502 lines
16 KiB
C++
502 lines
16 KiB
C++
|
|
// Copyright 2022 Google LLC
|
||
|
|
//
|
||
|
|
// This source code is licensed under the BSD-style license found in the
|
||
|
|
// LICENSE file in the root directory of this source tree.
|
||
|
|
|
||
|
|
#include "convolution-test-helpers.h"
|
||
|
|
|
||
|
|
#include <algorithm>
|
||
|
|
#include <cstdint>
|
||
|
|
#include <cstddef>
|
||
|
|
#include <vector>
|
||
|
|
|
||
|
|
namespace xnnpack{
|
||
|
|
|
||
|
|
void compute_convolution_qs8_reference_results(
|
||
|
|
size_t batch_size,
|
||
|
|
size_t output_height,
|
||
|
|
size_t output_width,
|
||
|
|
size_t input_height,
|
||
|
|
size_t input_width,
|
||
|
|
size_t input_padding_top,
|
||
|
|
size_t input_padding_right,
|
||
|
|
size_t input_padding_bottom,
|
||
|
|
size_t input_padding_left,
|
||
|
|
size_t kernel_height,
|
||
|
|
size_t kernel_width,
|
||
|
|
size_t subsampling_height,
|
||
|
|
size_t subsampling_width,
|
||
|
|
size_t dilation_height,
|
||
|
|
size_t dilation_width,
|
||
|
|
size_t groups,
|
||
|
|
size_t group_input_channels,
|
||
|
|
size_t group_output_channels,
|
||
|
|
size_t input_channel_stride,
|
||
|
|
int8_t input_zero_point,
|
||
|
|
const std::vector<int8_t>& input,
|
||
|
|
const std::vector<int8_t>& filter,
|
||
|
|
std::vector<int32_t>& accumulators,
|
||
|
|
bool has_bias,
|
||
|
|
const std::vector<int32_t>& bias)
|
||
|
|
{
|
||
|
|
if (!has_bias) {
|
||
|
|
std::fill(accumulators.begin(), accumulators.end(), 0);
|
||
|
|
}
|
||
|
|
|
||
|
|
for (size_t i = 0; i < batch_size; i++) {
|
||
|
|
for (size_t oy = 0; oy < output_height; oy++) {
|
||
|
|
for (size_t ox = 0; ox < output_width; ox++) {
|
||
|
|
// Initialize Bias
|
||
|
|
if (has_bias) {
|
||
|
|
for (size_t g = 0; g < groups; g++) {
|
||
|
|
for (size_t oc = 0; oc < group_output_channels; oc++) {
|
||
|
|
accumulators[(((i * output_height + oy) * output_width + ox) * groups + g) * group_output_channels + oc] =
|
||
|
|
bias[g * group_output_channels + oc];
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
// Compute reference results.
|
||
|
|
for (size_t ky = 0; ky < kernel_height; ky++) {
|
||
|
|
const size_t iy = oy * subsampling_height + ky * dilation_height - input_padding_top;
|
||
|
|
if (iy < input_height) {
|
||
|
|
for (size_t kx = 0; kx < kernel_width; kx++) {
|
||
|
|
const size_t ix = ox * subsampling_width + kx * dilation_width - input_padding_left;
|
||
|
|
if (ix < input_width) {
|
||
|
|
for (size_t g = 0; g < groups; g++) {
|
||
|
|
for (size_t oc = 0; oc < group_output_channels; oc++) {
|
||
|
|
for (size_t ic = 0; ic < group_input_channels; ic++) {
|
||
|
|
accumulators[(((i * output_height + oy) * output_width + ox) * groups + g) * group_output_channels + oc] +=
|
||
|
|
(int32_t(input[((i * input_height + iy) * input_width + ix) * input_channel_stride +
|
||
|
|
g * group_input_channels + ic]) -
|
||
|
|
int32_t(input_zero_point)) *
|
||
|
|
int32_t(filter[(((g * group_output_channels + oc) * kernel_height + ky) * kernel_width + kx) * group_input_channels + ic]);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void compute_convolution_qs8_reference_results(
|
||
|
|
size_t batch_size,
