unplugged-kernel/sound/soc/codecs/fs18xx/fsm_core.c

2749 lines
64 KiB
C

// SPDX-License-Identifier: GPL-2.0
/**
* Copyright (C) Fourier Semiconductor Inc. 2016-2020. All rights reserved.
* 2018-10-17 File created.
*/
#include "fsm_public.h"
#if defined(__KERNEL__)
#include <linux/slab.h>
#include <linux/delay.h>
#elif defined(FSM_HAL_SUPPORT)
#include <unistd.h>
#endif
#define CRC16_TABLE_SIZE 256
#define CRC16_POLY_NOMIAL 0xA001
#define OTP_OP_COUNTER_OFFSET 0xFF10
static int fsm_skip_device(fsm_dev_t *fsm_dev);
static int fsm_stub_check_stable(fsm_dev_t *fsm_dev, int type);
static int fsm_try_init(void);
static LIST_HEAD(fsm_dev_list);
#define fsm_list_init(fsm_dev) \
do { \
INIT_LIST_HEAD(&fsm_dev->list); \
list_add(&fsm_dev->list, &fsm_dev_list); \
} while (0)
#define fsm_list_entry(fsm_dev, ops) \
do { \
list_for_each_entry(fsm_dev, &fsm_dev_list, list) { \
if (!fsm_skip_device(fsm_dev) && ops) { \
ops(fsm_dev); \
} \
} \
} while (0)
#define fsm_list_func(fsm_dev, func) \
do { \
list_for_each_entry(fsm_dev, &fsm_dev_list, list) { \
if (!fsm_skip_device(fsm_dev)) { \
func(fsm_dev); \
} \
} \
} while (0)
#define fsm_list_check(fsm_dev, type, ret) \
do { \
ret = 0; \
list_for_each_entry(fsm_dev, &fsm_dev_list, list) { \
if (!fsm_skip_device(fsm_dev)) { \
ret |= fsm_stub_check_stable(fsm_dev, type); \
if (ret) { \
break; \
} \
} \
} \
} while (0)
#define fsm_list_return(fsm_dev, func, ret) \
do { \
ret = 0; \
list_for_each_entry(fsm_dev, &fsm_dev_list, list) { \
if (!fsm_skip_device(fsm_dev)) { \
ret |= func(fsm_dev); \
} \
} \
} while (0)
#define fsm_list_func_arg(fsm_dev, func, argv) \
do { \
list_for_each_entry(fsm_dev, &fsm_dev_list, list) { \
if (!fsm_skip_device(fsm_dev)) { \
func(fsm_dev, argv); \
} \
} \
} while (0)
static uint16_t g_crc16table[CRC16_TABLE_SIZE] = {
0x0000, 0xc0c1, 0xc181, 0x0140, 0xc301, 0x03c0, 0x0280, 0xc241,
0xc601, 0x06c0, 0x0780, 0xc741, 0x0500, 0xc5c1, 0xc481, 0x0440,
0xcc01, 0x0cc0, 0x0d80, 0xcd41, 0x0f00, 0xcfc1, 0xce81, 0x0e40,
0x0a00, 0xcac1, 0xcb81, 0x0b40, 0xc901, 0x09c0, 0x0880, 0xc841,
0xd801, 0x18c0, 0x1980, 0xd941, 0x1b00, 0xdbc1, 0xda81, 0x1a40,
0x1e00, 0xdec1, 0xdf81, 0x1f40, 0xdd01, 0x1dc0, 0x1c80, 0xdc41,
0x1400, 0xd4c1, 0xd581, 0x1540, 0xd701, 0x17c0, 0x1680, 0xd641,
0xd201, 0x12c0, 0x1380, 0xd341, 0x1100, 0xd1c1, 0xd081, 0x1040,
0xf001, 0x30c0, 0x3180, 0xf141, 0x3300, 0xf3c1, 0xf281, 0x3240,
0x3600, 0xf6c1, 0xf781, 0x3740, 0xf501, 0x35c0, 0x3480, 0xf441,
0x3c00, 0xfcc1, 0xfd81, 0x3d40, 0xff01, 0x3fc0, 0x3e80, 0xfe41,
0xfa01, 0x3ac0, 0x3b80, 0xfb41, 0x3900, 0xf9c1, 0xf881, 0x3840,
0x2800, 0xe8c1, 0xe981, 0x2940, 0xeb01, 0x2bc0, 0x2a80, 0xea41,
0xee01, 0x2ec0, 0x2f80, 0xef41, 0x2d00, 0xedc1, 0xec81, 0x2c40,
0xe401, 0x24c0, 0x2580, 0xe541, 0x2700, 0xe7c1, 0xe681, 0x2640,
0x2200, 0xe2c1, 0xe381, 0x2340, 0xe101, 0x21c0, 0x2080, 0xe041,
0xa001, 0x60c0, 0x6180, 0xa141, 0x6300, 0xa3c1, 0xa281, 0x6240,
0x6600, 0xa6c1, 0xa781, 0x6740, 0xa501, 0x65c0, 0x6480, 0xa441,
0x6c00, 0xacc1, 0xad81, 0x6d40, 0xaf01, 0x6fc0, 0x6e80, 0xae41,
0xaa01, 0x6ac0, 0x6b80, 0xab41, 0x6900, 0xa9c1, 0xa881, 0x6840,
0x7800, 0xb8c1, 0xb981, 0x7940, 0xbb01, 0x7bc0, 0x7a80, 0xba41,
0xbe01, 0x7ec0, 0x7f80, 0xbf41, 0x7d00, 0xbdc1, 0xbc81, 0x7c40,
0xb401, 0x74c0, 0x7580, 0xb541, 0x7700, 0xb7c1, 0xb681, 0x7640,
0x7200, 0xb2c1, 0xb381, 0x7340, 0xb101, 0x71c0, 0x7080, 0xb041,
0x5000, 0x90c1, 0x9181, 0x5140, 0x9301, 0x53c0, 0x5280, 0x9241,
0x9601, 0x56c0, 0x5780, 0x9741, 0x5500, 0x95c1, 0x9481, 0x5440,
0x9c01, 0x5cc0, 0x5d80, 0x9d41, 0x5f00, 0x9fc1, 0x9e81, 0x5e40,
0x5a00, 0x9ac1, 0x9b81, 0x5b40, 0x9901, 0x59c0, 0x5880, 0x9841,
0x8801, 0x48c0, 0x4980, 0x8941, 0x4b00, 0x8bc1, 0x8a81, 0x4a40,
0x4e00, 0x8ec1, 0x8f81, 0x4f40, 0x8d01, 0x4dc0, 0x4c80, 0x8c41,
0x4400, 0x84c1, 0x8581, 0x4540, 0x8701, 0x47c0, 0x4680, 0x8641,
0x8201, 0x42c0, 0x4380, 0x8341, 0x4100, 0x81c1, 0x8081, 0x4040,
};
static struct fsm_config g_fsm_config = {
.dev_count = 0,
.volume = FSM_VOLUME_MAX,
.next_scene = FSM_SCENE_MUSIC,
.i2s_bclk = 1536000,
.i2s_srate = 48000,
.test_type = TEST_NONE,
.cur_angle = 0,
.next_angle = 0,
// flags
.vddd_on = 0,
.codec_inited = 0,
.force_fw = 0,
.force_init = 0,
.force_scene = 0,
.force_calib = 0,
.store_otp = 1,
.force_mute = 0,
.stop_test = 0,
.skip_monitor = 0,
.use_monitor = 1, // 0: close monitor
.dev_suspend = 0,
.stream_muted = 1,
.fw_name = FSM_FW_NAME,
.preset = NULL,
};
static const struct fsm_srate g_srate_tbl[] = {
{ 8000, 0 },
{ 16000, 3 },
{ 32000, 8 },
{ 44100, 7 },
{ 48000, 8 },
// fs1860 support below srate:
{ 88200, 9 },
{ 96000, 10 },
};
static struct fsm_vbat_state g_vbat_state = { 0 };
static int fsm_skip_device(fsm_dev_t *fsm_dev)
{
fsm_config_t *cfg = fsm_get_config();
if (!fsm_dev || !cfg) {
return 1;
}
if (!fsm_dev->state.dev_inited) {
return 1;
}
if ((fsm_dev->own_scene & cfg->next_scene) == 0) {
return 1;
}
return 0;
}
static int fsm_cal_re25_zmdata(fsm_dev_t *fsm_dev,
struct re25_data *re25, uint16_t zmdata)
{
if (!fsm_dev || !re25) {
return -EINVAL;
}
if (!fsm_dev->state.re25_runin) {
return 0;
}
if (re25->count >= 10)
return 0;
if (abs(re25->pre_val - zmdata) > FSM_ZMDELTA_MAX
|| re25->pre_val == 0) {
re25->zmdata = 0;
re25->pre_val = zmdata;
re25->count = 1;
re25->min_val = zmdata;
} else {
re25->count++;
if (zmdata < re25->min_val) {
re25->min_val = zmdata;
}
}
pr_addr(info, "ZM[%2d]:%d", re25->count, zmdata);
if (re25->count >= 10) {
// finish calibration
pr_addr(info, "ZM:%d", re25->min_val);
re25->zmdata = re25->min_val;
return 0;
}
return -EINVAL;
}
static int fsm_cal_f0_zmdata(fsm_dev_t *fsm_dev,
struct f0_data *f0, int freq, uint16_t zmdata)
{
fsm_config_t *cfg = fsm_get_config();
int count;
if (!fsm_dev || !f0 || !cfg) {
return -EINVAL;
}
if (!fsm_dev->state.f0_runing) {
return 0;
}
count = f0->count;
pr_addr(info, "ZM[%4d]:%d", freq, zmdata);
f0->freq[count] = freq;
f0->zmdata[count] = zmdata;
if (f0->count == 0 || zmdata < f0->min_zm) {
f0->min_zm = zmdata;
f0->min_idx = f0->count;
fsm_dev->f0 = freq;
}
f0->count++;
return 0;
}
static int fsm_cal_zmdata(fsm_dev_t *fsm_dev)
{
fsm_config_t *cfg = fsm_get_config();
uint16_t zmdata;
int ret;
if (!fsm_dev || !cfg) {
return -EINVAL;
}
if (fsm_skip_device(fsm_dev)) {
return 0;
}
ret = fsm_reg_multiread(fsm_dev, REG(FSM_ZMDATA), &zmdata);
if (ret) {
pr_addr(err, "get zmdata fail:%d", ret);
return -EINVAL;
}
if (!fsm_dev->tdata) {
fsm_dev->tdata = fsm_alloc_mem(sizeof(struct fsm_test_data));
if (!fsm_dev->tdata) {
pr_addr(err, "alloc test data fail");
return -EINVAL;
}
memset(fsm_dev->tdata, 0, sizeof(struct fsm_test_data));
}
if (cfg->test_type == TEST_RE25) {
ret = fsm_cal_re25_zmdata(fsm_dev, &fsm_dev->tdata->re25, zmdata);
} else if (cfg->test_type == TEST_F0) {
ret = fsm_cal_f0_zmdata(fsm_dev, &fsm_dev->tdata->f0,
cfg->test_freq, zmdata);
} else {
pr_addr(err, "invalid test type:%d", cfg->test_type);
ret = -EINVAL;
}
return ret;
}
static int fsm_list_wait(int type)
{
fsm_dev_t *fsm_dev = NULL;
int retry;
int ret;
for (retry = 1; retry <= FSM_WAIT_STABLE_RETRY; retry++) {
fsm_delay_ms(2);
fsm_list_check(fsm_dev, type, ret);
if (!ret) {
break;
}
}
if (retry > FSM_WAIT_STABLE_RETRY) {
pr_info("type:%d, wait timeout!", type);
}
pr_debug("type:%d, wait %d times", type, retry);
return ret;
}
int zero_bit_counter(uint8_t byte)
{
int count = 0;
byte = ~byte;
while (byte) {
byte &= byte - 1;
++count;
}
return count;
}
int get_otp_counter(uint16_t byte)
{
// OTP offset start from 0x10 to 0x20(Totally 16)
if (byte == OTP_OP_COUNTER_OFFSET) {
return 0;
}
return (LOW8(byte) - LOW8(OTP_OP_COUNTER_OFFSET) + 1);
}
void convert_data_to_bytes(uint32_t val, uint8_t *buf)
{
buf[0] = (val >> 8) & 0xFF;
buf[1] = (val) & 0xFF;
buf[2] = (val >> 24) & 0xFF;
buf[3] = (val >> 16) & 0xFF;
}
fsm_config_t *fsm_get_config(void)
{
return &g_fsm_config;
}
// EXPORT_SYMBOL(fsm_get_config);
void fsm_get_version(fsm_version_t *version)
