unplugged-kernel/drivers/misc/mediatek/sensors-1.0/barometer/BMP280-new/bmp280.c

1696 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020 MediaTek Inc.
*/
#define pr_fmt(fmt) "<BMP280> " fmt
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kobject.h>
#include <linux/math64.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/workqueue.h>
#include "barometer.h"
#include "bmp280.h"
#include <cust_baro.h>
/* #include <linux/hwmsen_helper.h> */
/* #define POWER_NONE_MACRO MT65XX_POWER_NONE */
#define DRIVER_ATTR(_name, _mode, _show, _store) \
struct driver_attribute driver_attr_##_name = \
__ATTR(_name, _mode, _show, _store)
/* sensor type */
enum SENSOR_TYPE_ENUM {
BMP280_TYPE = 0x0,
INVALID_TYPE = 0xff
};
/* power mode */
enum BMP_POWERMODE_ENUM {
BMP_SUSPEND_MODE = 0x0,
BMP_NORMAL_MODE,
BMP_UNDEFINED_POWERMODE = 0xff
};
/* filter */
enum BMP_FILTER_ENUM {
BMP_FILTER_OFF = 0x0,
BMP_FILTER_2,
BMP_FILTER_4,
BMP_FILTER_8,
BMP_FILTER_16,
BMP_UNDEFINED_FILTER = 0xff
};
/* oversampling */
enum BMP_OVERSAMPLING_ENUM {
BMP_OVERSAMPLING_SKIPPED = 0x0,
BMP_OVERSAMPLING_1X,
BMP_OVERSAMPLING_2X,
BMP_OVERSAMPLING_4X,
BMP_OVERSAMPLING_8X,
BMP_OVERSAMPLING_16X,
BMP_UNDEFINED_OVERSAMPLING = 0xff
};
/* trace */
enum BAR_TRC {
BAR_TRC_READ = 0x01,
BAR_TRC_RAWDATA = 0x02,
BAR_TRC_IOCTL = 0x04,
BAR_TRC_FILTER = 0x08,
BAR_TRC_INFO = 0x10,
};
/* s/w filter */
struct data_filter {
u32 raw[C_MAX_FIR_LENGTH][BMP_DATA_NUM];
int sum[BMP_DATA_NUM];
int num;
int idx;
};
/* bmp280 calibration */
struct bmp280_calibration_data {
BMP280_U16_t dig_T1;
BMP280_S16_t dig_T2;
BMP280_S16_t dig_T3;
BMP280_U16_t dig_P1;
BMP280_S16_t dig_P2;
BMP280_S16_t dig_P3;
BMP280_S16_t dig_P4;
BMP280_S16_t dig_P5;
BMP280_S16_t dig_P6;
BMP280_S16_t dig_P7;
BMP280_S16_t dig_P8;
BMP280_S16_t dig_P9;
};
/* bmp i2c client data */
struct bmp_i2c_data {
struct i2c_client *client;
struct baro_hw hw;
/* sensor info */
u8 sensor_name[MAX_SENSOR_NAME];
enum SENSOR_TYPE_ENUM sensor_type;
enum BMP_POWERMODE_ENUM power_mode;
u8 hw_filter;
u8 oversampling_p;
u8 oversampling_t;
unsigned long last_temp_measurement;
unsigned long temp_measurement_period;
struct bmp280_calibration_data bmp280_cali;
/* calculated temperature correction coefficient */
s32 t_fine;
/*misc */
struct mutex lock;
atomic_t trace;
atomic_t suspend;
atomic_t filter;
#if defined(CONFIG_BMP_LOWPASS)
atomic_t firlen;
atomic_t fir_en;
struct data_filter fir;
#endif
};
static struct i2c_driver bmp_i2c_driver;
static struct bmp_i2c_data *obj_i2c_data;
static const struct i2c_device_id bmp_i2c_id[] = {
{BMP_DEV_NAME, 0},
{}
};
#ifdef CONFIG_MTK_LEGACY
static struct i2c_board_info bmp_i2c_info __initdata = {
I2C_BOARD_INFO(BMP_DEV_NAME, BMP280_I2C_ADDRESS)
};
#endif
static int bmp_local_init(void);
static int bmp_remove(void);
static int bmp_init_flag = -1;
static struct baro_init_info bmp_init_info = {
.name = "bmp",
.init = bmp_local_init,
.uninit = bmp_remove,
};
/* I2C operation functions */
static int bmp_i2c_read_block(struct i2c_client *client, u8 addr, u8 *data,
u8 len)
{
u8 reg_addr = addr;
u8 *rxbuf = data;
u8 left = len;
u8 retry;
u8 offset = 0;
struct i2c_msg msg[2] = {
{
.addr = client->addr,
.flags = 0,
.buf = &reg_addr,
.len = 1,
},
{
.addr = client->addr,
.flags = I2C_M_RD,
},
};
if (rxbuf == NULL)
return -1;
while (left > 0) {
retry = 0;
reg_addr = addr + offset;
msg[1].buf = &rxbuf[offset];
if (left > C_I2C_FIFO_SIZE) {
msg[1].len = C_I2C_FIFO_SIZE;
left -= C_I2C_FIFO_SIZE;
offset += C_I2C_FIFO_SIZE;
} else {
msg[1].len = left;
left = 0;
}
while (i2c_transfer(client->adapter, &msg[0], 2) != 2) {
retry++;
if (retry == 20) {
pr_err("i2c read reg=%#x length=%d failed\n",
addr + offset, len);
return -EIO;
}
}
}
return 0;
}
static int bmp_i2c_write_block(struct i2c_client *client, u8 addr, u8 *data,
u8 len)
{
u8 buffer[C_I2C_FIFO_SIZE];
u8 *txbuf = data;
u8 left = len;
u8 offset = 0;
u8 retry = 0;
struct i2c_msg msg = {
.addr = client->addr, .flags = 0, .buf = buffer,
};
if (txbuf == NULL)
return -1;
while (left > 0) {
retry = 0;
/* register address */
buffer[0] = addr + offset;
if (left >= C_I2C_FIFO_SIZE) {
memcpy(&buffer[1], &txbuf[offset], C_I2C_FIFO_SIZE - 1);
msg.len = C_I2C_FIFO_SIZE;
left -= C_I2C_FIFO_SIZE - 1;
offset += C_I2C_FIFO_SIZE - 1;
} else {
memcpy(&buffer[1], &txbuf[offset], left);
msg.len = left + 1;
left = 0;
}
while (i2c_transfer(client->adapter, &msg, 1) != 1) {
retry++;
if (retry == 20) {
pr_err("i2c write reg=%#x length=%d failed\n",
buffer[0], len);
return -EIO;
}
pr_debug("i2c write addr %#x, retry %d\n", buffer[0],
retry);
}
}
return 0;
}
/* get chip type */
static int bmp_get_chip_type(struct i2c_client *client)
{
int err = 0;
u8 chip_id = 0;
struct bmp_i2c_data *obj = i2c_get_clientdata(client);
/* pr_debug("%s\n", __func__);*/
err = bmp_i2c_read_block(client, BMP_CHIP_ID_REG, &chip_id, 0x01);
if (err != 0)
return err;
switch (chip_id) {
case BMP280_CHIP_ID1:
case BMP280_CHIP_ID2:
case BMP280_CHIP_ID3:
obj->sensor_type = BMP280_TYPE;
strlcpy(obj->sensor_name, "bmp280", sizeof(obj->sensor_name));
break;
default:
obj->sensor_type = INVALID_TYPE;
strlcpy(obj->sensor_name, "unknown sensor",
sizeof(obj->sensor_name));
break;
}
if (atomic_read(&obj->trace) & BAR_TRC_INFO)
pr_debug("[%s]chip id = %#x, sensor name = %s\n", __func__,
chip_id, obj->sensor_name);
if (obj->sensor_type == INVALID_TYPE) {
pr_err("unknown pressure sensor\n");
return -1;
}
return 0;
}
static int bmp_get_calibration_data(struct i2c_client *client)
{
struct bmp_i2c_data *obj =
(struct bmp_i2c_data *)i2c_get_clientdata(client);
int status = 0;
if (obj->sensor_type == BMP280_TYPE) {
u8 a_data_u8r[BMP280_CALIBRATION_DATA_LENGTH] = {0};
status = bmp_i2c_read_block(
client, BMP280_CALIBRATION_DATA_START, a_data_u8r,
BMP280_CALIBRATION_DATA_LENGTH);
if (status < 0)
return status;
obj->bmp280_cali.dig_T1 = (BMP280_U16_t)(
(((BMP280_U16_t)((unsigned char)a_data_u8r[1]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[0]);
obj->bmp280_cali.dig_T2 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[3]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[2]);
obj->bmp280_cali.dig_T3 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[5]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[4]);
obj->bmp280_cali.dig_P1 = (BMP280_U16_t)(
(((BMP280_U16_t)((unsigned char)a_data_u8r[7]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[6]);
obj->bmp280_cali.dig_P2 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[9]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[8]);
obj->bmp280_cali.dig_P3 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[11]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[10]);
obj->bmp280_cali.dig_P4 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[13]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[12]);
obj->bmp280_cali.dig_P5 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[15]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[14]);
obj->bmp280_cali.dig_P6 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[17]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[16]);
obj->bmp280_cali.dig_P7 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[19]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[18]);
obj->bmp280_cali.dig_P8 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[21]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[20]);
obj->bmp280_cali.dig_P9 = (BMP280_S16_t)(
(((BMP280_S16_t)((signed char)a_data_u8r[23]))
<< SHIFT_LEFT_8_POSITION) |
a_data_u8r[22]);
}
return 0;
}
static int bmp_set_powermode(struct i2c_client *client,
enum BMP_POWERMODE_ENUM power_mode)
{
struct bmp_i2c_data *obj = i2c_get_clientdata(client);
u8 err = 0, data = 0, actual_power_mode = 0;
if (atomic_read(&obj->trace) & BAR_TRC_INFO)
pr_debug("[%s] p_m = %d, old p_m = %d\n", __func__,
power_mode, obj->power_mode);
if (power_mode == obj->power_mode)
return 0;
mutex_lock(&obj->lock);
if (obj->sensor_type == BMP280_TYPE) { /* BMP280 */
if (power_mode == BMP_SUSPEND_MODE) {
actual_power_mode = BMP280_SLEEP_MODE;
} else if (power_mode == BMP_NORMAL_MODE) {
actual_power_mode = BMP280_NORMAL_MODE;
} else {
err = -EINVAL;
pr_err("invalid power mode = %d\n", power_mode);
mutex_unlock(&obj->lock);
return err;
}
err = bmp_i2c_read_block(client, BMP280_CTRLMEAS_REG_MODE__REG,
&data, 1);
data = BMP_SET_BITSLICE(data, BMP280_CTRLMEAS_REG_MODE,
actual_power_mode);
err += bmp_i2c_write_block(
client, BMP280_CTRLMEAS_REG_MODE__REG, &data, 1);
}
if (err < 0)
pr_err("set power mode failed, err = %d, sensor name = %s\n",
err, obj->sensor_name);
else
obj->power_mode = power_mode;
mutex_unlock(&obj->lock);
return err;
}
static int bmp_set_filter(struct i2c_client *client,
enum BMP_FILTER_ENUM filter)
{
struct bmp_i2c_data *obj = i2c_get_clientdata(client);
u8 err = 0, data = 0, actual_filter = 0;
if (atomic_read(&obj->trace) & BAR_TRC_INFO)
pr_debug("[%s] hw filter = %d, old hw filter = %d\n", __func__,
filter, obj->hw_filter);
if (filter == obj->hw_filter)
return 0;
mutex_lock(&obj->lock);
if (obj->sensor_type == BMP280_TYPE) { /* BMP280 */
if (filter == BMP_FILTER_OFF)
actual_filter = BMP280_FILTERCOEFF_OFF;
else if (filter == BMP_FILTER_2)
actual_filter = BMP280_FILTERCOEFF_2;
else if (filter == BMP_FILTER_4)
actual_filter = BMP280_FILTERCOEFF_4;
else if (filter == BMP_FILTER_8)
actual_filter = BMP280_FILTERCOEFF_8;
else if (filter == BMP_FILTER_16)
actual_filter = BMP280_FILTERCOEFF_16;
else {
err = -EINVAL;
pr_err("invalid hw filter = %d\n", filter);
mutex_unlock(&obj->lock);
return err;
}
err = bmp_i2c_read_block(client, BMP280_CONFIG_REG_FILTER__REG,
&data, 1);
data = BMP_SET_BITSLICE(data, BMP280_CONFIG_REG_FILTER,
actual_filter);
err += bmp_i2c_write_block(
client, BMP280_CONFIG_REG_FILTER__REG, &data, 1);
}
if (err < 0)
pr_err("set hw filter failed, err = %d, sensor name = %s\n",
err, obj->sensor_name);
else
obj->hw_filter = filter;