|
||
|
|
size_t output_height,
|
||
|
|
size_t output_width,
|
||
|
|
size_t input_height,
|
||
|
|
size_t input_width,
|
||
|
|
size_t input_padding_top,
|
||
|
|
size_t input_padding_right,
|
||
|
|
size_t input_padding_bottom,
|
||
|
|
size_t input_padding_left,
|
||
|
|
size_t kernel_height,
|
||
|
|
size_t kernel_width,
|
||
|
|
size_t subsampling_height,
|
||
|
|
size_t subsampling_width,
|
||
|
|
size_t dilation_height,
|
||
|
|
size_t dilation_width,
|
||
|
|
size_t groups,
|
||
|
|
size_t group_input_channels,
|
||
|
|
size_t group_output_channels,
|
||
|
|
int8_t input_zero_point,
|
||
|
|
const std::vector<int8_t>& input,
|
||
|
|
const std::vector<int8_t>& filter,
|
||
|
|
std::vector<int32_t>& accumulators,
|
||
|
|
bool has_bias,
|
||
|
|
const std::vector<int32_t>& bias)
|
||
|
|
{
|
||
|
|
compute_convolution_qs8_reference_results(
|
||
|
|
batch_size,
|
||
|
|
output_height,
|
||
|
|
output_width,
|
||
|
|
input_height,
|
||
|
|
input_width,
|
||
|
|
input_padding_top,
|
||
|
|
input_padding_right,
|
||
|
|
input_padding_bottom,
|
||
|
|
input_padding_left,
|
||
|
|
kernel_height,
|
||
|
|
kernel_width,
|
||
|
|
subsampling_height,
|
||
|
|
subsampling_width,
|
||
|
|
dilation_height,
|
||
|
|
dilation_width,
|
||
|
|
groups,
|
||
|
|
group_input_channels,
|
||
|
|
group_output_channels,
|
||
|
|
groups * group_input_channels,
|
||
|
|
input_zero_point,
|
||
|
|
input,
|
||
|
|
filter,
|
||
|
|
accumulators,
|
||
|
|
has_bias,
|
||
|
|
bias);
|
||
|
|
}
|
||
|
|
|
||
|
|
void compute_convolution_qu8_reference_results(
|
||
|
|
size_t batch_size,
|
||
|
|
size_t output_height,
|
||
|
|
size_t output_width,
|
||
|
|
size_t input_height,
|
||
|
|
size_t input_width,
|
||
|
|
size_t input_padding_top,
|
||
|
|
size_t input_padding_right,
|
||
|
|
size_t input_padding_bottom,
|
||
|
|
size_t input_padding_left,
|
||
|
|
size_t kernel_height,
|
||
|
|
size_t kernel_width,
|
||
|
|
size_t subsampling_height,
|
||
|
|
size_t subsampling_width,
|
||
|
|
size_t dilation_height,
|
||
|
|
size_t dilation_width,
|
||
|
|
size_t groups,
|
||
|
|
size_t group_input_channels,
|
||
|
|
size_t group_output_channels,
|
||
|
|
size_t input_channel_stride,
|
||
|
|
uint8_t input_zero_point,
|
||
|
|
uint8_t kernel_zero_point,
|
||
|
|
const std::vector<uint8_t>& input,
|
||
|
|
const std::vector<uint8_t>& filter,
|
||
|
|
std::vector<int32_t>& accumulators,
|
||
|
|
bool has_bias,
|
||
|
|
const std::vector<int32_t>& bias)
|
||
|
|
{
|
||
|
|
if (!has_bias) {
|
||
|
|
std::fill(accumulators.begin(), accumulators.end(), 0);
|
||
|
|
}
|
||
|
|
|
||
|
|
for (size_t i = 0; i < batch_size; i++) {
|
||
|
|
for (size_t oy = 0; oy < output_height; oy++) {
|
||
|
|
for (size_t ox = 0; ox < output_width; ox++) {
|
||
|
|
// Initialize Bias
|
||
|
|
if (has_bias) {
|
||
|
|
for (size_t g = 0; g < groups; g++) {
|
||
|
|
for (size_t oc = 0; oc < group_output_channels; oc++) {
|
||
|
|
accumulators[(((i * output_height + oy) * output_width + ox) * groups + g) * group_output_channels + oc] =
|
||
|
|
bias[g * group_output_channels + oc];
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
// Compute reference results.