{
sprintf(version->git_branch, "%s", FSM_GIT_BRANCH);
sprintf(version->git_commit, "%s", FSM_GIT_COMMIT);
sprintf(version->code_date, "%s", FSM_CODE_DATE);
sprintf(version->code_version, "%s", FSM_CODE_VERSION);
pr_info("version %s", version->code_version);
}
void *fsm_alloc_mem(int size)
{
#if defined(__KERNEL__)
return kzalloc(size, GFP_KERNEL);
#elif defined(FSM_HAL_SUPPORT)
return malloc(size);
#else
return NULL;
#endif
}
void fsm_free_mem(void *buf)
{
if (buf == NULL) {
return;
}
#if defined(__KERNEL__)
kfree(buf);
#elif defined(FSM_HAL_SUPPORT)
free(buf);
#endif
buf = NULL;
}
void fsm_delay_ms(uint32_t delay_ms)
{
if (delay_ms == 0) {
return;
}
#if defined(__KERNEL__)
usleep_range(delay_ms * 1000, delay_ms * 1000 + 1);
#elif defined(FSM_HAL_SUPPORT)
usleep(delay_ms * 1000);
#endif
}
uint16_t set_bf_val(uint16_t *pval, const uint16_t bf, const uint16_t bf_val)
{
uint8_t len = (bf >> 12) & 0x0F;
uint8_t pos = (bf >> 8) & 0x0F;
uint16_t new_val;
uint16_t old_val;
uint16_t msk;
if (!pval) {
return 0xFFFF;
}
old_val = new_val = *pval;
msk = ((1 << (len + 1)) - 1) << pos;
new_val &= ~msk;
new_val |= bf_val << pos;
*pval = new_val;
return old_val;
}
uint16_t get_bf_val(const uint16_t bf, const uint16_t val)
{
uint8_t len = (bf >> 12) & 0x0F;
uint8_t pos = (bf >> 8) & 0x0F;
uint16_t msk, value;
msk = ((1 << (len + 1)) - 1) << pos;
value = (val & msk) >> pos;
return value;
}
int fsm_set_bf(fsm_dev_t *fsm_dev, const uint16_t bf, const uint16_t val)
{
reg_unit_t reg;
uint16_t oldval;
uint16_t msk;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
reg.len = (bf >> 12) & 0x0F;
reg.pos = (bf >> 8) & 0x0F;
reg.addr = bf & 0xFF;
if (reg.len == 15) {
return fsm_reg_write(fsm_dev, reg.addr, val);
}
ret = fsm_reg_read(fsm_dev, reg.addr, &oldval);
if (ret) {
pr_info("get bf:%04X failed", bf);
return ret;
}
msk = ((1 << (reg.len + 1)) - 1) << reg.pos;
reg.value = oldval & (~msk);
reg.value |= val << reg.pos;
if (oldval == reg.value) {
return 0;
}
ret = fsm_reg_write(fsm_dev, reg.addr, reg.value);
if (ret) {
pr_info("set bf:%04X failed", bf);
return ret;
}
return ret;
}
int fsm_get_bf(fsm_dev_t *fsm_dev, const uint16_t bf, uint16_t *pval)
{
reg_unit_t reg;
uint16_t msk;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
reg.len = (bf >> 12) & 0x0F;
reg.pos = (bf >> 8) & 0x0F;
reg.addr = bf & 0xFF;
ret = fsm_reg_multiread(fsm_dev, reg.addr, &reg.value);
if (ret) {
pr_info("get bf:%04X failed", bf);
return ret;
}
msk = ((1 << (reg.len + 1)) - 1) << reg.pos;
reg.value &= msk;
if (pval) {
*pval = reg.value >> reg.pos;
}
return ret;
}
struct fsm_dev *fsm_get_fsm_dev(uint8_t addr)
{
fsm_config_t *cfg = fsm_get_config();
fsm_dev_t *fsm_dev;
if (!cfg || cfg->dev_count <= 0) {
return NULL;
}
list_for_each_entry(fsm_dev, &fsm_dev_list, list) {
if (fsm_dev && addr == fsm_dev->addr) {
return fsm_dev;
}
}
return NULL;
}
int fsm_reg_write(fsm_dev_t *fsm_dev, uint8_t reg, uint16_t val)
{
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
#if defined(FSM_DEBUG_I2C)
pr_addr(info, "%02X<-%04X", reg, val);
#endif
#if defined(CONFIG_FSM_REGMAP)
ret = fsm_regmap_write(fsm_dev, reg, val);
#elif defined(CONFIG_FSM_I2C)
ret = fsm_i2c_reg_write(fsm_dev, reg, val);
#elif defined(FSM_HAL_SUPPORT)
ret = fsm_hal_reg_write(fsm_dev, reg, val);
#else
ret = -EINVAL;
#endif
if (ret) {
pr_addr(err, "%02X<-%04X fail:%d", reg, val, ret);
}
return ret;
}
int fsm_reg_read(fsm_dev_t *fsm_dev, uint8_t reg, uint16_t *pval)
{
uint16_t value;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
#if defined(CONFIG_FSM_REGMAP)
ret = fsm_regmap_read(fsm_dev, reg, &value);
#elif defined(CONFIG_FSM_I2C)
ret = fsm_i2c_reg_read(fsm_dev, reg, &value);
#elif defined(FSM_HAL_SUPPORT)
ret = fsm_hal_reg_read(fsm_dev, reg, &value);
#else
ret = -EINVAL;
#endif
#if defined(FSM_DEBUG_I2C)
pr_addr(info, " %02X->%04X", reg, value);
#endif
if (ret) {
value = 0;
pr_addr(err, " %02X->%04X fail:%d", reg, value, ret);
}
if (pval) {
*pval = value;
}
return ret;
}
int fsm_burst_write(fsm_dev_t *fsm_dev, uint8_t reg, uint8_t *data, int len)
{
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
#if defined(FSM_DEBUG_I2C)
if (len >= 4) {
pr_addr(info, "%02X<-%02X %02X %02X %02X", reg,
data[0], data[1], data[2], data[3]);
}
// logprint("%s: %02X: %02X<-", __func__, fsm_dev->addr, reg);
// for (ret = 0; ret < len; ret++) {
// logprint("%02X ", data[ret]);
// }
// logprint("\n");
#endif
#if defined(CONFIG_FSM_REGMAP)
ret = fsm_regmap_bulkwrite(fsm_dev, reg, data, len);
#elif defined(CONFIG_FSM_I2C)
ret = fsm_i2c_bulkwrite(fsm_dev, reg, data, len);
#elif defined(FSM_HAL_SUPPORT)
ret = fsm_hal_bulkwrite(fsm_dev, reg, data, len);
#else
ret = -EINVAL;
#endif
if (ret) {
pr_addr(err, "BW %02X fail:%d", reg, ret);
}
return ret;
}
int fsm_reg_update_bits(fsm_dev_t *fsm_dev, reg_unit_t *reg)
{
uint16_t temp;
uint16_t mask;
uint16_t val;
uint8_t addr;
int ret;
if (!fsm_dev || !reg) {
return -EINVAL;
}
addr = reg->addr;
if (addr == REG(FSM_OTPACC)) {
if (reg->value == 0 && fsm_dev->acc_count > 0) {
fsm_dev->acc_count--;
}
if (reg->value != 0 && fsm_dev->acc_count < 0xFF) {
fsm_dev->acc_count++;
}
}
if (reg->pos == 0 && reg->len == 15) {
return fsm_reg_write(fsm_dev, addr, reg->value);
}
mask = ((1 << (reg->len + 1)) - 1) << reg->pos;
val = (reg->value << reg->pos);
ret = fsm_reg_read(fsm_dev, addr, &temp);
temp = ((~mask & temp) | (val & mask));
ret |= fsm_reg_write(fsm_dev, addr, temp);
return ret;
}
int fsm_reg_update(fsm_dev_t *fsm_dev, uint8_t reg, uint16_t val)
{
uint16_t temp;
int ret;
#if defined(FSM_DEBUG_I2C)
pr_addr(info, "%02X<-%04X", reg, val);
#endif
ret = fsm_reg_read(fsm_dev, reg, &temp);
if (!ret && temp != val) {
ret = fsm_reg_write(fsm_dev, reg, val);
}
if (ret) {
pr_addr(err, "update reg:%02X failed:%d", reg, ret);
}
return ret;
}
int fsm_reg_multiread(fsm_dev_t *fsm_dev, uint8_t reg, uint16_t *pval)
{
uint16_t value;
uint16_t old;
int count = 0;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
while (count++ < FSM_I2C_RETRY) {
ret = fsm_reg_read(fsm_dev, reg, &value);
if (ret)
continue;
if (count > 1 && old == value) {
break;
}
old = value;
}
if (ret) {
value = 0;
#if !defined(BUILD_FSTOOL)
pr_addr(err, " %02X->%04X fail:%d", reg, value, ret);
#endif
}
if (pval) {
*pval = value;
}
return ret;
}
uint16_t fsm_calc_checksum(uint16_t *data, int len)
{
uint16_t crc = 0;
uint8_t index;
uint8_t b;
int i;
if (len <= 0) {
return 0;
}
for (i = 0; i < len; i++) {
b = (uint8_t)(data[i] & 0xFF);
index = (uint8_t)(crc ^ b);
crc = (uint16_t)((crc >> 8) ^ g_crc16table[index]);
b = (uint8_t)((data[i] >> 8) & 0xFF);
index = (uint8_t)(crc ^ b);
crc = (uint16_t)((crc >> 8) ^ g_crc16table[index]);
}
return crc;
}
int fsm_get_srate_bits(fsm_dev_t *fsm_dev, uint32_t srate)
{
int size;
int idx;
if (srate > 48000 && HIGH8(fsm_dev->version) != FS1860_DEV_ID) {
pr_addr(err, "invalid srate:%d", srate);
return -EINVAL;
}
size = sizeof(g_srate_tbl) / sizeof(struct fsm_srate);
for (idx = 0; idx < size; idx++) {
if (srate == g_srate_tbl[idx].srate)
return g_srate_tbl[idx].bf_val;
}
return -EINVAL;
}
int fsm_access_key(fsm_dev_t *fsm_dev, int access)
{
int ret = 0;
if (!fsm_dev) {
return -EINVAL;
}
if (access) {
if (fsm_dev->acc_count == 0) {
ret = fsm_reg_write(fsm_dev, REG(FSM_OTPACC), FSM_OTP_ACC_KEY2);
fsm_dev->acc_count = !ret ? 1 : 0;
} else if (fsm_dev->acc_count < 0xFF) {
fsm_dev->acc_count++;
}
} else {
if (fsm_dev->acc_count == 1) {
ret = fsm_reg_write(fsm_dev, REG(FSM_OTPACC), 0);
fsm_dev->acc_count = !ret ? 0 : 1;
} else if (fsm_dev->acc_count > 0) {
fsm_dev->acc_count--;
}
}
// pr_addr(debug, "acc:%d, count:%d", access, fsm_dev->acc_count);
return ret;
}
int fsm_reg_dump(fsm_dev_t *fsm_dev)
{
uint16_t value;
int reg_addr;
int ret;
pr_info("%s: %02X: ", __func__, fsm_dev->addr);
ret = fsm_access_key(fsm_dev, 1);
for (reg_addr = 0; reg_addr < 0xFF; reg_addr++) {
if (reg_addr == 0x0C)