mutex_unlock(&obj->lock);
return err;
}
static int bmp_set_oversampling_p(struct i2c_client *client,
enum BMP_OVERSAMPLING_ENUM oversampling_p)
{
struct bmp_i2c_data *obj = i2c_get_clientdata(client);
u8 err = 0, data = 0, actual_oversampling_p = 0;
if (atomic_read(&obj->trace) & BAR_TRC_INFO)
pr_debug("[%s] oversampling_p = %d, old oversampling_p = %d\n",
__func__, oversampling_p, obj->oversampling_p);
if (oversampling_p == obj->oversampling_p)
return 0;
mutex_lock(&obj->lock);
if (obj->sensor_type == BMP280_TYPE) { /* BMP280 */
if (oversampling_p == BMP_OVERSAMPLING_SKIPPED)
actual_oversampling_p = BMP280_OVERSAMPLING_SKIPPED;
else if (oversampling_p == BMP_OVERSAMPLING_1X)
actual_oversampling_p = BMP280_OVERSAMPLING_1X;
else if (oversampling_p == BMP_OVERSAMPLING_2X)
actual_oversampling_p = BMP280_OVERSAMPLING_2X;
else if (oversampling_p == BMP_OVERSAMPLING_4X)
actual_oversampling_p = BMP280_OVERSAMPLING_4X;
else if (oversampling_p == BMP_OVERSAMPLING_8X)
actual_oversampling_p = BMP280_OVERSAMPLING_8X;
else if (oversampling_p == BMP_OVERSAMPLING_16X)
actual_oversampling_p = BMP280_OVERSAMPLING_16X;
else {
err = -EINVAL;
pr_err("invalid oversampling_p = %d\n",
oversampling_p);
mutex_unlock(&obj->lock);
return err;
}
err = bmp_i2c_read_block(client, BMP280_CTRLMEAS_REG_OSRSP__REG,
&data, 1);
data = BMP_SET_BITSLICE(data, BMP280_CTRLMEAS_REG_OSRSP,
actual_oversampling_p);
err += bmp_i2c_write_block(
client, BMP280_CTRLMEAS_REG_OSRSP__REG, &data, 1);
}
if (err < 0)
pr_err("set pressure oversampling failed, err = %d,sensor name = %s\n",
err, obj->sensor_name);
else
obj->oversampling_p = oversampling_p;
mutex_unlock(&obj->lock);
return err;
}
static int bmp_set_oversampling_t(struct i2c_client *client,
enum BMP_OVERSAMPLING_ENUM oversampling_t)
{
struct bmp_i2c_data *obj = i2c_get_clientdata(client);
u8 err = 0, data = 0, actual_oversampling_t = 0;
if (atomic_read(&obj->trace) & BAR_TRC_INFO)
pr_debug("[%s] oversampling_t = %d, old oversampling_t = %d\n",
__func__, oversampling_t, obj->oversampling_t);
if (oversampling_t == obj->oversampling_t)
return 0;
mutex_lock(&obj->lock);
if (obj->sensor_type == BMP280_TYPE) { /* BMP280 */
if (oversampling_t == BMP_OVERSAMPLING_SKIPPED)
actual_oversampling_t = BMP280_OVERSAMPLING_SKIPPED;
else if (oversampling_t == BMP_OVERSAMPLING_1X)
actual_oversampling_t = BMP280_OVERSAMPLING_1X;
else if (oversampling_t == BMP_OVERSAMPLING_2X)
actual_oversampling_t = BMP280_OVERSAMPLING_2X;
else if (oversampling_t == BMP_OVERSAMPLING_4X)
actual_oversampling_t = BMP280_OVERSAMPLING_4X;
else if (oversampling_t == BMP_OVERSAMPLING_8X)
actual_oversampling_t = BMP280_OVERSAMPLING_8X;
else if (oversampling_t == BMP_OVERSAMPLING_16X)
actual_oversampling_t = BMP280_OVERSAMPLING_16X;
else {
err = -EINVAL;
pr_err("invalid oversampling_t = %d\n",
oversampling_t);
mutex_unlock(&obj->lock);
return err;
}
err = bmp_i2c_read_block(client, BMP280_CTRLMEAS_REG_OSRST__REG,
&data, 1);
data = BMP_SET_BITSLICE(data, BMP280_CTRLMEAS_REG_OSRST,
actual_oversampling_t);
err += bmp_i2c_write_block(
client, BMP280_CTRLMEAS_REG_OSRST__REG, &data, 1);
}
if (err < 0)
pr_err("set temperature oversampling failed, err = %d, sensor name = %s\n",
err, obj->sensor_name);
else
obj->oversampling_t = oversampling_t;
mutex_unlock(&obj->lock);
return err;
}
static int bmp_read_raw_temperature(struct i2c_client *client, s32 *temperature)
{
struct bmp_i2c_data *obj;
s32 err = 0;
if (client == NULL) {
err = -EINVAL;
return err;
}
obj = i2c_get_clientdata(client);
mutex_lock(&obj->lock);
if (obj->sensor_type == BMP280_TYPE) { /* BMP280 */
unsigned char a_data_u8r[3] = {0};
err = bmp_i2c_read_block(client, BMP280_TEMPERATURE_MSB_REG,
a_data_u8r, 3);
if (err < 0) {
pr_err("read raw temperature failed, err = %d\n", err);
mutex_unlock(&obj->lock);
return err;
}
*temperature = (BMP280_S32_t)((((BMP280_U32_t)(a_data_u8r[0]))
<< SHIFT_LEFT_12_POSITION) |
(((BMP280_U32_t)(a_data_u8r[1]))
<< SHIFT_LEFT_4_POSITION) |
((BMP280_U32_t)a_data_u8r[2] >>
SHIFT_RIGHT_4_POSITION));
}
obj->last_temp_measurement = jiffies;
mutex_unlock(&obj->lock);
return err;
}
static int bmp_read_raw_pressure(struct i2c_client *client, s32 *pressure)
{
struct bmp_i2c_data *priv;
s32 err = 0;
if (client == NULL) {
err = -EINVAL;
return err;
}
priv = i2c_get_clientdata(client);
mutex_lock(&priv->lock);
if (priv->sensor_type == BMP280_TYPE) { /* BMP280 */
unsigned char a_data_u8r[3] = {0};
err = bmp_i2c_read_block(client, BMP280_PRESSURE_MSB_REG,
a_data_u8r, 3);
if (err < 0) {
pr_err("read raw pressure failed, err = %d\n", err);
mutex_unlock(&priv->lock);
return err;
}
*pressure = (BMP280_S32_t)((((BMP280_U32_t)(a_data_u8r[0]))
<< SHIFT_LEFT_12_POSITION) |
(((BMP280_U32_t)(a_data_u8r[1]))
<< SHIFT_LEFT_4_POSITION) |
((BMP280_U32_t)a_data_u8r[2] >>
SHIFT_RIGHT_4_POSITION));
}
#ifdef CONFIG_BMP_LOWPASS
/*
*Example: firlen = 16, filter buffer = [0] ... [15],
*when 17th data come, replace [0] with this new data.