|
||
|
|
for (size_t ky = 0; ky < kernel_height; ky++) {
|
||
|
|
const size_t iy = oy * subsampling_height + ky * dilation_height - input_padding_top;
|
||
|
|
if (iy < input_height) {
|
||
|
|
for (size_t kx = 0; kx < kernel_width; kx++) {
|
||
|
|
const size_t ix = ox * subsampling_width + kx * dilation_width - input_padding_left;
|
||
|
|
if (ix < input_width) {
|
||
|
|
for (size_t g = 0; g < groups; g++) {
|
||
|
|
for (size_t oc = 0; oc < group_output_channels; oc++) {
|
||
|
|
for (size_t ic = 0; ic < group_input_channels; ic++) {
|
||
|
|
accumulators[(((i * output_height + oy) * output_width + ox) * groups + g) * group_output_channels + oc] +=
|
||
|
|
(int32_t(input[((i * input_height + iy) * input_width + ix) * input_channel_stride + g * group_input_channels + ic]) -
|
||
|
|
int32_t(input_zero_point)) *
|
||
|
|
(int32_t(filter[(((g * group_output_channels + oc) * kernel_height + ky) * kernel_width + kx) * group_input_channels + ic]) - int32_t(kernel_zero_point));
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void compute_convolution_qu8_reference_results(
|
||
|
|
size_t batch_size,
|
||
|
|
size_t output_height,
|
||
|
|
size_t output_width,
|
||
|
|
size_t input_height,
|
||
|
|
size_t input_width,
|
||
|
|
size_t input_padding_top,
|
||
|
|
size_t input_padding_right,
|
||
|
|
size_t input_padding_bottom,
|
||
|
|
size_t input_padding_left,
|
||
|
|
size_t kernel_height,
|
||
|
|
size_t kernel_width,
|
||
|
|
size_t subsampling_height,
|
||
|
|
size_t subsampling_width,
|
||
|
|
size_t dilation_height,
|
||
|
|
size_t dilation_width,
|
||
|
|
size_t groups,
|
||
|
|
size_t group_input_channels,
|
||
|
|
size_t group_output_channels,
|
||
|
|
uint8_t input_zero_point,
|
||
|
|
uint8_t kernel_zero_point,
|
||
|
|
const std::vector<uint8_t>& input,
|
||
|
|
const std::vector<uint8_t>& filter,
|
||
|
|
std::vector<int32_t>& accumulators,
|
||
|
|
bool has_bias,
|
||
|
|
const std::vector<int32_t>& bias)
|
||
|
|
{
|
||
|
|
compute_convolution_qu8_reference_results(
|
||
|
|
batch_size,
|
||
|
|
output_height,
|
||
|
|
output_width,
|
||
|
|
input_height,
|
||
|
|
input_width,
|
||
|
|
input_padding_top,
|
||
|
|
input_padding_right,
|
||
|
|
input_padding_bottom,
|
||
|
|
input_padding_left,
|
||
|
|
kernel_height,
|
||
|
|
kernel_width,
|
||
|
|
subsampling_height,
|
||
|
|
subsampling_width,
|
||
|
|
dilation_height,
|
||
|
|
dilation_width,
|
||
|
|
groups,
|
||
|
|
group_input_channels,
|
||
|
|
group_output_channels,
|
||
|
|
groups * group_input_channels,
|
||
|
|
input_zero_point,
|
||
|
|
kernel_zero_point,
|
||
|
|
input,
|
||
|
|
filter,
|
||
|
|
accumulators,
|
||
|
|
has_bias,
|
||
|
|
bias);
|
||
|
|
}
|
||
|
|
|
||
|
|
void compute_depthwise_convolution_qs8_reference_results(
|
||
|
|
size_t batch_size,
|
||
|
|
size_t output_height,
|
||
|
|
size_t output_width,
|
||
|
|
size_t input_height,
|
||
|
|
size_t input_width,
|
||
|
|
size_t input_padding_top,
|
||
|
|
size_t input_padding_right,
|
||
|
|
size_t input_padding_bottom,
|
||
|
|
size_t input_padding_left,
|
||
|
|
size_t kernel_height,