reg_addr = 0x89;
else if (reg_addr == 0x8A)
reg_addr = 0xA1;
else if (reg_addr == 0xA2)
reg_addr = 0xAF;
else if (reg_addr == 0xB0)
reg_addr = 0xBB;
else if (reg_addr == 0xBC)
reg_addr = 0xC0;
else if (reg_addr == 0xC5)
reg_addr = 0xC9;
else if (reg_addr == 0xD0)
reg_addr = 0xE8;
ret |= fsm_reg_read(fsm_dev, reg_addr, &value);
pr_info("%02X:%04X ", reg_addr, value);
if (reg_addr == 0xE8) {
break;
}
}
ret |= fsm_access_key(fsm_dev, 0);
pr_info("\n");
return ret;
}
static int fsm_search_list(fsm_dev_t *fsm_dev, struct preset_file *pfile)
{
dev_list_t *dev_list;
uint8_t *preset;
uint16_t offset;
uint16_t type;
int idx;
preset = (uint8_t *)pfile;
for (idx = 0; idx < pfile->hdr.ndev; idx++) {
type = pfile->index[idx].type;
if (FSM_DSC_DEV_INFO != type) {
continue;
}
offset = pfile->index[idx].offset;
pr_addr(debug, "offset[%d]: %d", idx, offset);
dev_list = (struct dev_list *)&preset[offset];
if (fsm_dev->addr == dev_list->addr) {
pr_addr(info, "found dev_list");
fsm_dev->dev_list = dev_list;
break;
}
}
if (idx == pfile->hdr.ndev) {
pr_addr(err, "not found dev_list");
fsm_dev->dev_list = NULL;
return -EINVAL;
}
return 0;
}
static int fsm_check_dev_type(fsm_dev_t *fsm_dev)
{
uint16_t dev_type;
if (!fsm_dev || !fsm_dev->dev_list) {
pr_addr(err, "bad parameter");
return -EINVAL;
}
dev_type = fsm_dev->dev_list->dev_type;
if (HIGH8(fsm_dev->version) == 0x06 || HIGH8(fsm_dev->version) == 0x0B) {
// fs1801 series
if (HIGH8(dev_type) != 0x0A) {
return -EINVAL;
}
return 0;
}
// other series
if (HIGH8(fsm_dev->version) != HIGH8(dev_type)) {
pr_addr(err, "type:%02X not match version:%02X",
HIGH8(dev_type), HIGH8(fsm_dev->version));
return -EINVAL;
}
return 0;
}
int fsm_init_dev_list(fsm_dev_t *fsm_dev)
{
struct preset_file *pfile;
dev_list_t *dev_list;
int ret;
pfile = fsm_get_presets();
if (!fsm_dev || !pfile) {
pr_addr(err, "bad parameter or invalid FW");
return -EINVAL;
}
pr_addr(debug, "ndev:%d", pfile->hdr.ndev);
ret = fsm_search_list(fsm_dev, pfile);
if (ret) {
return ret;
}
dev_list = fsm_dev->dev_list;
// assert(dev_list != NULL);
ret = fsm_check_dev_type(fsm_dev);
if (ret) {
pr_addr(err, "type(%04X) not matched version(%04X)",
dev_list->dev_type, fsm_dev->version);
fsm_dev->dev_list = NULL;
return ret;
}
pr_addr(info, "preset ver:%04X", dev_list->preset_ver);
if ((dev_list->preset_ver & BIT(15)) == 0) { // BIT_15 must be 1
pr_addr(err, "invalid preset version:%04X",
dev_list->preset_ver);
return -EINVAL;
}
pr_addr(debug, "bus : %d, len: %d",
dev_list->bus, dev_list->len);
pr_addr(debug, "type : %04X, npreset: %d",
dev_list->dev_type, dev_list->npreset);
pr_addr(debug, "scene: eq:%04X, reg:%04X",
dev_list->eq_scenes, dev_list->reg_scenes);
fsm_dev->own_scene = dev_list->reg_scenes | dev_list->eq_scenes;
return 0;
}
void *fsm_get_list_by_idx(fsm_dev_t *fsm_dev, int idx)
{
dev_list_t *dev_list;
fsm_index_t *index;
uint8_t *pdata;
if (fsm_dev == NULL) {
return NULL;
}
dev_list = fsm_dev->dev_list;
if (dev_list == NULL) {
return NULL;
}
index = &dev_list->index[0];
pdata = (uint8_t *)index;
return (void *)(&pdata[index[idx].offset]);
}
void *fsm_get_data_list(fsm_dev_t *fsm_dev, int type)
{
dev_list_t *dev_list;
fsm_index_t *index;
int i;
if (fsm_dev == NULL || fsm_dev->dev_list == NULL) {
return NULL;
}
dev_list = fsm_dev->dev_list;
index = dev_list->index;
if (index == NULL) {
return NULL;
}
for (i = 0; i < dev_list->len; i++) {
if (index[i].type == type) {
break;
}
}
if (i >= dev_list->len) {
return NULL;
}
return (void *)((uint8_t *)index + index[i].offset);
}
int fsm_get_spk_info(fsm_dev_t *fsm_dev, uint16_t info_type)
{
info_list_t *info;
if (fsm_dev == NULL) {
return -EINVAL;
}
info = (info_list_t *)fsm_get_data_list(fsm_dev, FSM_DSC_SPK_INFO);
if (!info || info_type > info->len) {
return -EINVAL;
}
// pr_addr(debug, "spk info len: %d", info->len);
return info->data[info_type];
}
int fsm_init_info(fsm_dev_t *fsm_dev)
{
if (!fsm_dev || !fsm_dev->dev_list) {
return -EINVAL;
}
fsm_dev->bus = fsm_dev->dev_list->bus;
fsm_dev->addr = fsm_dev->dev_list->addr;
fsm_dev->tmax = fsm_get_spk_info(fsm_dev, FSM_INFO_SPK_TMAX);
fsm_dev->tcoef = fsm_get_spk_info(fsm_dev, FSM_INFO_SPK_TEMPR_COEF);
fsm_dev->tsel = fsm_get_spk_info(fsm_dev, FSM_INFO_SPK_TEMPR_SEL);
pr_addr(info, "tmax:%d, tcoef:%d, tsel:%d",
fsm_dev->tmax, fsm_dev->tcoef, fsm_dev->tsel);
fsm_dev->spkr = fsm_get_spk_info(fsm_dev, FSM_INFO_SPK_RES);
fsm_dev->rapp = fsm_get_spk_info(fsm_dev, FSM_INFO_SPK_RAPP);
if (IS_PRESET_V3(fsm_dev->dev_list->preset_ver)) {
fsm_dev->pos_mask = fsm_get_spk_info(fsm_dev, FSM_INFO_SPK_POSITION);
fsm_dev->compat.RS2RL_RATIO = \
fsm_get_spk_info(fsm_dev, FSM_INFO_RSRL_RATIO);
}
pr_addr(info, "pos:%02X, rs_ratio:%d",
fsm_dev->pos_mask, fsm_dev->compat.RS2RL_RATIO);
pr_addr(info, "spkr:%d, rapp:%d",
fsm_dev->spkr, fsm_dev->rapp);
return 0;
}
struct preset_file *fsm_get_presets(void)
{
return g_fsm_config.preset;
}
void fsm_set_presets(struct preset_file *file)
{
fsm_config_t *cfg = fsm_get_config();
if (cfg) {
fsm_free_mem(cfg->preset);
cfg->preset = file;
}
}
/**
* fsm device interface for external reference
*/
int fsm_parse_preset(const void *data, uint32_t size)
{
struct preset_file *pfile;
struct preset_header *hdr;
uint16_t checksum;
int crc_size;
if (data == NULL || size == 0) {
pr_info("bad parameter, size:%d", size);
return -EINVAL;
}
pfile = fsm_get_presets();
if (pfile) {
pr_debug("already had presets, try init");
fsm_try_init();
return 0;
}
pfile = (struct preset_file *)fsm_alloc_mem(size);
if (!pfile) {
pr_info("alloc memery failed");
return -ENOMEM;
}
memcpy(pfile, data, size);
hdr = &pfile->hdr;
pr_debug("version : %04X", hdr->version);
pr_info("customer: %s", hdr->customer);
pr_info("project : %s", hdr->project);
pr_info("date : %4d%02d%02d-%02d%02d", hdr->date.year, \
hdr->date.month, hdr->date.day, hdr->date.hour, hdr->date.min);
pr_debug("size : %d", hdr->size);
pr_debug("crc16 : %04X", hdr->crc16);
crc_size = (size - sizeof(struct preset_header) + 2)/sizeof(uint16_t);
if (hdr->size == 0 || hdr->size != size) {
pr_info("invalid size: hdr:%d, fw:%d", hdr->size, size);
return -EINVAL;
}
checksum = fsm_calc_checksum((uint16_t *)(&(pfile->hdr.ndev)), crc_size);
if (checksum != hdr->crc16) {
pr_info("checksum(%04X) not match(%04X)", checksum, hdr->crc16);
return -EINVAL;
} else {
pr_info("checksum success!");
fsm_set_presets(pfile);
}
fsm_try_init();
return 0;
}
int fsm_swap_channel(fsm_dev_t *fsm_dev, int next_angle)
{
uint16_t left_chn;
uint16_t i2sctrl;
uint16_t chs12;
int ret;
if (!fsm_dev) {
return -EINVAL;
}
switch (next_angle) {
case 270:
left_chn = (FSM_POS_LBTM | FSM_POS_RBTM);
break;
case 180:
left_chn = (FSM_POS_RTOP | FSM_POS_RBTM);
break;
case 90:
left_chn = (FSM_POS_LTOP | FSM_POS_RTOP);
break;
case 0:
default:
left_chn = (FSM_POS_LTOP | FSM_POS_LBTM);
break;
}
left_chn = (left_chn & fsm_dev->pos_mask);
chs12 = ((left_chn != 0) ? 1 : 2);
if (fsm_dev->pos_mask == FSM_POS_MONO) {
chs12 = 3;
}
ret = fsm_reg_read(fsm_dev, REG(FSM_I2SCTRL), &i2sctrl);
if (get_bf_val(FSM_CHS12, i2sctrl) == chs12) {
return ret;
}
ret |= fsm_set_bf(fsm_dev, FSM_DACMUTE, 1);
set_bf_val(&i2sctrl, FSM_CHS12, chs12);
ret |= fsm_reg_write(fsm_dev, REG(FSM_I2SCTRL), i2sctrl);
fsm_delay_ms(10);
pr_addr(debug, "pos:%02X, CHS12:%d", fsm_dev->pos_mask, chs12);
ret = fsm_set_bf(fsm_dev, FSM_DACMUTE, 0);
return ret;
}
int fsm_wait_stable(fsm_dev_t *fsm_dev, int type)
{
int retries = FSM_WAIT_STABLE_RETRY;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
if (fsm_skip_device(fsm_dev)) {
return 0;
}
// fsm_delay_ms(10);
while (retries-- > 0) {
fsm_delay_ms(5); // delay 5 ms
ret = fsm_stub_check_stable(fsm_dev, type);
if (!ret)
break;
}
if (retries <= 0) {
pr_addr(err, "type: %d, wait timeout!", type);
return -ETIMEDOUT;
}
return 0;
}
int fsm_set_spkset(fsm_dev_t *fsm_dev)
{
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
