a_button_map(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
return 0;
}
static int synaptics_rmi4_f1a_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char ii;
unsigned short intr_offset;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) + intr_offset); ii++)
fhandler->intr_mask |= 1 << ii;
retval = synaptics_rmi4_f1a_alloc_mem(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
retval = synaptics_rmi4_f1a_button_map(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
rmi4_data->button_0d_enabled = 1;
return 0;
error_exit:
synaptics_rmi4_f1a_kfree(fhandler);
return retval;
}
/*
* synaptics_rmi4_query_device()
*
* Called by synaptics_rmi4_probe().
*
* This function scans the page description table, records the offsets
* to the register types of Function $01, sets up the function handlers
* for Function $11 and Function $12, determines the number of interrupt
* sources from the sensor, adds valid Functions with data inputs to the
* Function linked list, parses information from the query registers of
* Function $01, and enables the interrupt sources from the valid Functions
* with data inputs.
*/
static int synaptics_rmi4_query_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char ii;
unsigned char page_number;
unsigned char intr_count = 0;
unsigned char data_sources = 0;
unsigned char f01_query[F01_STD_QUERY_LEN];
unsigned short pdt_entry_addr;
unsigned short intr_addr;
struct synaptics_rmi4_f01_device_status status;
struct synaptics_rmi4_fn_desc rmi_fd;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
INIT_LIST_HEAD(&rmi->support_fn_list);
/* Scan the page description tables of the pages to service */
for (page_number = 0; page_number < PAGES_TO_SERVICE; page_number++) {
for (pdt_entry_addr = PDT_START; pdt_entry_addr > PDT_END;
pdt_entry_addr -= PDT_ENTRY_SIZE) {
pdt_entry_addr |= (page_number << 8);
retval = synaptics_rmi4_i2c_read(
rmi4_data, pdt_entry_addr,
(unsigned char *)&rmi_fd, sizeof(rmi_fd));
if (retval < 0)
return retval;
fhandler = NULL;
if (rmi_fd.fn_number == 0) {
TPD_DMESG("%s: Reached end of PDT\n", __func__);
break;
}
TPD_DMESG("%s: F%02x found (page %d)\n", __func__,
rmi_fd.fn_number, page_number);
switch (rmi_fd.fn_number) {
case SYNAPTICS_RMI4_F01:
rmi4_data->f01_query_base_addr =
rmi_fd.query_base_addr;
rmi4_data->f01_ctrl_base_addr =
rmi_fd.ctrl_base_addr;
rmi4_data->f01_data_base_addr =
rmi_fd.data_base_addr;
rmi4_data->f01_cmd_base_addr =
rmi_fd.cmd_base_addr;
retval = synaptics_rmi4_i2c_read(
rmi4_data,
rmi4_data->f01_data_base_addr,
status.data, sizeof(status.data));
if (retval < 0)
return retval;
if (status.flash_prog == 1) {
TPD_DMESG(
"%s: In flash prog mode, status = 0x%02x\n",
__func__, status.status_code);
goto flash_prog_mode;
}
break;
case SYNAPTICS_RMI4_F11:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(
&fhandler, &rmi_fd, page_number);
if (retval < 0) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__, rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f11_init(
rmi4_data, fhandler, &rmi_fd,
intr_count);
if (retval < 0)
return retval;
break;
case SYNAPTICS_RMI4_F12:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(
&fhandler, &rmi_fd, page_number);
if (retval < 0) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__, rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f12_init(
rmi4_data, fhandler, &rmi_fd,
intr_count);
if (retval < 0)
return retval;
break;
case SYNAPTICS_RMI4_F1A:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(
&fhandler, &rmi_fd, page_number);