*Then, average this filter buffer and report average value to upper
*layer.
*/
if (atomic_read(&priv->filter)) {
if (atomic_read(&priv->fir_en) &&
!atomic_read(&priv->suspend)) {
int idx, firlen = atomic_read(&priv->firlen);
if (priv->fir.num < firlen) {
priv->fir.raw[priv->fir.num][BMP_PRESSURE] =
*pressure;
priv->fir.sum[BMP_PRESSURE] += *pressure;
if (atomic_read(&priv->trace) &
BAR_TRC_FILTER) {
pr_debug("add [%2d] [%5d] => [%5d]\n",
priv->fir.num,
priv->fir.raw[priv->fir.num]
[BMP_PRESSURE],
priv->fir.sum[BMP_PRESSURE]);
}
priv->fir.num++;
priv->fir.idx++;
} else {
idx = priv->fir.idx % firlen;
priv->fir.sum[BMP_PRESSURE] -=
priv->fir.raw[idx][BMP_PRESSURE];
priv->fir.raw[idx][BMP_PRESSURE] = *pressure;
priv->fir.sum[BMP_PRESSURE] += *pressure;
priv->fir.idx++;
*pressure =
priv->fir.sum[BMP_PRESSURE] / firlen;
if (atomic_read(&priv->trace) &
BAR_TRC_FILTER) {
pr_debug("add [%2d][%5d]=>[%5d]:[%5d]\n",
idx,
priv->fir
.raw[idx][BMP_PRESSURE],
priv->fir.sum[BMP_PRESSURE],
*pressure);
}
}
}
}
#endif
mutex_unlock(&priv->lock);
return err;
}
/*
*get compensated temperature
*unit:10 degrees centigrade
*/
static int bmp_get_temperature(struct i2c_client *client, char *buf,
int bufsize)
{
struct bmp_i2c_data *obj;
int status;
s32 utemp = 0; /* uncompensated temperature */
s32 temperature = 0;
if (buf == NULL)
return -1;
if (client == NULL) {
*buf = 0;
return -2;
}
obj = i2c_get_clientdata(client);
status = bmp_read_raw_temperature(client, &utemp);
if (status != 0)
return status;
if (obj->sensor_type == BMP280_TYPE) { /* BMP280 */
BMP280_S32_t v_x1_u32r = 0;
BMP280_S32_t v_x2_u32r = 0;
v_x1_u32r = ((((utemp >> 3) -
((BMP280_S32_t)obj->bmp280_cali.dig_T1 << 1))) *
((BMP280_S32_t)obj->bmp280_cali.dig_T2)) >>
11;
v_x2_u32r = (((((utemp >> 4) -
((BMP280_S32_t)obj->bmp280_cali.dig_T1)) *
((utemp >> 4) -
((BMP280_S32_t)obj->bmp280_cali.dig_T1))) >>
12) *
((BMP280_S32_t)obj->bmp280_cali.dig_T3)) >>
14;
mutex_lock(&obj->lock);
obj->t_fine = v_x1_u32r + v_x2_u32r;
mutex_unlock(&obj->lock);
temperature = (obj->t_fine * 5 + 128) >> 8;
}
sprintf(buf, "%08x", temperature);
if (atomic_read(&obj->trace) & BAR_TRC_IOCTL) {
pr_debug("temperature: %d\n", temperature);
pr_debug("temperature/100: %d\n", temperature / 100);
pr_debug("compensated temperature value: %s\n", buf);
}
return status;
}
/*
*get compensated pressure
*unit: hectopascal(hPa)
*/
static int bmp_get_pressure(struct i2c_client *client, char *buf, int bufsize)
{
struct bmp_i2c_data *obj;
int status;
s32 temperature = 0, upressure = 0, pressure = 0;
char temp_buf[BMP_BUFSIZE];
if (buf == NULL)
return -1;
if (client == NULL) {
*buf = 0;
return -2;
}
obj = i2c_get_clientdata(client);
/* update the ambient temperature according to the given meas. period */
/* below method will have false problem when jiffies wrap around.
*so replace.