switch (fsm_dev->spkr) {
case 4:
ret = fsm_set_bf(fsm_dev, FSM_SPKR, 0);
break;
case 6:
ret = fsm_set_bf(fsm_dev, FSM_SPKR, 1);
break;
case 7:
ret = fsm_set_bf(fsm_dev, FSM_SPKR, 2);
break;
case 8:
default:
ret = fsm_set_bf(fsm_dev, FSM_SPKR, 3);
break;
}
return ret;
}
int fsm_read_vbat(fsm_dev_t *fsm_dev, uint16_t *vbat)
{
uint16_t batv;
uint8_t ver;
int ret;
if (fsm_dev == NULL || !vbat) {
return -EINVAL;
}
ret = fsm_reg_multiread(fsm_dev, REG(FSM_BATV), &batv);
if (ret) {
pr_addr(err, "get batv fail:%d", ret);
return ret;
}
ver = HIGH8(fsm_dev->version);
switch (ver) {
case FS1601S_DEV_ID:
case FS1603_DEV_ID:
*vbat = 10 * batv; // 10 mV per step
break;
case FS1818_DEV_ID:
case FS1896_DEV_ID:
case FS1860_DEV_ID:
*vbat = 50 * batv / 4; // 50/4 mV per step
break;
default:
pr_addr(err, "invalid dev_id:%02X", ver);
return -EINVAL;
}
return ret;
}
int fsm_get_vbat(fsm_dev_t *fsm_dev)
{
struct fsm_vbat_state *vbat_state = &g_vbat_state;
fsm_config_t *cfg = fsm_get_config();
uint16_t batv;
int ret;
if (!cfg || fsm_dev == NULL || !vbat_state) {
return -EINVAL;
}
ret = fsm_read_vbat(fsm_dev, &batv);
if (ret) {
return ret;
}
// pr_addr(info, "batv:%d", batv);
// get min batv of all devices
if (vbat_state->cur_batv == 0 || batv < vbat_state->cur_batv) {
vbat_state->cur_batv = batv;
}
return ret;
}
int fsm_write_stereo_ceof(fsm_dev_t *fsm_dev)
{
stereo_coef_t *stereo_coef;
int ret = 0;
int i;
if (fsm_dev == NULL) {
return -EINVAL;
}
stereo_coef = (stereo_coef_t *)fsm_get_data_list(fsm_dev, FSM_DSC_STEREO_COEF);
if (!stereo_coef) {
pr_addr(info, "note: not found data");
return 0;
}
pr_addr(debug, "stereo coef len: %d", stereo_coef->len);
for (i = 0; i < stereo_coef->len - 2; i++) {
ret |= fsm_reg_write(fsm_dev, REG(FSM_STERC1) + i, stereo_coef->data[i]);
}
ret |= fsm_reg_write(fsm_dev, REG(FSM_STERCTRL), stereo_coef->data[i++]);
ret |= fsm_reg_write(fsm_dev, REG(FSM_STERGAIN), stereo_coef->data[i++]);
FSM_FUNC_EXIT(ret);
return ret;
}
int fsm_write_excer_ram(fsm_dev_t *fsm_dev)
{
ram_data_t *excer_ram;
uint8_t write_buf[4];
int count;
int ret;
int i;
if (fsm_dev == NULL) {
return -EINVAL;
}
excer_ram = fsm_get_data_list(fsm_dev, FSM_DSC_EXCER_RAM);
if (!excer_ram) {
pr_addr(err, "note: not found data");
return -EINVAL;
}
count = excer_ram->len;
pr_addr(debug, "excer ram len: %d", count);
ret = fsm_reg_write(fsm_dev, fsm_dev->compat.DACEQA,
fsm_dev->compat.addr_excer_ram);
for (i = 0; i < count; i++) {
convert_data_to_bytes(excer_ram->data[i], write_buf);
ret |= fsm_burst_write(fsm_dev, fsm_dev->compat.DACEQWL,
write_buf, sizeof(uint32_t));
}
return ret;
}
int fsm_write_reg_tbl(fsm_dev_t *fsm_dev, uint16_t scene)
{
reg_scene_t *reg_scene;
reg_comm_t *reg_comm;
reg_unit_t *reg;
regs_unit_t *regs;
int ret = 0;
int i;
if (fsm_dev == NULL) {
return -EINVAL;
}
if (scene == FSM_SCENE_COMMON) {
reg_comm = fsm_get_data_list(fsm_dev, FSM_DSC_REG_COMMON);
if (!reg_comm) {
pr_addr(info, "note: not found reg_common data");
return 0;
}
reg = reg_comm->reg;
pr_addr(debug, "reg comm len: %d", reg_comm->len);
for (i = 0; i < reg_comm->len; i++) {
ret |= fsm_reg_update_bits(fsm_dev, &reg[i]);
}
} else if (scene != FSM_SCENE_UNKNOW) {
reg_scene = fsm_get_data_list(fsm_dev, FSM_DSC_REG_SCENES);
if (!reg_scene) {
pr_addr(info, "note: not found reg_scene data");
return 0;
}
regs = reg_scene->regs;
pr_addr(debug, "reg scene len: %d", reg_scene->len);
for (i = 0; i < reg_scene->len; i++) {
if ((regs[i].scene & scene) == 0) {
continue;
}
ret |= fsm_reg_update_bits(fsm_dev, &regs[i].reg);
}
}
FSM_FUNC_EXIT(ret);
return ret;
}
static int parse_otp_write_count(fsm_dev_t *fsm_dev, uint16_t valOTP)
{
uint16_t count = 0;
uint8_t devid;
if (fsm_dev == NULL) {
return -EINVAL;
}
devid = HIGH8(fsm_dev->version);
switch (devid) {
case FS1603_DEV_ID:
count = zero_bit_counter(valOTP & 0xFF);
break;
case FS1818_DEV_ID:
case FS1896_DEV_ID:
count = get_otp_counter(valOTP);
break;
default:
pr_addr(err, "invalid DEVID:%02X", devid);
break;
}
return count;
}
int fsm_write_preset_eq(fsm_dev_t *fsm_dev,
int ram_id, uint16_t scene)
{
uint8_t write_buf[sizeof(uint32_t)];
preset_list_t *preset_list = NULL;
dev_list_t *dev_list;
int ret;
int i;
if (fsm_dev == NULL || fsm_dev->dev_list == NULL) {
return -EINVAL;
}
if ((fsm_dev->ram_scene[ram_id] != 0xFFFF)
&& ((fsm_dev->ram_scene[ram_id] & scene) != 0)) {
pr_addr(info, "RAM%d scene:%04X", ram_id,
fsm_dev->ram_scene[ram_id]);
return 0;
}
dev_list = fsm_dev->dev_list;
if ((dev_list->eq_scenes & scene) == 0) {
pr_addr(warning, "eq_scenes:%04X unmatched scene:%04X",
dev_list->eq_scenes, scene);
return 0;
}
for (i = 0; i < dev_list->len; i++) {
if (dev_list->index[i].type != FSM_DSC_PRESET_EQ) {
continue;
}
preset_list = (preset_list_t *)((uint8_t *)dev_list->index
+ dev_list->index[i].offset);
if (preset_list && preset_list->scene & scene) {
break;
}
}
// pr_addr(debug, "preset offset: %04x", index[i].offset);
if (!preset_list || i >= dev_list->len) {
pr_addr(err, "not found preset: %04X", scene);
return -EINVAL;
}
if (preset_list->len != fsm_dev->compat.preset_unit_len) {
pr_addr(err, "invalid size: %d", preset_list->len);
return -EINVAL;
}
ret = fsm_reg_write(fsm_dev, fsm_dev->compat.ACSEQA,
((ram_id == FSM_EQ_RAM0) ? 0 : preset_list->len));
for (i = 0; i < preset_list->len; i++) {
convert_data_to_bytes(preset_list->data[i], write_buf);
ret |= fsm_burst_write(fsm_dev, fsm_dev->compat.ACSEQWL,
write_buf, sizeof(uint32_t));
}
if (!ret) {
fsm_dev->ram_scene[ram_id] = preset_list->scene;
pr_addr(info, "wroten ram_scene[%d]:%04X",
ram_id, preset_list->scene);
}
FSM_FUNC_EXIT(ret);
return ret;
}
int fsm_switch_preset(fsm_dev_t *fsm_dev)
{
fsm_config_t *cfg = fsm_get_config();
reg_temp_t sysctrl;
reg_temp_t pllc4;
uint16_t dspen;
int ret;
pr_addr(debug, "%s switching",
(cfg->force_scene ? "force" : "auto"));
if (fsm_dev == NULL) {
return -EINVAL;
}
if (!cfg->force_scene && fsm_dev->cur_scene == cfg->next_scene) {
pr_addr(debug, "same scene, skip");
return 0;
}
// need amplifier off
ret = fsm_reg_read(fsm_dev, REG(FSM_SYSCTRL), &sysctrl.new_val);
sysctrl.old_val = set_bf_val(&sysctrl.new_val, FSM_AMPE, 0);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SYSCTRL), sysctrl.new_val);
// wait stable
ret |= fsm_wait_stable(fsm_dev, FSM_WAIT_AMP_OFF);
if (ret) {
pr_addr(err, "wait timeout!");
return ret;
}
// enable pll osc
ret = fsm_reg_read(fsm_dev, REG(FSM_PLLCTRL4), &pllc4.new_val);
pllc4.old_val = set_bf_val(&pllc4.new_val, FSM_OSCEN, 1);
ret |= fsm_reg_write(fsm_dev, REG(FSM_PLLCTRL4), pllc4.new_val);
fsm_delay_ms(5); // 5ms
// load reg table
ret |= fsm_write_reg_tbl(fsm_dev, cfg->next_scene);
ret |= fsm_get_bf(fsm_dev, FSM_DSPEN, &dspen);
if (dspen == 0) { // bypass DSP
pr_addr(info, "note: Bypass DSP mode");
fsm_dev->state.bypass_dsp = true;
ret |= fsm_reg_write(fsm_dev, REG(FSM_PLLCTRL4), pllc4.old_val);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SYSCTRL), sysctrl.old_val);
fsm_dev->cur_scene = cfg->next_scene;
return 0;
}
fsm_dev->state.bypass_dsp = false;
ret |= fsm_access_key(fsm_dev, 1);
if (cfg->next_scene & fsm_dev->ram_scene[FSM_EQ_RAM0]) {
ret |= fsm_reg_write(fsm_dev, REG(FSM_ACSCTRL), 0x9880); // eq ram0
} else if (cfg->next_scene & fsm_dev->ram_scene[FSM_EQ_RAM1]) {
ret |= fsm_reg_write(fsm_dev, REG(FSM_ACSCTRL), 0x9890); // eq ram1
} else if (fsm_dev->dev_list->eq_scenes & cfg->next_scene) {
// use ram1 to switch preset
ret |= fsm_write_preset_eq(fsm_dev, FSM_EQ_RAM1, cfg->next_scene);
ret |= fsm_reg_write(fsm_dev, REG(FSM_ACSCTRL), 0x9890); // eq ram1
if (ret) {
pr_addr(err, "update scene[%04X] fail:%d",
cfg->next_scene, ret);
}
}
ret |= fsm_access_key(fsm_dev, 0);
if (!ret) {
fsm_dev->cur_scene = cfg->next_scene;
pr_addr(info, "switched scene:%04X", cfg->next_scene);
} else {
fsm_dev->cur_scene = FSM_SCENE_UNKNOW;
}
// recover pll and sysctrl