if (retval < 0) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__, rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f1a_init(
rmi4_data, fhandler, &rmi_fd,
intr_count);
if (retval < 0)
return retval;
break;
#if PROXIMITY
case SYNAPTICS_RMI4_F51:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(
&fhandler, &rmi_fd, page_number);
if (retval < 0) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__, rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f51_init(
rmi4_data, fhandler, &rmi_fd,
intr_count);
if (retval < 0)
return retval;
break;
#endif
}
/* Accumulate the interrupt count */
intr_count += (rmi_fd.intr_src_count & MASK_3BIT);
if (fhandler && rmi_fd.intr_src_count)
list_add_tail(&fhandler->link,
&rmi->support_fn_list);
}
}
flash_prog_mode:
rmi4_data->num_of_intr_regs = (intr_count + 7) / 8;
TPD_DMESG("%s: Number of interrupt registers = %d\n", __func__,
rmi4_data->num_of_intr_regs);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_query_base_addr,
f01_query, sizeof(f01_query));
if (retval < 0)
return retval;
/* RMI Version 4.0 currently supported */
rmi->version_major = 4;
rmi->version_minor = 0;
rmi->manufacturer_id = f01_query[0];
rmi->product_props = f01_query[1];
rmi->product_info[0] = f01_query[2] & MASK_7BIT;
rmi->product_info[1] = f01_query[3] & MASK_7BIT;
rmi->date_code[0] = f01_query[4] & MASK_5BIT;
rmi->date_code[1] = f01_query[5] & MASK_4BIT;
rmi->date_code[2] = f01_query[6] & MASK_5BIT;
rmi->tester_id =
((f01_query[7] & MASK_7BIT) << 8) | (f01_query[8] & MASK_7BIT);
rmi->serial_number =
((f01_query[9] & MASK_7BIT) << 8) | (f01_query[10] & MASK_7BIT);
memcpy(rmi->product_id_string, &f01_query[11], 10);
if (rmi->manufacturer_id != 1) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Non-Synaptics device found, manufacturer ID = %d\n",
__func__, rmi->manufacturer_id);
}
memset(rmi4_data->intr_mask, 0x00, sizeof(rmi4_data->intr_mask));
/*
* Map out the interrupt bit masks for the interrupt sources
* from the registered function handlers.
*/
list_for_each_entry(fhandler, &rmi->support_fn_list, link)
data_sources += fhandler->num_of_data_sources;
if (data_sources) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->num_of_data_sources)
rmi4_data->intr_mask[fhandler->intr_reg_num] |=
fhandler->intr_mask;
}
}
/* Enable the interrupt sources */
for (ii = 0; ii < rmi4_data->num_of_intr_regs; ii++) {
if (rmi4_data->intr_mask[ii] != 0x00) {
TPD_DMESG("%s: Interrupt enable mask %d = 0x%02x\n",
__func__, ii, rmi4_data->intr_mask[ii]);
intr_addr = rmi4_data->f01_ctrl_base_addr + 1 + ii;
retval = synaptics_rmi4_i2c_write(
rmi4_data, intr_addr,
&(rmi4_data->intr_mask[ii]),
sizeof(rmi4_data->intr_mask[ii]));
if (retval < 0)
return retval;
}
}
return 0;
}
static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char command = 0x01;
/* struct synaptics_rmi4_fn *fhandler; */
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command, sizeof(command));
if (retval < 0) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
return retval;
}
msleep(100);
retval = synaptics_rmi4_query_device(rmi4_data);
if (retval < 0) {
dev_info(&rmi4_data->i2c_client->dev,
"%s: Failed to query device\n", __func__);
return retval;
}
return 0;
}
static int synaptics_rmi4_fwu_init(struct i2c_client *client)
{
int retval;
unsigned char attr_count;
struct pdt_properties pdt_props;
TPD_DMESG("%s:enter\n", __func__);
fwu = kzalloc(sizeof(*fwu), GFP_KERNEL);
if (!fwu)
goto exit;
fwu->rmi4_data =
kzalloc(sizeof(struct synaptics_rmi4_data), GFP_KERNEL);