*/
if (time_before_eq((unsigned long)(obj->last_temp_measurement +
obj->temp_measurement_period),
jiffies)) {
status = bmp_get_temperature(client, temp_buf,
BMP_BUFSIZE); /* update t_fine */
if (status != 0)
goto exit;
if (kstrtos32(temp_buf, 16, &temperature) != 1)
pr_err("sscanf parsing fail\n");
}
status = bmp_read_raw_pressure(client, &upressure);
if (status != 0)
goto exit;
if (obj->sensor_type == BMP280_TYPE) { /* BMP280 */
BMP280_S64_t v_x1_u32r = 0;
BMP280_S64_t v_x2_u32r = 0;
BMP280_S64_t p = 0;
v_x1_u32r = ((BMP280_S64_t)obj->t_fine) - 128000;
v_x2_u32r = v_x1_u32r * v_x1_u32r *
(BMP280_S64_t)obj->bmp280_cali.dig_P6;
v_x2_u32r = v_x2_u32r +
((v_x1_u32r * (BMP280_S64_t)obj->bmp280_cali.dig_P5)
<< 17);
v_x2_u32r = v_x2_u32r +
(((BMP280_S64_t)obj->bmp280_cali.dig_P4) << 35);
v_x1_u32r = ((v_x1_u32r * v_x1_u32r *
(BMP280_S64_t)obj->bmp280_cali.dig_P3) >>
8) +
((v_x1_u32r * (BMP280_S64_t)obj->bmp280_cali.dig_P2)
<< 12);
v_x1_u32r = (((((BMP280_S64_t)1) << 47) + v_x1_u32r)) *
((BMP280_S64_t)obj->bmp280_cali.dig_P1) >>
33;
if (v_x1_u32r == 0)
/* Avoid exception caused by division by zero */
return -1;
p = 1048576 - upressure;
p = div64_s64(((p << 31) - v_x2_u32r) * 3125, v_x1_u32r);
v_x1_u32r = (((BMP280_S64_t)obj->bmp280_cali.dig_P9) *
(p >> 13) * (p >> 13)) >>
25;
v_x2_u32r = (((BMP280_S64_t)obj->bmp280_cali.dig_P8) * p) >> 19;
p = ((p + v_x1_u32r + v_x2_u32r) >> 8) +
(((BMP280_S64_t)obj->bmp280_cali.dig_P7) << 4);
pressure = (BMP280_U32_t)p / 256;
}
sprintf(buf, "%08x", pressure);
if (atomic_read(&obj->trace) & BAR_TRC_IOCTL) {
pr_debug("pressure: %d\n", pressure);
pr_debug("pressure/100: %d\n", pressure / 100);
pr_debug("compensated pressure value: %s\n", buf);
}
exit:
return status;
}
/* bmp setting initialization */
static int bmp_init_client(struct i2c_client *client)
{
int err = 0;
/* pr_debug("%s\n", __func__); */
err = bmp_get_chip_type(client);
if (err < 0) {
pr_err("get chip type failed, err = %d\n", err);
return err;
}
err = bmp_get_calibration_data(client);
if (err < 0) {
pr_err("get calibration data failed, err = %d\n", err);
return err;
}
err = bmp_set_powermode(client, BMP_SUSPEND_MODE);
if (err < 0) {
pr_err("set power mode failed, err = %d\n", err);
return err;
}
err = bmp_set_filter(client, BMP_FILTER_8);
if (err < 0) {
pr_err("set hw filter failed, err = %d\n", err);
return err;
}
err = bmp_set_oversampling_p(client, BMP_OVERSAMPLING_8X);
if (err < 0) {
pr_err("set pressure oversampling failed, err = %d\n", err);
return err;
}
err = bmp_set_oversampling_t(client, BMP_OVERSAMPLING_1X);
if (err < 0) {
pr_err("set temperature oversampling failed, err = %d\n", err);
return err;
}
return 0;
}
static int bmp280_verify_i2c_disable_switch(struct bmp_i2c_data *obj)
{
int err = 0;
u8 reg_val = 0xFF;
err = bmp_i2c_read_block(obj->client, BMP280_I2C_DISABLE_SWITCH,
&reg_val, 1);
if (err < 0) {
err = -EIO;
pr_err("bus read failed\n");
return err;
}
if (reg_val == 0x00) {
pr_debug("bmp280 i2c interface is available\n");
return 0; /* OK */
}
pr_err("verification of i2c interface is failure\n");
return -1; /* Failure */
}
static int bmp_check_calib_param(struct bmp_i2c_data *obj)
{
struct bmp280_calibration_data *cali = &(obj->bmp280_cali);
/* verify that not all calibration parameters are 0 */
if (cali->dig_T1 == 0 && cali->dig_T2 == 0 && cali->dig_T3 == 0 &&
cali->dig_P1 == 0 && cali->dig_P2 == 0 && cali->dig_P3 == 0 &&
cali->dig_P4 == 0 && cali->dig_P5 == 0 && cali->dig_P6 == 0 &&
cali->dig_P7 == 0 && cali->dig_P8 == 0 && cali->dig_P9 == 0) {
pr_err("all calibration parameters are zero\n");
return -2;
}
/* verify whether all the calibration parameters are within range */
if (cali->dig_T1 < 19000 || cali->dig_T1 > 35000)
return -3;
else if (cali->dig_T2 < 22000 || cali->dig_T2 > 30000)
return -4;
else if (cali->dig_T3 < -3000 || cali->dig_T3 > -1000)
return -5;
else if (cali->dig_P1 < 30000 || cali->dig_P1 > 42000)
return -6;
else if (cali->dig_P2 < -12970 || cali->dig_P2 > -8000)
return -7;
else if (cali->dig_P3 < -5000 || cali->dig_P3 > 8000)
return -8;
else if (cali->dig_P4 < -10000 || cali->dig_P4 > 18000)
return -9;
else if (cali->dig_P5 < -500 || cali->dig_P5 > 1100)
return -10;
else if (cali->dig_P6 < -1000 || cali->dig_P6 > 1000)
return -11;
else if (cali->dig_P7 < -32768 || cali->dig_P7 > 32767)
return -12;
else if (cali->dig_P8 < -30000 || cali->dig_P8 > 10000)
return -13;
else if (cali->dig_P9 < -10000 || cali->dig_P9 > 30000)
return -14;
pr_debug("calibration parameters are OK\n");
return 0;
}
static int bmp_check_pt(struct bmp_i2c_data *obj)
{
int err = 0;
int temperature = -5000;
int pressure = -1;
char t[BMP_BUFSIZE] = "", p[BMP_BUFSIZE] = "";
err = bmp_set_powermode(obj->client, BMP_NORMAL_MODE);
if (err < 0) {
pr_err("set power mode failed, err = %d\n", err);
return -15;
}
mdelay(50);
/* check ut and t */
bmp_get_temperature(obj->client, t, BMP_BUFSIZE);
if (kstrtoint(t, 16, &temperature) != 1)
pr_err("sscanf parsing fail\n");
if (temperature <= -40 * 100 || temperature >= 85 * 100) {
pr_err("temperature value is out of range:%d*0.01degree\n",
temperature);
return -16;
}
/* check up and p */
bmp_get_pressure(obj->client, p, BMP_BUFSIZE);