ret |= fsm_reg_write(fsm_dev, REG(FSM_PLLCTRL4), pllc4.old_val);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SYSCTRL), sysctrl.old_val);
// ret |= fsm_reg_read(fsm_dev, REG(FSM_STATUS), NULL);//TODO
FSM_FUNC_EXIT(ret);
return ret;
}
int fsm_write_preset(fsm_dev_t *fsm_dev)
{
fsm_config_t *cfg = fsm_get_config();
reg_temp_t sysctrl;
int ret;
if (!cfg || !fsm_dev || fsm_dev->own_scene == FSM_SCENE_UNKNOW) {
return -EINVAL;
}
if (cfg->force_scene) {
fsm_dev->cur_scene = FSM_SCENE_UNKNOW;
fsm_dev->ram_scene[FSM_EQ_RAM0] = FSM_SCENE_UNKNOW;
fsm_dev->ram_scene[FSM_EQ_RAM1] = FSM_SCENE_UNKNOW;
}
// need amplifier off
ret = fsm_reg_read(fsm_dev, REG(FSM_SYSCTRL), &sysctrl.new_val);
sysctrl.old_val = set_bf_val(&sysctrl.new_val, FSM_AMPE, 0);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SYSCTRL), sysctrl.new_val);
ret |= fsm_set_spkset(fsm_dev);
ret |= fsm_reg_write(fsm_dev, REG(FSM_TEMPSEL), (fsm_dev->tcoef << 1));
ret = fsm_wait_stable(fsm_dev, FSM_WAIT_AMP_OFF);
if (ret) {
pr_addr(err, "wait timeout!");
return ret;
}
ret |= fsm_access_key(fsm_dev, 1);
ret |= fsm_write_stereo_ceof(fsm_dev);
ret |= fsm_write_excer_ram(fsm_dev);
// use music and voice scene config as default
ret |= fsm_write_preset_eq(fsm_dev, FSM_EQ_RAM0, FSM_SCENE_MUSIC);
ret |= fsm_write_preset_eq(fsm_dev, FSM_EQ_RAM1, FSM_SCENE_VOICE);
ret |= fsm_write_reg_tbl(fsm_dev, FSM_SCENE_COMMON);
ret |= fsm_access_key(fsm_dev, 0);
// ret |= fsm_reg_write(fsm_dev, REG(FSM_PLLCTRL4), 0);
ret |= fsm_switch_preset(fsm_dev);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SYSCTRL), sysctrl.old_val);
FSM_FUNC_EXIT(ret);
return ret;
}
static int fsm_set_tsctrl(fsm_dev_t *fsm_dev,
bool enable, bool auto_off)
{
uint16_t tsctrl;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
ret = fsm_reg_multiread(fsm_dev, REG(FSM_TSCTRL), &tsctrl);
set_bf_val(&tsctrl, FSM_TSEN, enable);
set_bf_val(&tsctrl, FSM_OFF_AUTOEN, auto_off);
ret |= fsm_reg_write(fsm_dev, REG(FSM_TSCTRL), tsctrl);
FSM_FUNC_EXIT(ret);
return ret;
}
uint32_t fsm_cal_spkr_zmimp(fsm_dev_t *fsm_dev, uint16_t data)
{
uint32_t result;
if (!fsm_dev) {
return 0xFFFF;
}
if (fsm_dev->compat.RS2RL_RATIO == 0) {
pr_addr(info, "invalid rs ratio");
return 0;
}
if (data == 0) { // invalid data
return 0xFFFF;
}
result = FSM_MAGNIF(fsm_dev->compat.RS2RL_RATIO * LOW8(fsm_dev->rstrim));
result = (result / data);
return result;
}
static uint16_t fsm_cal_threshold(fsm_dev_t *fsm_dev,
int mt_type, uint16_t zmdata)
{
uint16_t mt_tempr;
uint32_t result;
uint32_t spk_rt;
int rapp;
if (fsm_dev == NULL) {
return -EINVAL;
}
mt_tempr = fsm_get_spk_info(fsm_dev, mt_type);
pr_addr(debug, "MT[%d]:%d", mt_type, mt_tempr);
if (mt_tempr <= 0) {
pr_addr(err, "get MT info failed");
return 0;
}
result = (uint32_t)zmdata * FSM_MAGNIF_TEMPR_COEF;
result = result / (FSM_MAGNIF_TEMPR_COEF + (uint32_t)fsm_dev->tcoef *
(mt_tempr * fsm_dev->tmax / 100 - (fsm_dev->tsel >> 1)));
rapp = fsm_get_spk_info(fsm_dev, FSM_INFO_SPK_RAPP);
spk_rt = fsm_cal_spkr_zmimp(fsm_dev, result);
if (rapp > 0) {
pr_addr(info, "rapp:%d, zm:%X", rapp, result);
spk_rt += rapp;
result = fsm_cal_spkr_zmimp(fsm_dev, spk_rt);
}
pr_addr(info, "MT[%3d]:%X, rt:%d", mt_tempr, result, spk_rt);
return (uint16_t)result;
}
static int fsm_check_re25_range(fsm_dev_t *fsm_dev, int re25)
{
int temp_val;
int re25_min;
int re25_max;
if (fsm_dev == NULL) {
return -EINVAL;
}
temp_val = FSM_MAGNIF(fsm_dev->spkr);
if (fsm_dev->spkr <= 10) {
re25_min = temp_val * (100 - FSM_SPKR_ALLOWANCE) / 100;
re25_max = temp_val * (100 + FSM_SPKR_ALLOWANCE) / 100;
} else {
re25_min = temp_val * (100 - FSM_RCVR_ALLOWANCE) / 100;
re25_max = temp_val * (100 + FSM_RCVR_ALLOWANCE) / 100;
}
pr_addr(info, "spkr:%d, min:%d, max:%d",
fsm_dev->spkr, re25_min, re25_max);
if (re25 < re25_min || re25 > re25_max) {
pr_addr(err, "invalid re25:%d", re25);
fsm_dev->state.calibrated = false;
fsm_reg_write(fsm_dev, REG(FSM_ADCTIME), 0x0031);
fsm_set_tsctrl(fsm_dev, true, true);
return -EINVAL;
}
return 0;
}
static int fsm_set_threshold_v1(fsm_dev_t *fsm_dev, uint16_t zmdata)
{
uint16_t value;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TRE, zmdata);
ret = fsm_reg_write(fsm_dev, REG(FSM_SPKRE), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TM6, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKM6), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TM24, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKM24), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TERR, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKERR), value);
return ret;
}
static int fsm_set_threshold_v2(fsm_dev_t *fsm_dev, uint16_t zmdata)
{
uint16_t value;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TRE, zmdata);
ret = fsm_reg_write(fsm_dev, REG(FSM_SPKRE), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TM01, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKMT01), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TM02, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKMT02), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TM03, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKMT03), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TM04, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKMT04), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TM05, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKMT05), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TM06, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKMT06), value);
value = fsm_cal_threshold(fsm_dev, FSM_INFO_SPK_TERR, zmdata);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKERR), value);
return ret;
}
static int fsm_set_threshold(fsm_dev_t *fsm_dev,
uint16_t data, int type)
{
struct fsm_calib calib;
uint16_t value;
int temp_val;
int rapp;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
ret = fsm_reg_read(fsm_dev, REG(FSM_OTPPG1W2), &value);
if (ret || LOW8(value) == 0) {
pr_info("use default rs_trim value");
value = FSM_RS_TRIM_DEFAULT;
}
fsm_dev->rstrim = value;
temp_val = (data == 0) ? 0xFFFF : \
(FSM_MAGNIF(fsm_dev->compat.RS2RL_RATIO * LOW8(value)) / data);
if (type == FSM_DATA_TYPE_ZMDATA) {
rapp = fsm_get_spk_info(fsm_dev, FSM_INFO_SPK_RAPP);
calib.cal_zm = data;
calib.re25 = ((data == 0xFFFF) ? 65535 : temp_val);
if (rapp > 0) {
pr_addr(info, "re25(has rapp:%d):%d", rapp, calib.re25);
calib.re25 -= rapp;
// update cal_zm by re25 without rapp
calib.cal_zm = fsm_cal_spkr_zmimp(fsm_dev, calib.re25);
}
} else {
calib.cal_zm = temp_val;
calib.re25 = data;
}
pr_addr(info, "zm:%04X, re25:%d", calib.cal_zm, calib.re25);
fsm_dev->re25 = calib.re25;
ret |= fsm_check_re25_range(fsm_dev, calib.re25);
if (ret) {
pr_info("check re25 fail:%d", ret);
fsm_dev->state.calibrated = false;
return ret;
}
fsm_dev->state.calibrated = true;
if ((IS_PRESET_V3(fsm_dev->dev_list->preset_ver))
&& fsm_dev->is_1894s) {
ret |= fsm_set_threshold_v2(fsm_dev, calib.cal_zm);
} else {
ret |= fsm_set_threshold_v1(fsm_dev, calib.cal_zm);
}
ret |= fsm_reg_write(fsm_dev, REG(FSM_ADCTIME), 0x0031);
FSM_FUNC_EXIT(ret);
return ret;
}
int fsm_parse_otp(fsm_dev_t *fsm_dev, uint16_t value,
int *re25, int *count)
{
uint8_t byte;
int step_unit;
int cal_count;
int spkr_mag;
int offset;
if (fsm_dev == NULL) {
return -EINVAL;
}
// parse re25
if (re25 != NULL) {
byte = (uint8_t)((value >> 8) & 0xFF);
spkr_mag = FSM_MAGNIF(fsm_dev->spkr);
if (fsm_dev->spkr <= 10) {
step_unit = spkr_mag * FSM_SPKR_ALLOWANCE / 12700;
} else {
step_unit = spkr_mag * FSM_RCVR_ALLOWANCE / 12700;
}
step_unit += 1; // fix integer precision
if (byte == 0x7F) {
byte = 0x00;
}
offset = (byte & 0x7F) * step_unit;
if ((byte & 0x80) != 0) {
*re25 = spkr_mag - offset;
} else {
*re25 = spkr_mag + offset;
}
pr_addr(info, "offset:%d, step:%d, re25:%d mohm",
offset, step_unit, *re25);
}
// parse calibration count
cal_count = parse_otp_write_count(fsm_dev, value);
pr_addr(info, "cal_count:%d", cal_count);