|
||
|
|
size_t kernel_width,
|
||
|
|
size_t subsampling_height,
|
||
|
|
size_t subsampling_width,
|
||
|
|
size_t dilation_height,
|
||
|
|
size_t dilation_width,
|
||
|
|
size_t input_channels,
|
||
|
|
size_t depth_multiplier,
|
||
|
|
size_t input_channel_stride,
|
||
|
|
int8_t input_zero_point,
|
||
|
|
const std::vector<int8_t>& input,
|
||
|
|
const std::vector<int8_t>& filter,
|
||
|
|
std::vector<int32_t>& accumulators,
|
||
|
|
bool has_bias,
|
||
|
|
const std::vector<int32_t>& bias)
|
||
|
|
{
|
||
|
|
if (!has_bias) {
|
||
|
|
std::fill(accumulators.begin(), accumulators.end(), 0);
|
||
|
|
}
|
||
|
|
|
||
|
|
for (size_t i = 0; i < batch_size; i++) {
|
||
|
|
for (size_t oy = 0; oy < output_height; oy++) {
|
||
|
|
for (size_t ox = 0; ox < output_width; ox++) {
|
||
|
|
// Initialize Bias
|
||
|
|
if (has_bias) {
|
||
|
|
for (size_t g = 0; g < input_channels; g++) {
|
||
|
|
for (size_t oc = 0; oc < depth_multiplier; oc++) {
|
||
|
|
accumulators[(((i * output_height + oy) * output_width + ox) * input_channels + g) * depth_multiplier + oc] =
|
||
|
|
bias[g * depth_multiplier + oc];
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
// Compute reference results.
|
||
|
|
for (size_t ky = 0; ky < kernel_height; ky++) {
|
||
|
|
const size_t iy = oy * subsampling_height + ky * dilation_height - input_padding_top;
|
||
|
|
if (iy < input_height) {
|
||
|
|
for (size_t kx = 0; kx < kernel_width; kx++) {
|
||
|
|
const size_t ix = ox * subsampling_width + kx * dilation_width - input_padding_left;
|
||
|
|
if (ix < input_width) {
|
||
|
|
for (size_t g = 0; g < input_channels; g++) {
|
||
|
|
for (size_t oc = 0; oc < depth_multiplier; oc++) {
|
||
|
|
accumulators[(((i * output_height + oy) * output_width + ox) * input_channels + g) * depth_multiplier + oc] +=
|
||
|
|
(int32_t(input[((i * input_height + iy) * input_width + ix) * input_channel_stride + g]) - int32_t(input_zero_point)) *
|
||
|
|
int32_t(filter[((ky * kernel_width + kx) * input_channels + g) * depth_multiplier + oc]);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void compute_depthwise_convolution_qs8_reference_results(
|
||
|
|
size_t batch_size,
|
||
|
|
size_t output_height,
|
||
|
|
size_t output_width,
|
||
|
|
size_t input_height,
|
||
|
|
size_t input_width,
|
||
|
|
size_t input_padding_top,
|
||
|
|
size_t input_padding_right,
|
||
|
|
size_t input_padding_bottom,
|
||
|
|
size_t input_padding_left,
|
||
|
|
size_t kernel_height,
|
||
|
|
size_t kernel_width,
|
||
|
|
size_t subsampling_height,
|
||
|
|
size_t subsampling_width,
|
||
|
|
size_t dilation_height,
|
||
|
|
size_t dilation_width,
|
||
|
|
size_t input_channels,
|
||
|
|
size_t depth_multiplier,
|
||
|
|
int8_t input_zero_point,
|
||
|
|
const std::vector<int8_t>& input,
|
||
|
|
const std::vector<int8_t>& filter,
|
||
|
|
std::vector<int32_t>& accumulators,
|
||
|
|
bool has_bias,
|
||
|
|
const std::vector<int32_t>& bias)
|
||
|
|
{
|
||
|
|
compute_depthwise_convolution_qs8_reference_results(
|
||
|
|
batch_size,
|
||
|
|
output_height,
|
||
|
|
output_width,
|
||
|