if (kstrtoint(p, 16, &pressure) != 1)
pr_err("sscanf parsing fail\n");
if (pressure <= 800 * 100 || pressure >= 1100 * 100) {
pr_err("pressure value is out of range:%d Pa\n", pressure);
return -17;
}
pr_debug("bmp280 temperature and pressure values are OK\n");
return 0;
}
static int bmp_do_selftest(struct bmp_i2c_data *obj)
{
int err = 0;
/* 0: failed, 1: success */
u8 selftest;
err = bmp280_verify_i2c_disable_switch(obj);
if (err) {
selftest = 0;
pr_err("bmp280_verify_i2c_disable_switch:err=%d\n", err);
goto exit;
}
err = bmp_check_calib_param(obj);
if (err) {
selftest = 0;
pr_err("bmp_check_calib_param:err=%d\n", err);
goto exit;
}
err = bmp_check_pt(obj);
if (err) {
selftest = 0;
pr_err("bmp_check_pt:err=%d\n", err);
goto exit;
}
/* selftest is OK */
selftest = 1;
pr_debug("bmp280 self test is OK\n");
exit:
return selftest;
}
static ssize_t show_chipinfo_value(struct device_driver *ddri, char *buf)
{
struct bmp_i2c_data *obj = obj_i2c_data;
if (obj == NULL) {
pr_err("bmp i2c data pointer is null\n");
return 0;
}
return snprintf(buf, PAGE_SIZE, "%s\n", obj->sensor_name);
}
static ssize_t show_sensordata_value(struct device_driver *ddri, char *buf)
{
struct bmp_i2c_data *obj = obj_i2c_data;
char strbuf[BMP_BUFSIZE] = "";
if (obj == NULL) {
pr_err("bmp i2c data pointer is null\n");
return 0;
}
bmp_get_pressure(obj->client, strbuf, BMP_BUFSIZE);
return snprintf(buf, PAGE_SIZE, "%s\n", strbuf);
}
static ssize_t show_trace_value(struct device_driver *ddri, char *buf)
{
ssize_t res;
struct bmp_i2c_data *obj = obj_i2c_data;
if (obj == NULL) {
pr_err("bmp i2c data pointer is null\n");
return 0;
}
res = snprintf(buf, PAGE_SIZE, "0x%04X\n", atomic_read(&obj->trace));
return res;
}
static ssize_t store_trace_value(struct device_driver *ddri, const char *buf,
size_t count)
{
struct bmp_i2c_data *obj = obj_i2c_data;
int trace;
if (obj == NULL) {
pr_err("i2c_data obj is null\n");
return 0;
}
if (sscanf(buf, "0x%x", &trace) == 1)
atomic_set(&obj->trace, trace);
else
pr_err("invalid content: '%s', length = %d\n", buf,
(int)count);
return count;
}
static ssize_t show_status_value(struct device_driver *ddri, char *buf)
{
ssize_t len = 0;
struct bmp_i2c_data *obj = obj_i2c_data;
if (obj == NULL) {
pr_err("bmp i2c data pointer is null\n");
return 0;
}
len += snprintf(buf + len, PAGE_SIZE - len, "CUST: %d %d (%d %d)\n",
obj->hw.i2c_num, obj->hw.direction, obj->hw.power_id,
obj->hw.power_vol);
len += snprintf(buf + len, PAGE_SIZE - len, "i2c addr:%#x,ver:%s\n",
obj->client->addr, BMP_DRIVER_VERSION);
return len;
}
static ssize_t show_power_mode_value(struct device_driver *ddri, char *buf)
{
ssize_t len = 0;
struct bmp_i2c_data *obj = obj_i2c_data;
if (obj == NULL) {
pr_err("bmp i2c data pointer is null\n");
return 0;
}
len += snprintf(buf + len, PAGE_SIZE - len, "%s mode\n",
obj->power_mode == BMP_NORMAL_MODE ? "normal"
: "suspend");
return len;
}
static ssize_t store_power_mode_value(struct device_driver *ddri,
const char *buf, size_t count)
{
struct bmp_i2c_data *obj = obj_i2c_data;
unsigned long power_mode;
int err;
if (obj == NULL) {
pr_err("bmp i2c data pointer is null\n");
return 0;
}
err = kstrtoul(buf, 10, &power_mode);
if (err == 0) {
err = bmp_set_powermode(
obj->client, (enum BMP_POWERMODE_ENUM)(!!(power_mode)));
if (err)
return err;
return count;
}
return err;
}
static ssize_t show_selftest_value(struct device_driver *ddri, char *buf)
{
struct bmp_i2c_data *obj = obj_i2c_data;
if (obj == NULL) {
pr_err("bmp i2c data pointer is null\n");
return 0;
}
return snprintf(buf, PAGE_SIZE, "%d\n", bmp_do_selftest(obj));
}
static DRIVER_ATTR(chipinfo, 0444, show_chipinfo_value, NULL);
static DRIVER_ATTR(sensordata, 0444, show_sensordata_value, NULL);
static DRIVER_ATTR(trace, 0644, show_trace_value,
store_trace_value);
static DRIVER_ATTR(status, 0444, show_status_value, NULL);
static DRIVER_ATTR(powermode, 0644, show_power_mode_value,
store_power_mode_value);
static DRIVER_ATTR(selftest, 0444, show_selftest_value, NULL);
static struct driver_attribute *bmp_attr_list[] = {
&driver_attr_chipinfo, /* chip information */
&driver_attr_sensordata, /* dump sensor data */
&driver_attr_trace, /* trace log */
&driver_attr_status, /* cust setting */
&driver_attr_powermode, /* power mode */
&driver_attr_selftest, /* self test */
};
static int bmp_create_attr(struct device_driver *driver)
{
int idx, err = 0;
int num = (int)(ARRAY_SIZE(bmp_attr_list));
if (driver == NULL)
return -EINVAL;
for (idx = 0; idx < num; idx++) {
err = driver_create_file(driver, bmp_attr_list[idx]);
if (err) {
pr_err("driver_create_file (%s) = %d\n",
bmp_attr_list[idx]->attr.name, err);
break;
}
}
return err;
}
static int bmp_delete_attr(struct device_driver *driver)
{
int idx, err = 0;
int num = (int)(ARRAY_SIZE(bmp_attr_list));
if (driver == NULL)
return -EINVAL;
for (idx = 0; idx < num; idx++)
driver_remove_file(driver, bmp_attr_list[idx]);
return err;
}
#ifdef CONFIG_ID_TEMPERATURE
int temperature_operate(void *self, uint32_t command, void *buff_in,
int size_in, void *buff_out, int size_out,
int *actualout)
{
int err = 0;
int value;
struct bmp_i2c_data *priv = (struct bmp_i2c_data *)self;