fsm_dev->state.otp_stored = ((cal_count > 0) ? 1 : 0);
if (count != NULL) {
*count = cal_count;
}
return 0;
}
int fsm_check_otp(fsm_dev_t *fsm_dev)
{
uint16_t otppg2;
uint16_t pllc4;
int count;
int re25;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
ret = fsm_reg_read(fsm_dev, REG(FSM_PLLCTRL4), &pllc4);
ret |= fsm_reg_write(fsm_dev, REG(FSM_PLLCTRL4), 0x000F);
ret |= fsm_access_key(fsm_dev, 1);
ret |= fsm_reg_read(fsm_dev, REG(FSM_OTPPG2), &otppg2);
pr_addr(debug, "OTPPG2:%04X", otppg2);
fsm_parse_otp(fsm_dev, otppg2, &re25, &count);
fsm_dev->cal_count = count;
if (count > 0 && count < fsm_dev->compat.otp_max_count) {
fsm_set_threshold(fsm_dev, re25, FSM_DATA_TYPE_RE25);
} else if (count == 0 && fsm_dev->re25_dft != 0) {
fsm_set_threshold(fsm_dev, fsm_dev->re25_dft, FSM_DATA_TYPE_RE25);
pr_addr(warning, "not calibrate yet");
} else {
pr_addr(err, "got something wrong");
}
ret |= fsm_access_key(fsm_dev, 0);
ret |= fsm_reg_write(fsm_dev, REG(FSM_PLLCTRL4), pllc4);
FSM_FUNC_EXIT(ret);
return ret;
}
int fsm_config_vol(fsm_dev_t *fsm_dev)
{
fsm_config_t *cfg = fsm_get_config();
struct fsm_vbat_state *vbat_state;
uint16_t cur_batv;
uint16_t vol_vbat;
uint16_t volume;
vbat_state = &g_vbat_state;
if (!fsm_dev || !cfg || !vbat_state) {
return -EINVAL;
}
if (cfg->stream_muted) {
return fsm_reg_write(fsm_dev, REG(FSM_AUDIOCTRL), 0x0000);
}
if (cfg->volume > FSM_VOLUME_MAX) {
cfg->volume = FSM_VOLUME_MAX;
}
volume = ((fsm_dev->state.calibrated || fsm_dev->re25_dft != 0) ? cfg->volume : 0xDF); // -12db
if (cfg->use_monitor) {
cur_batv = vbat_state->cur_batv;
if (cur_batv > FSM_VBAT_HIGH)
cur_batv = FSM_VBAT_HIGH;
else if (cur_batv < FSM_VBAT_LOW)
cur_batv = FSM_VBAT_LOW;
vol_vbat = 0xFF - (FSM_VBAT_HIGH - cur_batv) / FSM_VBAT_STEP;
if (vbat_state->cur_batv != 0 && cfg->next_scene < FSM_SCENE_LOW_PWR) {
// update volume
volume = MIN(volume, vol_vbat);
}
}
volume = ((volume << 8) & 0xFF00);
pr_addr(info, "vol: %04X", volume);
return fsm_reg_write(fsm_dev, REG(FSM_AUDIOCTRL), volume);
}
static uint8_t fsm_re25_to_byte(fsm_dev_t *fsm_dev, int re25)
{
uint8_t valOTP;
int step_unit;
int spkr_mag;
int offset;
if (fsm_dev == NULL || re25 == 0) {
return 0xff;
}
spkr_mag = FSM_MAGNIF(fsm_dev->spkr);
if (fsm_dev->spkr <= 10) {
step_unit = (spkr_mag * FSM_SPKR_ALLOWANCE) / 12700;
} else {
step_unit = (spkr_mag * FSM_RCVR_ALLOWANCE) / 12700;
}
step_unit += 1; // fix integer precision
offset = re25 - spkr_mag;
if (offset < 0) {
offset *= -1;
valOTP = (uint8_t)((offset / step_unit) & 0xFF) + 1;
if (valOTP > 0x7F) {
valOTP = 0x7F;
}
valOTP |= 0x80;
} else {
valOTP = (uint8_t)((offset / step_unit) & 0xFF) - 1;
if (offset < step_unit) {
valOTP = 0;
}
if (valOTP > 0x7F) {
valOTP = 0x7F;
}
}
pr_addr(info, "re25:%d mohm, step:%d, offset:%d, valOTP:%02X",
re25, step_unit, offset, valOTP);
return valOTP;
}
static int fsm_set_cal_mode(fsm_dev_t *fsm_dev)
{
int ret;
if (!fsm_dev) {
return -EINVAL;
}
fsm_access_key(fsm_dev, 1);
ret = fsm_reg_write(fsm_dev, REG(FSM_ZMCONFIG), 0x0010);
ret |= fsm_set_tsctrl(fsm_dev, true, false);
ret |= fsm_reg_write(fsm_dev, REG(FSM_AUDIOCTRL), 0x8F00);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKERR), 0x0000);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKRE), 0x0000);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKM6), 0x0000);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SPKM24), 0x0000);
ret |= fsm_reg_write(fsm_dev, REG(FSM_ADCENV), 0xFFFF);
ret |= fsm_reg_write(fsm_dev, REG(FSM_ADCTIME), 0x0031);
fsm_access_key(fsm_dev, 0);
return ret;
}
int fsm_check_status(fsm_dev_t *fsm_dev)
{
uint16_t status;
uint16_t bf_val;
int ready;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
ret = fsm_reg_multiread(fsm_dev, REG(FSM_STATUS), &status);
pr_addr(info, "status:%04X", status);
bf_val = get_bf_val(FSM_BOVDS, status);
if (!bf_val)
pr_addr(info, "overvoltage on boost");
ready = bf_val;
bf_val = get_bf_val(FSM_PLLS, status);
if (!bf_val)
pr_addr(info, "PLL is not in lock");
ready &= bf_val;
bf_val = get_bf_val(FSM_OTDS, status);
if (!bf_val)
pr_addr(info, "over temperature");
ready &= bf_val;
bf_val = get_bf_val(FSM_OVDS, status);
if (!bf_val)
pr_addr(info, "overvoltage on VBAT");
ready &= bf_val;
bf_val = get_bf_val(FSM_UVDS, status);
if (!bf_val)
pr_addr(info, "undervoltage on VBAT");
ready &= bf_val;
bf_val = get_bf_val(FSM_OCDS, status);
if (bf_val)
pr_addr(info, "overcurrent in amplifier");
ready &= (!bf_val);
bf_val = get_bf_val(FSM_CLKS, status);
if (!bf_val)
pr_addr(info, "bclk/ws is not stable");
ready &= bf_val;
if (!ret && ready) {
return 0;
}
return -EINVAL;
}
/*
* fsm stub api
*/
int fsm_stub_dev_init(fsm_dev_t *fsm_dev)
{
fsm_config_t *cfg = fsm_get_config();
int ret;
if (fsm_dev == NULL || cfg == NULL) {
return -EINVAL;
}
if (cfg->force_init) {
pr_addr(info, "force init");
}
if (!cfg->force_init && fsm_dev->state.dev_inited) {
return 0;
}
if (fsm_dev->dev_ops.dev_init) {
return fsm_dev->dev_ops.dev_init(fsm_dev);
}
ret = fsm_init_dev_list(fsm_dev);
if (ret || !fsm_dev->dev_list) {
pr_addr(err, "init dev_list fail:%d", ret);
return ret;
}
fsm_dev->state.dev_inited = true;
ret = fsm_init_info(fsm_dev);
if (fsm_dev->dev_ops.reg_init) {
fsm_dev->dev_ops.reg_init(fsm_dev);
}
ret |= fsm_write_preset(fsm_dev);
ret |= fsm_check_otp(fsm_dev);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SYSCTRL), 0x0001);
fsm_wait_stable(fsm_dev, FSM_WAIT_AMP_ADC_OFF);
if (ret) {
pr_addr(err, "init failed:%d", ret);
fsm_dev->state.dev_inited = false;
}
fsm_dev->errcode = ret;
return ret;
}
int fsm_stub_start_up(fsm_dev_t *fsm_dev)
{
uint16_t sysctrl;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
if (fsm_dev->dev_ops.start_up) {
return fsm_dev->dev_ops.start_up(fsm_dev);
}
if (fsm_dev->dev_ops.i2s_config) {
ret = fsm_dev->dev_ops.i2s_config(fsm_dev);
}
if (fsm_dev->dev_ops.pll_config) {
ret = fsm_dev->dev_ops.pll_config(fsm_dev, true);
}
// power on device
ret = fsm_reg_read(fsm_dev, REG(FSM_SYSCTRL), &sysctrl);
// set_bf_val(&sysctrl, FSM_AMPE, 1);
set_bf_val(&sysctrl, FSM_PWDN, 0);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SYSCTRL), sysctrl);
// ret |= fsm_config_vol(fsm_dev); // move to fsm_stub_set_mute
fsm_dev->errcode = ret;
FSM_FUNC_EXIT(ret);
return ret;
}
static int fsm_stub_check_stable(fsm_dev_t *fsm_dev, int type)
{
uint16_t value;
int ready;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
if (fsm_dev->dev_ops.check_stable) {
return fsm_dev->dev_ops.check_stable(fsm_dev, type);
}
switch (type) {
case FSM_WAIT_STATUS_ON:
ret = fsm_check_status(fsm_dev);
ready = !ret;
break;
case FSM_WAIT_AMP_ON:
case FSM_WAIT_AMP_ADC_ON:
ret = fsm_reg_multiread(fsm_dev, REG(FSM_STATUS), &value);
ready = get_bf_val(FSM_CLKS, value);
ready &= get_bf_val(FSM_PLLS, value);
ret |= fsm_get_bf(fsm_dev, FSM_SSEND, &value);
ready &= value;
break;
case FSM_WAIT_AMP_OFF:
ret = fsm_get_bf(fsm_dev, FSM_DACRUN, &value);
ready = (value == 0 ? 1 : 0);
break;
case FSM_WAIT_AMP_ADC_OFF:
case FSM_WAIT_AMP_ADC_PLL_OFF:
ret = fsm_reg_multiread(fsm_dev, REG(FSM_DIGSTAT), &value);
ready = get_bf_val(FSM_ADCRUN, value);
ready |= get_bf_val(FSM_DACRUN, value);
ready = !ready;
break;
case FSM_WAIT_TSIGNAL_OFF:
ret = fsm_get_bf(fsm_dev, FSM_OFFSTA, &value);
ready = value;
break;
case FSM_WAIT_OTP_READY:
ret = fsm_get_bf(fsm_dev, FSM_OTPBUSY, &value);
ready = !value;
break;
case FSM_WAIT_BOOST_SSEND:
ret = fsm_get_bf(fsm_dev, FSM_SSEND, &value);
ready = value;
break;
default:
ret = -EINVAL;
ready = 0;
break;
}
if (ready && type == FSM_WAIT_AMP_ADC_PLL_OFF) {
if (fsm_dev->dev_ops.pll_config) {
fsm_dev->dev_ops.pll_config(fsm_dev, false);
}
}
if (ready && type == FSM_WAIT_AMP_ADC_ON) {
ret |= fsm_reg_multiread(fsm_dev, REG(FSM_DIGSTAT), &value);
ready &= get_bf_val(FSM_DACRUN, value);
ready &= get_bf_val(FSM_ADCRUN, value);
}
if (!ret && !ready) {
ret = -EINVAL;
}
