/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2021 MediaTek Inc. */ #include #include #include #include #include #include "mtk_intf.h" #define PD_MIN_WATT 5000000 #define PD_VBUS_IR_DROP_THRESHOLD 1200 static struct pdc *pd; bool pdc_is_ready(void) { return adapter_is_support_pd(); } void pdc_init_table(void) { pd->cap.nr = 0; pd->cap.selected_cap_idx = -1; if (pdc_is_ready()) adapter_get_cap(&pd->cap); else chr_err("mtk_is_pdc_ready is fail\n"); chr_err("[%s] nr:%d default:%d\n", __func__, pd->cap.nr, pd->cap.selected_cap_idx); } void pdc_get_reset_idx(void) { struct pd_cap *cap; int i = 0; int idx = 0; cap = &pd->cap; if (pd->pd_reset_idx == -1) { for (i = 0; i < cap->nr; i++) { if (cap->min_mv[i] < pd->vbus_l || cap->max_mv[i] < pd->vbus_l || cap->min_mv[i] > pd->vbus_l || cap->max_mv[i] > pd->vbus_l) { continue; } idx = i; } pd->pd_reset_idx = idx; chr_err("[%s]reset idx:%d vbus:%d %d\n", __func__, idx, cap->min_mv[idx], cap->max_mv[idx]); } } int pdc_set_mivr(int uV) { int ret = 0; ret = charger_set_mivr(uV); if (ret < 0) chr_err("%s: failed, ret = %d\n", __func__, ret); return ret; } int pdc_get_idx(int selected_idx, int *boost_idx, int *buck_idx) { struct pd_cap *cap; int i = 0; int idx = 0; cap = &pd->cap; idx = selected_idx; if (idx < 0) { chr_err("[%s] invalid idx:%d\n", __func__, idx); *boost_idx = 0; *buck_idx = 0; return -1; } /* get boost_idx */ for (i = 0; i < cap->nr; i++) { if (cap->min_mv[i] < pd->vbus_l || cap->max_mv[i] < pd->vbus_l) { chr_err("min_mv error:%d %d %d\n", cap->min_mv[i], cap->max_mv[i], pd->vbus_l); continue; } if (cap->min_mv[i] > pd->vbus_h || cap->max_mv[i] > pd->vbus_h) { chr_err("max_mv error:%d %d %d\n", cap->min_mv[i], cap->max_mv[i], pd->vbus_h); continue; } if (idx == selected_idx) { if (cap->maxwatt[i] > cap->maxwatt[idx]) idx = i; } else { if (cap->maxwatt[i] < cap->maxwatt[idx] && cap->maxwatt[i] > cap->maxwatt[selected_idx]) idx = i; } } *boost_idx = idx; idx = selected_idx; /* get buck_idx */ for (i = 0; i < cap->nr; i++) { if (cap->min_mv[i] < pd->vbus_l || cap->max_mv[i] < pd->vbus_l) { chr_err("min_mv error:%d %d %d\n", cap->min_mv[i], cap->max_mv[i], pd->vbus_l); continue; } if (cap->min_mv[i] > pd->vbus_h || cap->max_mv[i] > pd->vbus_h) { chr_err("max_mv error:%d %d %d\n", cap->min_mv[i], cap->max_mv[i], pd->vbus_h); continue; } if (idx == selected_idx) { if (cap->maxwatt[i] < cap->maxwatt[idx]) idx = i; } else { if (cap->maxwatt[i] > cap->maxwatt[idx] && cap->maxwatt[i] < cap->maxwatt[selected_idx]) idx = i; } } *buck_idx = idx; return 0; } int pdc_setup(int idx) { int ret = -100; unsigned int mivr; unsigned int oldmivr = 4600000; unsigned int oldmA = 3000000; bool force_update = false; if (pd->pd_idx == idx) { charger_get_mivr(&oldmivr); if (pd->cap.max_mv[idx] - oldmivr / 1000 > PD_VBUS_IR_DROP_THRESHOLD) force_update = true; pdc_get_idx(idx, &pd->pd_boost_idx, &pd->pd_buck_idx); } if (pd->pd_idx != idx || force_update) { if (pd->cap.max_mv[idx] > 5000) enable_vbus_ovp(false); else enable_vbus_ovp(true); charger_get_mivr(&oldmivr); mivr = pd->data.min_charger_voltage / 1000; pdc_set_mivr(pd->data.min_charger_voltage); charger_get_input_current(&oldmA); oldmA = oldmA / 1000; if (oldmA > pd->cap.ma[idx]) charger_set_input_current(pd->cap.ma[idx] * 1000); ret = adapter_set_cap(pd->cap.max_mv[idx], pd->cap.ma[idx]); if (ret == ADAPTER_OK) { if (oldmA < pd->cap.ma[idx]) charger_set_input_current(pd->cap.ma[idx] * 1000); if ((pd->cap.max_mv[idx] - PD_VBUS_IR_DROP_THRESHOLD) > mivr) mivr = pd->cap.max_mv[idx] - PD_VBUS_IR_DROP_THRESHOLD; pdc_set_mivr(mivr * 1000); } else { if (oldmA > pd->cap.ma[idx]) charger_set_input_current(oldmA * 1000); pdc_set_mivr(oldmivr); } pdc_get_idx(idx, &pd->pd_boost_idx, &pd->pd_buck_idx); } chr_err("[%s]idx:%d:%d:%d:%d vbus:%d cur:%d ret:%d\n", __func__, pd->pd_idx, idx, pd->pd_boost_idx, pd->pd_buck_idx, pd->cap.max_mv[idx], pd->cap.ma[idx], ret); pd->pd_idx = idx; return ret; } void pdc_get_cap_max_watt(void) { struct pd_cap *cap; int i = 0; int idx = 0; cap = &pd->cap; if (pd->pd_cap_max_watt == -1) { for (i = 0; i < cap->nr; i++) { if (cap->min_mv[i] <= pd->vbus_h || cap->max_mv[i] <= pd->vbus_h) { if (cap->maxwatt[i] > pd->pd_cap_max_watt) { pd->pd_cap_max_watt = cap->maxwatt[i]; idx = i; } continue; } } chr_err("[%s]idx:%d vbus:%d %d maxwatt:%d\n", __func__, idx, cap->min_mv[idx], cap->max_mv[idx], pd->pd_cap_max_watt); } } int pdc_reset(void) { if (pd == NULL || !pdc_is_ready()) return -1; chr_err("%s: reset to default profile\n", __func__); pdc_init_table(); pdc_get_reset_idx(); pdc_setup(pd->pd_reset_idx); return 0; } int pdc_stop(void) { pdc_reset(); return 0; } int pdc_get_setting(int *newvbus, int *newcur, int *newidx) { int ret = 0; int idx, selected_idx; unsigned int pd_max_watt, pd_min_watt, now_max_watt; int ibus = 0, vbus; bool boost = false, buck = false; struct pd_cap *cap = NULL; unsigned int mivr1 = 0; bool chg1_mivr = false; pdc_init_table(); pdc_get_reset_idx(); pdc_get_cap_max_watt(); cap = &pd->cap; if (cap->nr == 0) return -1; ret = charger_get_ibus(&ibus); if (ret < 0) { chr_err("[%s] get ibus fail, keep default voltage\n", __func__); return -1; } charger_get_mivr_state(&chg1_mivr); charger_get_mivr(&mivr1); vbus = battery_get_vbus(); ibus = ibus / 1000; if ((chg1_mivr && (vbus < mivr1 / 1000 - 500))) goto reset; selected_idx = cap->selected_cap_idx; idx = selected_idx; if (idx < 0 || idx >= ADAPTER_CAP_MAX_NR) idx = selected_idx = 0; pd_max_watt = cap->max_mv[idx] * (cap->ma[idx] / 100 * (100 - pd->data.ibus_err) - 100); now_max_watt = cap->max_mv[idx] * ibus; pd_min_watt = cap->max_mv[pd->pd_buck_idx] * cap->ma[pd->pd_buck_idx] / 100 * (100 - pd->data.ibus_err) - pd->data.vsys_watt; if (pd_min_watt <= 5000000) pd_min_watt = 5000000; if ((now_max_watt >= pd_max_watt) || chg1_mivr) { *newidx = pd->pd_boost_idx; boost = true; } else if (now_max_watt <= pd_min_watt) { *newidx = pd->pd_buck_idx; buck = true; } else { *newidx = selected_idx; boost = false; buck = false; } *newvbus = cap->max_mv[*newidx]; *newcur = cap->ma[*newidx]; chr_err("[%s]watt:%d,%d,%d up:%d,%d vbus:%d ibus:%d, mivr:%d\n", __func__, pd_max_watt, now_max_watt, pd_min_watt, boost, buck, vbus, ibus, chg1_mivr); chr_err("[%s]vbus:%d:%d:%d current:%d idx:%d default_idx:%d\n", __func__, pd->vbus_h, pd->vbus_l, *newvbus, *newcur, *newidx, selected_idx); return 0; reset: pdc_reset(); *newidx = pd->pd_reset_idx; *newvbus = cap->max_mv[*newidx]; *newcur = cap->ma[*newidx]; return 0; } int pdc_check_leave(void) { struct pd_cap *cap; int ibus = 0, vbus = 0; unsigned int mivr1 = 0; bool mivr_state = false; int max_mv = 0; cap = &pd->cap; max_mv = cap->max_mv[pd->pd_idx]; charger_get_ibus(&ibus); ibus = ibus / 1000; vbus = battery_get_vbus(); charger_get_mivr_state(&mivr_state); charger_get_mivr(&mivr1); chr_err("[%s]mv:%d vbus:%d ibus:%d idx:%d min_watt:%d mivr:%d mivr_state:%d\n", __func__, max_mv, vbus, ibus, pd->pd_idx, PD_MIN_WATT, mivr1 / 1000, mivr_state); if (max_mv * ibus <= PD_MIN_WATT) { if (mivr_state) chr_err("[%s] MIVR occurred, ibus can't draw much higher current", __func__); goto leave; } return 0; leave: pdc_stop(); return 2; } int pdc_init(void) { struct pdc *pdc = NULL; if (pd == NULL) { pdc = kzalloc(sizeof(struct pdc), GFP_KERNEL); if (pdc == NULL) return -ENOMEM; pd = pdc; pd->data.input_current_limit = 3000000; pd->data.charging_current_limit = 3000000; pd->data.battery_cv = 4350000; pd->data.min_charger_voltage = 4600000; pd->data.pd_vbus_low_bound = 5000000; pd->data.pd_vbus_upper_bound = 5000000; pd->data.ibus_err = 14; pd->data.vsys_watt = 5000000; pd->pdc_input_current_limit_setting = -1; pd->pdc_max_watt_setting = -1; pd->pd_cap_max_watt = -1; pd->pd_idx = -1; pd->pd_reset_idx = -1; pd->pd_boost_idx = 0; pd->pd_buck_idx = 0; pd->vbus_l = 5000; pd->vbus_h = 5000; return 0; } return 1; } struct pdc_data *pdc_get_data(void) { return &pd->data; } int pdc_set_data(struct pdc_data data) { pd->data.input_current_limit = data.input_current_limit; pd->data.charging_current_limit = data.charging_current_limit; pd->data.battery_cv = data.battery_cv; pd->data.min_charger_voltage = data.min_charger_voltage; pd->data.pd_vbus_low_bound = data.pd_vbus_low_bound; pd->data.pd_vbus_upper_bound = data.pd_vbus_upper_bound; pd->data.ibus_err = data.ibus_err; pd->data.vsys_watt = data.vsys_watt; chr_err("[%s]%d %d %d %d %d %d %d %d\n", __func__, pd->data.input_current_limit, pd->data.charging_current_limit, pd->data.battery_cv, pd->data.min_charger_voltage, pd->data.pd_vbus_low_bound, pd->data.pd_vbus_upper_bound, pd->data.ibus_err, pd->data.vsys_watt); pd->vbus_l = pd->data.pd_vbus_low_bound / 1000; pd->vbus_h = pd->data.pd_vbus_upper_bound / 1000; return 0; } int pdc_set_current(void) { if (pd->pdc_input_current_limit_setting != -1 && pd->pdc_input_current_limit_setting < pd->data.input_current_limit) pd->data.input_current_limit = pd->pdc_input_current_limit_setting; charger_set_input_current(pd->data.input_current_limit); charger_set_charging_current(pd->data.charging_current_limit); return 0; } int pdc_set_cv(void) { charger_set_constant_voltage(pd->data.battery_cv); return 0; } int pdc_run(void) { int ret = 0; int vbus = 0, cur = 0, idx = 0; pd->vbus_l = pd->data.pd_vbus_low_bound / 1000; pd->vbus_h = pd->data.pd_vbus_upper_bound / 1000; pdc_set_cv(); ret = pdc_get_setting(&vbus, &cur, &idx); if (ret != -1 && idx != -1) { pd->pdc_input_current_limit_setting = cur * 1000; pdc_set_current(); pdc_setup(idx); } ret = pdc_check_leave(); chr_err("[%s]vbus:%d input_cur:%d idx:%d current:%d ret:%d\n", __func__, vbus, cur, idx, pd->data.input_current_limit, ret); return ret; }