hwm_sensor_data *temperature_data;
char buff[BMP_BUFSIZE];
switch (command) {
case SENSOR_DELAY:
/* under construction */
break;
case SENSOR_ENABLE:
if ((buff_in == NULL) || (size_in < sizeof(int))) {
pr_err("enable sensor parameter error\n");
err = -EINVAL;
} else {
/* value:[0--->suspend, 1--->normal] */
value = *(int *)buff_in;
pr_debug("sensor enable/disable command: %s\n",
value ? "enable" : "disable");
err = bmp_set_powermode(
priv->client,
(enum BMP_POWERMODE_ENUM)(!!value));
if (err)
pr_err("set power mode failed, err = %d\n",
err);
}
break;
case SENSOR_GET_DATA:
if ((buff_out == NULL) ||
(size_out < sizeof(hwm_sensor_data))) {
pr_err("get sensor data parameter error\n");
err = -EINVAL;
} else {
temperature_data = (hwm_sensor_data *)buff_out;
err = bmp_get_temperature(priv->client, buff,
BMP_BUFSIZE);
if (err) {
pr_err("get compensated temperature value failed,err = %d\n",
err);
return -1;
}
if (kstrtoint(buff, 16, &temperature_data->values[0]) !=
1)
pr_err("sscanf parsing fail\n");
temperature_data->values[1] =
temperature_data->values[2] = 0;
temperature_data->status = SENSOR_STATUS_ACCURACY_HIGH;
temperature_data->value_divide = 100;
}
break;
default:
pr_err("temperature operate function no this parameter %d\n",
command);
err = -1;
break;
}
return err;
}
#endif /* CONFIG_ID_TEMPERATURE */
#ifdef CONFIG_PM_SLEEP
static int bmp_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct bmp_i2c_data *obj = i2c_get_clientdata(client);
int err = 0;
if (obj == NULL) {
pr_err("null pointer\n");
return -EINVAL;
}
if (atomic_read(&obj->trace) & BAR_TRC_INFO)
pr_debug("%s\n", __func__);
atomic_set(&obj->suspend, 1);
err = bmp_set_powermode(obj->client, BMP_SUSPEND_MODE);
if (err) {
pr_err("bmp set suspend mode failed, err = %d\n", err);
return err;
}
return err;
}
static int bmp_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct bmp_i2c_data *obj = i2c_get_clientdata(client);
int err;
if (obj == NULL) {
pr_err("null pointer\n");
return -EINVAL;
}
if (atomic_read(&obj->trace) & BAR_TRC_INFO)
pr_debug("%s\n", __func__);
err = bmp_init_client(obj->client);
if (err) {
pr_err("initialize client fail\n");
return err;
}
err = bmp_set_powermode(obj->client, BMP_NORMAL_MODE);
if (err) {
pr_err("bmp set normal mode failed, err = %d\n", err);
return err;
}
#ifdef CONFIG_BMP_LOWPASS
memset(&obj->fir, 0x00, sizeof(obj->fir));
#endif
atomic_set(&obj->suspend, 0);
return 0;
}
#endif
static int bmp_i2c_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
strlcpy(info->type, BMP_DEV_NAME, sizeof(info->type));
return 0;
}
static int bmp_open_report_data(int open)
{
/* should queuq work to report event if is_report_input_direct=true */
return 0;
}
static int bmp_enable_nodata(int en)
{
struct bmp_i2c_data *obj = i2c_get_clientdata(obj_i2c_data->client);
int res = 0;
int retry = 0;
bool power = false;
if (en == 1)
power = true;
if (en == 0)
power = false;
for (retry = 0; retry < 3; retry++) {
res = bmp_set_powermode(obj_i2c_data->client,
(enum BMP_POWERMODE_ENUM)(!!power));
if (res == 0) {
pr_debug("bmp_set_powermode done\n");
break;
}
pr_err("bmp_set_powermode fail\n");
}
obj->last_temp_measurement = jiffies - obj->temp_measurement_period;
if (res != 0) {
pr_err("bmp_set_powermode fail!\n");
return -1;
}
pr_debug("bmp_set_powermode OK!\n");
return 0;
}
static int bmp_set_delay(u64 ns)
{
return 0;
}
static int bmp_batch(int flag, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs)
{
return bmp_set_delay(samplingPeriodNs);
}
static int bmp_flush(void)
{
return baro_flush_report();
}
static int bmp_get_data(int *value, int *status)
{
char buff[BMP_BUFSIZE];
int err = 0;
err = bmp_get_pressure(obj_i2c_data->client, buff, BMP_BUFSIZE);
if (err) {
pr_err("get compensated pressure value failed, err = %d\n",
err);
return -1;
}
if (kstrtoint(buff, 16, value) != 1)
pr_err("sscanf parsing fail\n");
*status = SENSOR_STATUS_ACCURACY_MEDIUM;
return 0;
}
static int bmp_factory_enable_sensor(bool enabledisable,
int64_t sample_periods_ms)
{
int err = 0;
err = bmp_enable_nodata(enabledisable == true ? 1 : 0);
if (err) {
pr_err("%s enable sensor failed!\n", __func__);
return -1;
}
err = bmp_batch(0, sample_periods_ms * 1000000, 0);
if (err) {
pr_err("%s enable set batch failed!\n", __func__);
return -1;
}
return 0;
}
static int bmp_factory_get_data(int32_t *data)
{
int err = 0, status = 0;
err = bmp_get_data(data, &status);
if (err < 0) {
pr_err("%s get data fail\n", __func__);
return -1;
}
return 0;
}
static int bmp_factory_get_raw_data(int32_t *data)
{
return 0;
}
static int bmp_factory_enable_calibration(void)
{
return 0;
}
static int bmp_factory_clear_cali(void)
{
return 0;
}
static int bmp_factory_set_cali(int32_t offset)
{
return 0;
}
static int bmp_factory_get_cali(int32_t *offset)
{
return 0;
}
static int bmp_factory_do_self_test(void)
{
return 0;
}
static struct baro_factory_fops bmp_factory_fops = {
.enable_sensor = bmp_factory_enable_sensor,
.get_data = bmp_factory_get_data,
.get_raw_data = bmp_factory_get_raw_data,
.enable_calibration = bmp_factory_enable_calibration,
.clear_cali = bmp_factory_clear_cali,
.set_cali = bmp_factory_set_cali,