return ret;
}
int fsm_stub_set_tsignal(fsm_dev_t *fsm_dev, bool enable)
{
if (fsm_dev == NULL) {
return -EINVAL;
}
if (fsm_dev->dev_ops.set_tsignal) {
return fsm_dev->dev_ops.set_tsignal(fsm_dev, enable);
}
return fsm_set_tsctrl(fsm_dev, enable, true);
}
int fsm_stub_set_mute(fsm_dev_t *fsm_dev, bool mute)
{
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
if (fsm_dev->dev_ops.set_mute) {
return fsm_dev->dev_ops.set_mute(fsm_dev, mute);
}
ret = fsm_config_vol(fsm_dev);
ret |= fsm_set_bf(fsm_dev, FSM_AMPE, !mute);
fsm_dev->errcode = ret;
return ret;
}
int fsm_stub_shut_down(fsm_dev_t *fsm_dev)
{
uint16_t sysctrl;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
if (fsm_dev->dev_ops.shut_down) {
return fsm_dev->dev_ops.shut_down(fsm_dev);
}
// fsm_reg_multiread(fsm_dev, REG(FSM_DIGSTAT), NULL); // TODO
// ret = fsm_config_vol(fsm_dev);
ret = fsm_reg_read(fsm_dev, REG(FSM_SYSCTRL), &sysctrl);
// amplifier off and power down device
// set_bf_val(&sysctrl, FSM_AMPE, 0);
set_bf_val(&sysctrl, FSM_PWDN, 1);
ret |= fsm_reg_write(fsm_dev, REG(FSM_SYSCTRL), sysctrl);
FSM_FUNC_EXIT(ret);
return ret;
}
static int fsm_stub_store_otp(fsm_dev_t *fsm_dev, uint8_t valOTP)
{
if (fsm_dev && fsm_dev->dev_ops.store_otp) {
return fsm_dev->dev_ops.store_otp(fsm_dev, valOTP);
} else {
pr_addr(err, "not support");
return -EINVAL;
}
}
int fsm_stub_pre_calib(fsm_dev_t *fsm_dev)
{
fsm_config_t *cfg = fsm_get_config();
int force;
int ret;
if (fsm_dev == NULL || !cfg) {
return -EINVAL;
}
if (fsm_dev->dev_ops.pre_calib) {
return fsm_dev->dev_ops.pre_calib(fsm_dev);
}
force = cfg->force_calib;
pr_addr(info, "force:%d, calibrated:%d",
force, fsm_dev->state.calibrated);
if (!force && fsm_dev->state.calibrated) {
pr_addr(info, "already calibrated");
return 0;
}
fsm_dev->state.calibrated = false;
fsm_dev->re25 = 0;
if (fsm_dev->tdata) {
fsm_dev->tdata->test_re25 = 0;
memset(&fsm_dev->tdata->re25, 0, sizeof(struct re25_data));
}
ret = fsm_set_cal_mode(fsm_dev);
ret |= fsm_check_status(fsm_dev);
if (ret) {
pr_addr(err, "error:%d, stop test", ret);
fsm_dev->state.re25_runin = false;
return ret;
}
fsm_dev->state.re25_runin = true;
return ret;
}
int fsm_stub_post_calib(fsm_dev_t *fsm_dev)
{
fsm_config_t *cfg = fsm_get_config();
uint8_t valOTP;
uint16_t cal_zm;
int ret;
if (fsm_dev == NULL || !cfg || !fsm_dev->tdata) {
return -EINVAL;
}
if (!fsm_dev->state.re25_runin) {
pr_addr(info, "invalid running state");
return 0;
}
if (fsm_dev->dev_ops.post_calib) {
return fsm_dev->dev_ops.post_calib(fsm_dev);
}
fsm_dev->state.re25_runin = false;
cal_zm = fsm_dev->tdata->re25.zmdata;
// calculate spk-t thrd and re25
ret = fsm_access_key(fsm_dev, 1);
ret |= fsm_set_threshold(fsm_dev, cal_zm, FSM_DATA_TYPE_ZMDATA);
fsm_dev->tdata->test_re25 = fsm_dev->re25;
ret |= fsm_reg_write(fsm_dev, REG(FSM_ZMCONFIG), 0x0000);
ret |= fsm_access_key(fsm_dev, 0);
if (ret) {
return ret;
}
valOTP = fsm_re25_to_byte(fsm_dev, fsm_dev->re25);
if (valOTP != 0xFF && cfg->store_otp) {
ret |= fsm_stub_store_otp(fsm_dev, valOTP);
if (ret) {
pr_addr(err, "store otp fail:%d", ret);
fsm_dev->tdata->test_re25 = fsm_dev->re25 = 65535;
}
}
// ret |= fsm_config_vol(fsm_dev); // move to fsm_stub_set_mute
fsm_dev->errcode = ret;
FSM_FUNC_EXIT(ret);
return ret;
}
int fsm_stub_dev_deinit(fsm_dev_t *fsm_dev)
{
if (fsm_dev == NULL) {
return -EINVAL;
}
if (fsm_dev->dev_ops.deinit) {
return fsm_dev->dev_ops.deinit(fsm_dev);
}
// deinit here
return 0;
}
int fsm_dev_recover(fsm_dev_t *fsm_dev)
{
fsm_config_t *cfg = fsm_get_config();
int ret;
if (!cfg || !fsm_dev) {
return -EINVAL;
}
if (fsm_skip_device(fsm_dev)) {
return 0;
}
if (fsm_dev->dev_ops.dev_recover) {
return fsm_dev->dev_ops.dev_recover(fsm_dev);
}
ret = fsm_check_status(fsm_dev);
if (!ret) {
return ret;
}
pr_addr(info, "recover device");
cfg->force_init = true;
cfg->force_scene = true;
ret |= fsm_stub_dev_init(fsm_dev);
ret |= fsm_stub_start_up(fsm_dev);
fsm_wait_stable(fsm_dev, FSM_WAIT_AMP_ON);
ret |= fsm_stub_set_mute(fsm_dev, false);
fsm_wait_stable(fsm_dev, FSM_WAIT_AMP_ADC_ON);
ret |= fsm_stub_set_tsignal(fsm_dev, true);
cfg->force_init = false;
cfg->force_scene = false;
return ret;
}
int fsm_dev_count(void)
{
return g_fsm_config.dev_count;
}
void fsm_set_i2s_clocks(uint32_t rate, uint32_t bclk)
{
fsm_config_t *cfg = fsm_get_config();
if (!cfg) {
return;
}
fsm_mutex_lock();
cfg->i2s_bclk = bclk;
cfg->i2s_srate = rate;
if (rate == 32000) {
cfg->i2s_bclk += 32;
}
fsm_mutex_unlock();
}
void fsm_set_scene(int scene)
{
fsm_config_t *cfg = fsm_get_config();
fsm_dev_t *fsm_dev = NULL;
bool state;
if (!cfg || scene < 0 || scene >= FSM_SCENE_MAX) {
pr_info("invaild scene:%d", scene);
return;
}
fsm_mutex_lock();
if (cfg->speaker_on) {
// switch scene online
state = cfg->skip_monitor;
cfg->skip_monitor = true;
// turn off devices firstly
fsm_list_func_arg(fsm_dev, fsm_stub_set_tsignal, false);
fsm_list_wait(FSM_WAIT_TSIGNAL_OFF);
fsm_list_func_arg(fsm_dev, fsm_stub_set_mute, true);
fsm_list_func(fsm_dev, fsm_stub_shut_down);
fsm_list_wait(FSM_WAIT_AMP_ADC_PLL_OFF);
// switch preset by scene
cfg->next_scene = BIT(scene);
fsm_list_func(fsm_dev, fsm_switch_preset);
// turn on devices by scene
fsm_list_func(fsm_dev, fsm_stub_start_up);
fsm_list_wait(FSM_WAIT_AMP_ON);
fsm_list_func(fsm_dev, fsm_get_vbat);
fsm_list_func_arg(fsm_dev, fsm_stub_set_mute, false);
fsm_list_wait(FSM_WAIT_AMP_ADC_ON);
fsm_delay_ms(10);
fsm_list_func_arg(fsm_dev, fsm_stub_set_tsignal, true);
cfg->skip_monitor = state;
} else {
// swtich scene offline
cfg->next_scene = BIT(scene);
fsm_list_func(fsm_dev, fsm_switch_preset);
}
fsm_mutex_unlock();
}
void fsm_set_volume(int volume)
{
fsm_config_t *cfg = fsm_get_config();
fsm_dev_t *fsm_dev;
if (!cfg) {
return;
}
fsm_mutex_lock();
if (volume < 0 || volume > FSM_VOLUME_MAX) {
pr_info("invalid volume: %d, default 0dB", volume);
volume = FSM_VOLUME_MAX;
}
cfg->volume = volume;
if (!cfg->stream_muted) {
fsm_list_func(fsm_dev, fsm_config_vol);
}
fsm_mutex_unlock();
}
void fsm_set_fw_name(char *name)
{
fsm_config_t *cfg = fsm_get_config();
if (cfg) {
cfg->fw_name = name;
}
}
int fsm_detect_device(fsm_dev_t *fsm_dev, uint8_t dev_id)
{
if (fsm_dev == NULL) {
return -EINVAL;
}
fsm_dev->use_irq = false;
switch (dev_id) {
case FS1601S_DEV_ID:
g_fsm_config.fw_name = "fs1601s.fsm";
fs1601s_ops(fsm_dev);
break;
case FS1603_DEV_ID:
g_fsm_config.fw_name = "fs1603.fsm";
fs1603_ops(fsm_dev);
break;
case FS1818_DEV_ID:
case FS1896_DEV_ID:
g_fsm_config.fw_name = "fs1801.fsm";
fs1801_ops(fsm_dev);
break;
case FS1860_DEV_ID:
g_fsm_config.fw_name = "fs1860.fsm";
fs1860_ops(fsm_dev);
break;
default:
pr_addr(err, "invalid dev_id:%02X", dev_id);
memset(&fsm_dev->dev_ops, 0, sizeof(fsm_dev->dev_ops));
return -EINVAL;
}
return 0;
}
int fsm_probe(fsm_dev_t *fsm_dev, int addr)
{
uint16_t id;
int ret;
if (fsm_dev == NULL) {
return -EINVAL;
}
fsm_mutex_lock();
fsm_dev->addr = addr;
ret = fsm_reg_read(fsm_dev, REG(FSM_ID), &id);
if (ret) {
fsm_dev->addr = 0;
fsm_mutex_unlock();
return ret;
}
ret = fsm_detect_device(fsm_dev, HIGH8(id));
if (ret) {
pr_addr(err, "Unknown DEVID: %04X", id);
fsm_dev->addr = 0;
fsm_mutex_unlock();
return ret;
}
pr_addr(info, "Found DEVID: %04X", id);
fsm_dev->ram_scene[FSM_EQ_RAM0] = FSM_SCENE_UNKNOW;
fsm_dev->ram_scene[FSM_EQ_RAM1] = FSM_SCENE_UNKNOW;
fsm_dev->own_scene = FSM_SCENE_UNKNOW;
fsm_dev->cur_scene = FSM_SCENE_UNKNOW;
fsm_dev->version = id;
fsm_dev->is_1894s = ((id == FS1894S_REVID) ? true : false);
fsm_dev->acc_count = 0;
fsm_list_init(fsm_dev);
g_fsm_config.dev_count++;
fsm_mutex_unlock();
return 0;
}
void fsm_remove(fsm_dev_t *fsm_dev)
{
if (!fsm_dev) {
return;
}
fsm_mutex_lock();
#if defined(CONFIG_FSM_STEREO)
list_del(&fsm_dev->list);
#endif
if (fsm_dev->tdata) {
fsm_free_mem(fsm_dev->tdata);
}
g_fsm_config.dev_count--;
fsm_mutex_unlock();
}
/**
* try init deivce without lock
*/
static int fsm_try_init(void)
