/* * arch/arm/kernel/topology.c * * Copyright (C) 2011 Linaro Limited. * Written by: Vincent Guittot * * based on arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * cpu capacity scale management */ /* * cpu capacity table * This per cpu data structure describes the relative capacity of each core. * On a heteregenous system, cores don't have the same computation capacity * and we reflect that difference in the cpu_capacity field so the scheduler * can take this difference into account during load balance. A per cpu * structure is preferred because each CPU updates its own cpu_capacity field * during the load balance except for idle cores. One idle core is selected * to run the rebalance_domains for all idle cores and the cpu_capacity can be * updated during this sequence. */ #ifdef CONFIG_OF struct cpu_efficiency { const char *compatible; unsigned long efficiency; }; /* * Table of relative efficiency of each processors * The efficiency value must fit in 20bit and the final * cpu_scale value must be in the range * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2 * in order to return at most 1 when DIV_ROUND_CLOSEST * is used to compute the capacity of a CPU. * Processors that are not defined in the table, * use the default SCHED_CAPACITY_SCALE value for cpu_scale. */ static const struct cpu_efficiency table_efficiency[] = { {"arm,cortex-a15", 3891}, {"arm,cortex-a7", 2048}, {NULL, }, }; static unsigned long *__cpu_capacity; #define cpu_capacity(cpu) __cpu_capacity[cpu] static unsigned long middle_capacity = 1; static bool cap_from_dt = true; static int __init get_cpu_for_node(struct device_node *node) { struct device_node *cpu_node; int cpu; cpu_node = of_parse_phandle(node, "cpu", 0); if (!cpu_node) return -1; for_each_possible_cpu(cpu) { if (of_get_cpu_node(cpu, NULL) == cpu_node) { topology_parse_cpu_capacity(cpu_node, cpu); of_node_put(cpu_node); return cpu; } } pr_crit("Unable to find CPU node for %pOF\n", cpu_node); of_node_put(cpu_node); return -1; } static int __init parse_core(struct device_node *core, int cluster_id, int core_id) { char name[10]; bool leaf = true; int i = 0; int cpu; struct device_node *t; do { snprintf(name, sizeof(name), "thread%d", i); t = of_get_child_by_name(core, name); if (t) { leaf = false; cpu = get_cpu_for_node(t); if (cpu >= 0) { cpu_topology[cpu].socket_id = cluster_id; cpu_topology[cpu].core_id = core_id; cpu_topology[cpu].thread_id = i; } else { pr_err("%pOF: Can't get CPU for thread\n", t); of_node_put(t); return -EINVAL; } of_node_put(t); } i++; } while (t); cpu = get_cpu_for_node(core); if (cpu >= 0) { if (!leaf) { pr_err("%pOF: Core has both threads and CPU\n", core); return -EINVAL; } cpu_topology[cpu].socket_id = cluster_id; cpu_topology[cpu].core_id = core_id; } else if (leaf) { pr_err("%pOF: Can't get CPU for leaf core\n", core); return -EINVAL; } return 0; } static int __init parse_cluster(struct device_node *cluster, int depth) { char name[10]; bool leaf = true; bool has_cores = false; struct device_node *c; static int cluster_id __initdata; int core_id = 0; int i, ret; i = 0; do { snprintf(name, sizeof(name), "cluster%d", i); c = of_get_child_by_name(cluster, name); if (c) { leaf = false; ret = parse_cluster(c, depth + 1); of_node_put(c); if (ret != 0) return ret; } i++; } while (c); i = 0; do { snprintf(name, sizeof(name), "core%d", i); c = of_get_child_by_name(cluster, name); if (c) { has_cores = true; if (depth == 0) { pr_err("%pOF: cpu-map children should be clusters\n", c); of_node_put(c); return -EINVAL; } if (leaf) { ret = parse_core(c, cluster_id, core_id++); } else { pr_err("%pOF: Non-leaf cluster with core %s\n", cluster, name); ret = -EINVAL; } of_node_put(c); if (ret != 0) return ret; } i++; } while (c); if (leaf && !has_cores) pr_warn("%pOF: empty cluster\n", cluster); if (leaf) cluster_id++; return 0; } /* * Iterate all CPUs' descriptor in DT and compute the efficiency * (as per table_efficiency). Also calculate a middle efficiency * as close as possible to (max{eff_i} - min{eff_i}) / 2 * This is later used to scale the cpu_capacity field such that an * 'average' CPU is of middle capacity. Also see the comments near * table_efficiency[] and update_cpu_capacity(). */ static void __init parse_dt_topology(void) { const struct cpu_efficiency *cpu_eff; struct device_node *cn = NULL, *cn_cpus = NULL; struct device_node *map; unsigned long min_capacity = ULONG_MAX; unsigned long max_capacity = 0; unsigned long capacity = 0; int ret; int cpu = 0; pr_info("parse_dt_topology\n"); __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), GFP_NOWAIT); cn_cpus = of_find_node_by_path("/cpus"); if (!cn_cpus) { pr_err("No CPU information found in