.get_cali = bmp_factory_get_cali,
.do_self_test = bmp_factory_do_self_test,
};
static struct baro_factory_public bmp_factory_device = {
.gain = 1, .sensitivity = 1, .fops = &bmp_factory_fops,
};
static int bmp_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct bmp_i2c_data *obj = NULL;
struct baro_control_path ctl = {0};
struct baro_data_path data = {0};
#ifdef CONFIG_ID_TEMPERATURE
struct hwmsen_object sobj_t;
#endif
int err = 0;
pr_debug("%s\n", __func__);
obj = kzalloc(sizeof(*obj), GFP_KERNEL);
if (!obj) {
err = -ENOMEM;
goto exit;
}
err = get_baro_dts_func(client->dev.of_node, &obj->hw);
if (err < 0) {
pr_err("get cust_baro dts info fail\n");
goto exit_init_client_failed;
}
obj_i2c_data = obj;
obj->client = client;
i2c_set_clientdata(client, obj);
atomic_set(&obj->trace, 0);
atomic_set(&obj->suspend, 0);
obj->power_mode = BMP_UNDEFINED_POWERMODE;
obj->hw_filter = BMP_UNDEFINED_FILTER;
obj->oversampling_p = BMP_UNDEFINED_OVERSAMPLING;
obj->oversampling_t = BMP_UNDEFINED_OVERSAMPLING;
obj->last_temp_measurement = 0;
obj->temp_measurement_period =
1 * HZ; /* temperature update period:1s */
mutex_init(&obj->lock);
#ifdef CONFIG_BMP_LOWPASS
if (obj->hw.firlen > C_MAX_FIR_LENGTH)
atomic_set(&obj->firlen, C_MAX_FIR_LENGTH);
else
atomic_set(&obj->firlen, obj->hw.firlen);
if (atomic_read(&obj->firlen) > 0)
atomic_set(&obj->fir_en, 1);
#endif
err = bmp_init_client(client);
if (err)
goto exit_init_client_failed;
/* err = misc_register(&bmp_device); */
err = baro_factory_device_register(&bmp_factory_device);
if (err) {
pr_err("baro_factory device register failed, err = %d\n", err);
goto exit_misc_device_register_failed;
}
err = bmp_create_attr(&(bmp_init_info.platform_diver_addr->driver));
if (err) {
pr_err("create attribute failed, err = %d\n", err);
goto exit_create_attr_failed;
}
ctl.is_use_common_factory = false;
ctl.open_report_data = bmp_open_report_data;
ctl.enable_nodata = bmp_enable_nodata;
ctl.set_delay = bmp_set_delay;
ctl.batch = bmp_batch;
ctl.flush = bmp_flush;
ctl.is_report_input_direct = false;
ctl.is_support_batch = obj->hw.is_batch_supported;
err = baro_register_control_path(&ctl);
if (err) {
pr_err("register baro control path err\n");
goto exit_hwmsen_attach_pressure_failed;
}
data.get_data = bmp_get_data;
data.vender_div = 100;
err = baro_register_data_path(&data);
if (err) {
pr_err("baro_register_data_path failed, err = %d\n", err);
goto exit_hwmsen_attach_pressure_failed;
}
#ifdef CONFIG_ID_TEMPERATURE
sobj_t.self = obj;
sobj_t.polling = 1;
sobj_t.sensor_operate = temperature_operate;
err = hwmsen_attach(ID_TEMPRERATURE, &sobj_t);
if (err) {
pr_err("hwmsen attach failed, err = %d\n", err);
goto exit_hwmsen_attach_temperature_failed;
}
#endif /* CONFIG_ID_TEMPERATURE */
bmp_init_flag = 0;
pr_debug("%s: OK\n", __func__);
return 0;
#ifdef CONFIG_ID_TEMPERATURE
exit_hwmsen_attach_temperature_failed:
hwmsen_detach(ID_PRESSURE);
#endif /* CONFIG_ID_TEMPERATURE */
exit_hwmsen_attach_pressure_failed:
bmp_delete_attr(&(bmp_init_info.platform_diver_addr->driver));
exit_create_attr_failed:
/* misc_deregister(&bmp_device); */
exit_misc_device_register_failed:
exit_init_client_failed:
kfree(obj);
exit:
obj = NULL;
obj_i2c_data = NULL;
pr_err("err = %d\n", err);
bmp_init_flag = -1;
return err;
}
static int bmp_i2c_remove(struct i2c_client *client)
{
int err = 0;
#ifdef CONFIG_ID_TEMPERATURE
err = hwmsen_detach(ID_TEMPRERATURE);
if (err)
pr_err("hwmsen_detach ID_TEMPRERATURE failed, err = %d\n",
err);
#endif
err = bmp_delete_attr(&(bmp_init_info.platform_diver_addr->driver));
if (err)
pr_err("bmp_delete_attr failed, err = %d\n", err);
/* misc_deregister(&bmp_device); */
baro_factory_device_deregister(&bmp_factory_device);
obj_i2c_data = NULL;
i2c_unregister_device(client);
kfree(i2c_get_clientdata(client));
return 0;
}
static int bmp_remove(void)
{
/*struct baro_hw *hw = get_cust_baro(); */
pr_debug("%s\n", __func__);
i2c_del_driver(&bmp_i2c_driver);
return 0;
}
static int bmp_local_init(void)
{
if (i2c_add_driver(&bmp_i2c_driver)) {
pr_err("add driver error\n");
return -1;
}
if (-1 == bmp_init_flag)
return -1;
/* pr_debug("fwq loccal init---\n"); */
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id baro_of_match[] = {
{.compatible = "mediatek,barometer"}, {},
};
#endif
#ifdef CONFIG_PM_SLEEP
static const struct dev_pm_ops bmp280_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(bmp_suspend, bmp_resume)};
#endif
static struct i2c_driver bmp_i2c_driver = {
.driver = {
.owner = THIS_MODULE,
.name = BMP_DEV_NAME,
#ifdef CONFIG_PM_SLEEP
.pm = &bmp280_pm_ops,
#endif
#ifdef CONFIG_OF
.of_match_table = baro_of_match,
#endif
},
.probe = bmp_i2c_probe,
.remove = bmp_i2c_remove,
.detect = bmp_i2c_detect,
.id_table = bmp_i2c_id,
};
static int __init bmp_init(void)
{
pr_debug("%s\n", __func__);
#ifdef CONFIG_MTK_LEGACY
i2c_register_board_info(hw.i2c_num, &bmp_i2c_info, 1);
#endif
baro_driver_add(&bmp_init_info);
return 0;
}
static void __exit bmp_exit(void)
{
pr_debug("%s\n", __func__);
}
module_init(bmp_init);
module_exit(bmp_exit);
MODULE_DESCRIPTION("BMP280 I2C Driver");
MODULE_AUTHOR("deliang.tao@bosch-sensortec.com");
MODULE_VERSION(BMP_DRIVER_VERSION);