{
fsm_config_t *cfg = fsm_get_config();
fsm_dev_t *fsm_dev = NULL;
uint16_t next_scene;
int ret;
if (fsm_dev_count() <= 0) {
pr_info("no found device");
return -EINVAL;
}
cfg->force_scene = cfg->force_init;
ret = fsm_firmware_init_sync(cfg->fw_name);
if (!fsm_get_presets()) {
pr_info("invalid firmware, ret:%d", ret);
return -EINVAL;
}
next_scene = cfg->next_scene;
cfg->next_scene = FSM_SCENE_MUSIC; // init all devices
list_for_each_entry(fsm_dev, &fsm_dev_list, list) {
fsm_stub_dev_init(fsm_dev);
}
cfg->next_scene = next_scene; // recovery scene
cfg->force_scene = cfg->force_init = false;
return 0;
}
void fsm_init(void)
{
int ret;
ret = fsm_hal_open();
if (ret) {
pr_info("hal open fail:%d", ret);
return;
}
fsm_mutex_lock();
ret = fsm_try_init();
if (ret) { // no device or firmware
pr_info("init failed: %d", ret);
}
pr_debug("done");
fsm_mutex_unlock();
}
void fsm_speaker_onn(void)
{
fsm_config_t *cfg = fsm_get_config();
struct fsm_vbat_state *vbat_state;
fsm_dev_t *fsm_dev = NULL;
int ret;
pr_info("scene: %04X", cfg->next_scene);
fsm_mutex_lock();
cfg->stream_muted = false;
ret = fsm_try_init();
if (ret) { // no device or firmware
pr_info("init failed: %d", ret);
fsm_mutex_unlock();
return;
}
// fsm_list_func(fsm_dev, fsm_switch_preset);
fsm_list_func(fsm_dev, fsm_stub_start_up);
fsm_list_wait(FSM_WAIT_AMP_ON);
vbat_state = &g_vbat_state;
vbat_state->cur_batv = 0;
fsm_list_func(fsm_dev, fsm_get_vbat);
pr_info("vbat:%d", vbat_state->cur_batv);
fsm_list_func_arg(fsm_dev, fsm_stub_set_mute, false);
vbat_state->last_batv = vbat_state->cur_batv;
fsm_list_wait(FSM_WAIT_AMP_ADC_ON);
fsm_delay_ms(10);
fsm_list_func_arg(fsm_dev, fsm_stub_set_tsignal, true);
// cfg->skip_monitor = false; // not use fsm_set_monitor
// fsm_list_func(fsm_dev, fsm_set_monitor);
cfg->cur_angle = cfg->next_angle;
cfg->speaker_on = true;
pr_debug("done");
fsm_mutex_unlock();
}
void fsm_speaker_off(void)
{
fsm_config_t *cfg = fsm_get_config();
fsm_dev_t *fsm_dev = NULL;
int ret;
pr_info("scene: %04X", cfg->next_scene);
fsm_mutex_lock();
// cfg->skip_monitor = true; // not use fsm_set_monitor
cfg->stream_muted = true;
// fsm_list_func(fsm_dev, fsm_set_monitor);
ret = fsm_try_init();
if (ret) {
pr_info("try init failed: %d", ret);
fsm_mutex_unlock();
return;
}
fsm_list_func_arg(fsm_dev, fsm_stub_set_tsignal, false);
fsm_list_wait(FSM_WAIT_TSIGNAL_OFF);
fsm_list_func_arg(fsm_dev, fsm_stub_set_mute, true);
fsm_list_func(fsm_dev, fsm_stub_shut_down);
fsm_list_wait(FSM_WAIT_AMP_ADC_PLL_OFF);
cfg->speaker_on = false;
pr_debug("done");
fsm_mutex_unlock();
}
void fsm_stereo_flip(int next_angle)
{
fsm_config_t *cfg = fsm_get_config();
fsm_dev_t *fsm_dev = NULL;
if (next_angle >= 360) { // angle range: [0 ~ 359]
next_angle %= 360;
}
if (cfg->cur_angle == next_angle) {
return;
}
fsm_mutex_lock();
pr_info("scene:%04X, angle:%d", cfg->next_scene, next_angle);
cfg->next_angle = next_angle;
if (cfg->stream_muted || !(cfg->next_scene & FSM_SCENE_MUSIC)) {
fsm_mutex_unlock();
return;
}
fsm_list_func_arg(fsm_dev, fsm_swap_channel, cfg->next_angle);
cfg->cur_angle = cfg->next_angle;
fsm_mutex_unlock();
}
void fsm_batv_monitor(void)
{
fsm_config_t *cfg = fsm_get_config();
struct fsm_vbat_state *vbat_state;
fsm_dev_t *fsm_dev = NULL;
vbat_state = &g_vbat_state;
fsm_mutex_lock();
if (cfg->skip_monitor || cfg->dev_suspend || !vbat_state) {
fsm_mutex_unlock();
return;
}
vbat_state->cur_batv = 0;
// get current batv(min) from smartpa (or from charge ic)
fsm_list_func(fsm_dev, fsm_get_vbat);
// update volume when:
// 1) cur_vbat lower last_batv - step
// 2) vbat rised FSM_VBATH_COUNT times (charging)
// 3) the first time checking (last_batv = 0)
pr_debug("batv: %d, %d, %d", vbat_state->last_batv,
vbat_state->cur_batv, vbat_state->batvh_count);
if ((vbat_state->cur_batv <= vbat_state->last_batv - FSM_VBAT_STEP)
|| (vbat_state->batvh_count >= FSM_VBATH_COUNT)
|| (vbat_state->last_batv == 0)) {
// update volume
fsm_list_func(fsm_dev, fsm_config_vol);
// update last batv
vbat_state->last_batv = vbat_state->cur_batv;
// clear batv rised count
vbat_state->batvh_count = 0;
} else if (vbat_state->cur_batv >= vbat_state->last_batv + FSM_VBAT_STEP) {
// batv rised
vbat_state->batvh_count++;
}
fsm_mutex_unlock();
}
void fsm_re25_test(bool force)
{
fsm_config_t *cfg = fsm_get_config();
fsm_dev_t *fsm_dev = NULL;
int retry;
int ret;
fsm_mutex_lock();
pr_info("start testing");
cfg->skip_monitor = true;
cfg->test_type = TEST_RE25;
cfg->force_calib = force;
cfg->stop_test = false;
fsm_mutex_unlock();
// check play audio or not
ret = fsm_list_wait(FSM_WAIT_STATUS_ON);
if (ret) {
pr_info("wait status timeout!");
// return; // go ahead to clean data in pre calib
}
fsm_mutex_lock();
fsm_list_func(fsm_dev, fsm_stub_pre_calib);
fsm_delay_ms(2500); // 2500ms
for (retry = 1; retry <= FSM_WAIT_STABLE_RETRY; retry++) {
if (cfg->stop_test) {
break;
}
fsm_delay_ms(100); // 100ms
fsm_list_return(fsm_dev, fsm_cal_zmdata, ret);
if (!ret) {
break;
}
}
pr_info("retry %d times, max:%d", retry, FSM_WAIT_STABLE_RETRY);
fsm_list_func(fsm_dev, fsm_stub_post_calib);
cfg->test_type = TEST_NONE;
fsm_list_func_arg(fsm_dev, fsm_stub_set_mute, false);
fsm_list_wait(FSM_WAIT_AMP_ADC_ON);
fsm_delay_ms(10); // ms
fsm_list_func_arg(fsm_dev, fsm_stub_set_tsignal, true);
cfg->force_calib = false;
cfg->skip_monitor = false;
pr_debug("done");
fsm_mutex_unlock();
}
void fsm_f0_test(void)
{
fsm_config_t *cfg = fsm_get_config();
fsm_dev_t *fsm_dev = NULL;
int freq;
int ret;
fsm_mutex_lock();
pr_info("start testing");
cfg->skip_monitor = true;
cfg->test_type = TEST_F0;
cfg->stop_test = false;
fsm_mutex_unlock();
ret = fsm_list_wait(FSM_WAIT_STATUS_ON);
if (ret) {
pr_info("wait status timeout!");
// return; // go ahead to clean data in pre f0 test
}
fsm_mutex_lock();
fsm_list_entry(fsm_dev, fsm_dev->dev_ops.pre_f0_test);
for (freq = FREQ_START; freq <= FREQ_END; freq += F0_FREQ_STEP) {
if (cfg->stop_test) {
break;
}
cfg->test_freq = freq;
fsm_list_entry(fsm_dev, fsm_dev->dev_ops.f0_test);
fsm_delay_ms((freq != FREQ_START ? F0_TEST_DELAY_MS : 800)); // ms
fsm_list_return(fsm_dev, fsm_cal_zmdata, ret);
}
fsm_list_entry(fsm_dev, fsm_dev->dev_ops.post_f0_test);
fsm_delay_ms(35); // 35ms
cfg->test_type = TEST_NONE;
// force init device
cfg->force_init = true;
cfg->force_scene = true;
pr_debug("done");
fsm_mutex_unlock();
fsm_speaker_onn();
cfg->force_init = false;
cfg->force_scene = false;
}
int fsm_test_result(struct fsm_cal_result *result)
{
struct preset_file *pfile;
struct dev_list *dev_list;
fsm_dev_t *fsm_dev;
uint8_t *preset;
int dev;
pfile = fsm_get_presets();
if (!result || !pfile) {
pr_info("invalid parameters");
return -EINVAL;
}
preset = (uint8_t *)pfile;
result->ndev = pfile->hdr.ndev;
result->freq_start = FREQ_START;
result->freq_end = FREQ_END;
result->freq_step = F0_FREQ_STEP;
if (pfile->hdr.ndev > FSM_DEV_MAX) {
pr_info("invalid ndev:%d", pfile->hdr.ndev);
return -EINVAL;
}
for (dev = 0; dev < result->ndev; dev++) {
if (FSM_DSC_DEV_INFO != pfile->index[dev].type) {
continue;
}
dev_list = (struct dev_list *)&preset[pfile->index[dev].offset];
result->data[dev].addr = dev_list->addr;
fsm_dev = fsm_get_fsm_dev(dev_list->addr);
if (fsm_dev && fsm_dev->tdata) {
result->data[dev].pos = fsm_dev->pos_mask;
result->data[dev].re25 = fsm_dev->tdata->test_re25;
result->data[dev].count = fsm_dev->cal_count;
result->data[dev].f0 = fsm_dev->f0;
memcpy(result->data[dev].f0_zm, fsm_dev->tdata->f0.zmdata,
sizeof(result->data[dev].f0_zm));
result->data[dev].errcode = fsm_dev->errcode;
} else {
pr_addr(err, "invalid data");
}
}
pr_info("result->ndev:%d", result->ndev);
return 0;
}
void fsm_deinit(void)
{
fsm_dev_t *fsm_dev = NULL;
fsm_mutex_lock();
if (fsm_dev_count() <= 0) {
fsm_mutex_unlock();
return;
}
fsm_list_func(fsm_dev, fsm_stub_dev_deinit);
fsm_firmware_deinit();
fsm_mutex_unlock();
fsm_hal_close();
}