if (!fwu->rmi4_data) {
retval = -ENOMEM;
goto exit_free_fwu;
}
fwu->fn_ptr = kzalloc(sizeof(*(fwu->fn_ptr)), GFP_KERNEL);
if (!fwu->fn_ptr) {
retval = -ENOMEM;
goto exit_free_rmi4;
}
fwu->rmi4_data->input_dev = tpd->dev;
fwu->rmi4_data->i2c_client = client;
fwu->fn_ptr->read = synaptics_rmi4_i2c_read;
fwu->fn_ptr->write = synaptics_rmi4_i2c_write;
fwu->fn_ptr->enable = synaptics_rmi4_irq_enable;
fwu->rmi4_data->reset_device = synaptics_rmi4_reset_device;
retval = synaptics_rmi4_query_device(fwu->rmi4_data);
if (retval < 0)
goto exit_free_mem;
mutex_init(&(fwu->rmi4_data->rmi4_io_ctrl_mutex));
retval = fwu->fn_ptr->read(fwu->rmi4_data, PDT_PROPS, pdt_props.data,
sizeof(pdt_props.data));
if (retval < 0) {
TPD_DMESG("%s: Failed to read PDT properties, assuming 0x00\n",
__func__);
} else if (pdt_props.has_bsr) {
TPD_DMESG("%s: Reflash for LTS not currently supported\n",
__func__);
goto exit_free_mem;
}
retval = fwu_scan_pdt();
if (retval < 0)
goto exit_free_mem;
retval = fwu_read_f34_queries();
if (retval < 0)
goto exit_free_mem;
TPD_DMESG(
"query_base_addr=0x%x, data_base_addr=0x%x, addr_f34_flash_control=0x%x, bootloader_id=%s\n",
fwu->f34_fd.query_base_addr, fwu->f34_fd.data_base_addr,
fwu->addr_f34_flash_control, fwu->bootloader_id);
fwu->initialized = true;
/* fwu->ext_data_source = synaImage; */
/* fwu->config_area = UI_CONFIG_AREA; */
properties_kobj_fwupdate =
kobject_create_and_add("fwupdate", properties_kobj_synap);
if (!properties_kobj_fwupdate) {
dev_info(&client->dev, "%s: Failed to create sysfs directory\n",
__func__);
goto err_sysfs_dir;
}
retval =
sysfs_create_bin_file(properties_kobj_fwupdate, &dev_attr_data);
if (retval < 0) {
dev_info(&client->dev, "%s: Failed to create sysfs bin file\n",
__func__);
goto exit_free_mem;
}
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
/* retval = sysfs_create_file(&tpd->dev->dev.kobj,*/
/* &attrs[attr_count].attr); */
retval = sysfs_create_file(properties_kobj_fwupdate,
&attrs[attr_count].attr);
if (retval < 0) {
dev_info(&client->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
retval = -ENODEV;
goto exit_remove_attrs;
}
}
return 0;
exit_remove_attrs:
for (attr_count--; attr_count >= 0; attr_count--)
sysfs_remove_file(properties_kobj_fwupdate,
&attrs[attr_count].attr);
sysfs_remove_bin_file(properties_kobj_fwupdate, &dev_attr_data);
err_sysfs_dir:
exit_free_mem:
kfree(fwu->fn_ptr);
exit_free_rmi4:
kfree(fwu->rmi4_data);
exit_free_fwu:
kfree(fwu);
exit:
return 0;
}
static void synaptics_rmi4_fwu_remove(struct i2c_client *client)
{
unsigned char attr_count;
sysfs_remove_bin_file(&fwu->rmi4_data->input_dev->dev.kobj,
&dev_attr_data);
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++)
sysfs_remove_file(&fwu->rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
kfree(fwu->fn_ptr);
kfree(fwu);
complete(&remove_complete);
}
static int __init rmi4_fw_update_module_init(void)
{
synaptics_rmi4_new_function(
RMI_FW_UPDATER, true, synaptics_rmi4_fwu_init,
synaptics_rmi4_fwu_remove, synaptics_rmi4_fwu_attn);
return 0;
}
static void __exit rmi4_fw_update_module_exit(void)
{
init_completion(&remove_complete);
synaptics_rmi4_new_function(
RMI_FW_UPDATER, false, synaptics_rmi4_fwu_init,
synaptics_rmi4_fwu_remove, synaptics_rmi4_fwu_attn);
wait_for_completion(&remove_complete);
}
module_init(rmi4_fw_update_module_init);
module_exit(rmi4_fw_update_module_exit);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("RMI4 FW Update Module");
MODULE_LICENSE("GPL");
MODULE_VERSION(SYNAPTICS_RMI4_DRIVER_VERSION);