DT\n"); return; } for_each_possible_cpu(cpu) { const u32 *rate; int len; /* too early to use cpu->of_node */ cn = of_get_cpu_node(cpu, NULL); if (!cn) { pr_err("missing device node for CPU %d\n", cpu); continue; } if (topology_parse_cpu_capacity(cn, cpu)) { of_node_put(cn); continue; } cap_from_dt = false; for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) if (of_device_is_compatible(cn, cpu_eff->compatible)) break; if (cpu_eff->compatible == NULL) continue; rate = of_get_property(cn, "clock-frequency", &len); if (!rate || len != 4) { pr_err("%pOF missing clock-frequency property\n", cn); continue; } capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; /* Save min capacity of the system */ if (capacity < min_capacity) min_capacity = capacity; /* Save max capacity of the system */ if (capacity > max_capacity) max_capacity = capacity; cpu_capacity(cpu) = capacity; } /* If min and max capacities are equals, we bypass the update of the * cpu_scale because all CPUs have the same capacity. Otherwise, we * compute a middle_capacity factor that will ensure that the capacity * of an 'average' CPU of the system will be as close as possible to * SCHED_CAPACITY_SCALE, which is the default value, but with the * constraint explained near table_efficiency[]. */ if (4*max_capacity < (3*(max_capacity + min_capacity))) middle_capacity = (min_capacity + max_capacity) >> (SCHED_CAPACITY_SHIFT+1); else middle_capacity = ((max_capacity / 3) >> (SCHED_CAPACITY_SHIFT-1)) + 1; map = of_get_child_by_name(cn_cpus, "cpu-map"); if (!map) goto out; ret = parse_cluster(map, 0); of_node_put(map); out: if (cap_from_dt) topology_normalize_cpu_scale(); } /* * Look for a customed capacity of a CPU in the cpu_capacity table during the * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the * function returns directly for SMP system. */ static void update_cpu_capacity(unsigned int cpu) { if (!cpu_capacity(cpu) || cap_from_dt) return; topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity); pr_info("CPU%u: update cpu_capacity %lu\n", cpu, topology_get_cpu_scale(NULL, cpu)); } #else static inline void parse_dt_topology(void) {} static inline void update_cpu_capacity(unsigned int cpuid) {} #endif /* * cpu topology table */ struct cputopo_arm cpu_topology[NR_CPUS]; EXPORT_SYMBOL_GPL(cpu_topology); const struct cpumask *cpu_coregroup_mask(int cpu) { return &cpu_topology[cpu].core_sibling; } /* * The current assumption is that we can power gate each core independently. * This will be superseded by DT binding once available. */ const struct cpumask *cpu_corepower_mask(int cpu) { return &cpu_topology[cpu].thread_sibling; } static void update_siblings_masks(unsigned int cpuid) { struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; int cpu; /* update core and thread sibling masks */ for_each_possible_cpu(cpu) { cpu_topo = &cpu_topology[cpu]; if (cpuid_topo->socket_id != cpu_topo->socket_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); if (cpuid_topo->core_id != cpu_topo->core_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); } smp_wmb(); } /* * store_cpu_topology is called at boot when only one cpu is running * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, * which prevents simultaneous write access to cpu_topology array */ void store_cpu_topology(unsigned int cpuid) { update_siblings_masks(cpuid); pr_info("CPU%u: thread %d, cpu %d, socket %d\n", cpuid, cpu_topology[cpuid].thread_id, cpu_topology[cpuid].core_id, cpu_topology[cpuid].socket_id); } static inline int cpu_corepower_flags(void) { return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN; } static struct sched_domain_topology_level arm_topology[] = { #ifdef CONFIG_SCHED_MC { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) }, { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, #endif { cpu_cpu_mask, SD_INIT_NAME(DIE) }, { NULL, }, }; /* * init_cpu_topology is called at boot when only one cpu is running * which prevent simultaneous write access to cpu_topology array */ void __init init_cpu_topology(void) { unsigned int cpu; /* init core mask and capacity */ for_each_possible_cpu(cpu) { struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); cpu_topo->thread_id = -1; cpu_topo->core_id = -1; cpu_topo->socket_id = -1; cpumask_clear(&cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); } smp_wmb(); parse_dt_topology(); /* Set scheduler topology descriptor */ set_sched_topology(arm_topology); } int topology_nr_clusters(void) { int cpu; int nr_clusters = 0; int cluster_id, prev_cluster_id = -1; for_each_possible_cpu(cpu) { cluster_id = topology_physical_package_id(cpu); if (cluster_id != prev_cluster_id) { nr_clusters++; prev_cluster_id = cluster_id; } } return nr_clusters; }