|
input_height,
|
||
|
|
input_width,
|
||
|
|
input_padding_top,
|
||
|
|
input_padding_right,
|
||
|
|
input_padding_bottom,
|
||
|
|
input_padding_left,
|
||
|
|
kernel_height,
|
||
|
|
kernel_width,
|
||
|
|
subsampling_height,
|
||
|
|
subsampling_width,
|
||
|
|
dilation_height,
|
||
|
|
dilation_width,
|
||
|
|
input_channels,
|
||
|
|
depth_multiplier,
|
||
|
|
input_channels,
|
||
|
|
input_zero_point,
|
||
|
|
input,
|
||
|
|
filter,
|
||
|
|
accumulators,
|
||
|
|
has_bias,
|
||
|
|
bias);
|
||
|
|
}
|
||
|
|
|
||
|
|
void compute_depthwise_convolution_qu8_reference_results(
|
||
|
|
size_t batch_size,
|
||
|
|
size_t output_height,
|
||
|
|
size_t output_width,
|
||
|
|
size_t input_height,
|
||
|
|
size_t input_width,
|
||
|
|
size_t input_padding_top,
|
||
|
|
size_t input_padding_right,
|
||
|
|
size_t input_padding_bottom,
|
||
|
|
size_t input_padding_left,
|
||
|
|
size_t kernel_height,
|
||
|
|
size_t kernel_width,
|
||
|
|
size_t subsampling_height,
|
||
|
|
size_t subsampling_width,
|
||
|
|
size_t dilation_height,
|
||
|
|
size_t dilation_width,
|
||
|
|
size_t input_channels,
|
||
|
|
size_t depth_multiplier,
|
||
|
|
size_t input_channel_stride,
|
||
|
|
uint8_t input_zero_point,
|
||
|
|
uint8_t kernel_zero_point,
|
||
|
|
const std::vector<uint8_t>& input,
|
||
|
|
const std::vector<uint8_t>& filter,
|
||
|
|
std::vector<int32_t>& accumulators,
|
||
|
|
bool has_bias,
|
||
|
|
const std::vector<int32_t>& bias)
|
||
|
|
{
|
||
|
|
if (!has_bias) {
|
||
|
|
std::fill(accumulators.begin(), accumulators.end(), 0);
|
||
|
|
}
|
||
|
|
|
||
|
|
for (size_t i = 0; i < batch_size; i++) {
|
||
|
|
for (size_t oy = 0; oy < output_height; oy++) {
|
||
|
|
for (size_t ox = 0; ox < output_width; ox++) {
|
||
|
|
// Initialize Bias
|
||
|
|
if (has_bias) {
|
||
|
|
for (size_t g = 0; g < input_channels; g++) {
|
||
|
|
for (size_t oc = 0; oc < depth_multiplier; oc++) {
|
||
|
|
accumulators[(((i * output_height + oy) * output_width + ox) * input_channels + g) * depth_multiplier + oc] =
|
||
|
|
bias[g * depth_multiplier + oc];
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
// Compute reference results.
|
||
|
|
for (size_t ky = 0; ky < kernel_height; ky++) {
|
||
|
|
const size_t iy = oy * subsampling_height + ky * dilation_height - input_padding_top;
|
||
|
|
if (iy < input_height) {
|
||
|
|
for (size_t kx = 0; kx < kernel_width; kx++) {
|
||
|
|
const size_t ix = ox * subsampling_width + kx * dilation_width - input_padding_left;
|
||
|
|
if (ix < input_width) {
|
||
|
|
for (size_t g = 0; g < input_channels; g++) {
|
||
|
|
for (size_t oc = 0; oc < depth_multiplier; oc++) {
|
||
|
|
accumulators[(((i * output_height + oy) * output_width + ox) * input_channels + g) * depth_multiplier + oc] +=
|
||
|
|
(int32_t(input[((i * input_height + iy) * input_width + ix) * input_channel_stride + g]) - int32_t(input_zero_point)) *
|
||
|
|
(int32_t(filter[((ky * kernel_width + kx) * input_channels + g) * depth_multiplier + oc]) - int32_t(kernel_zero_point));
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void compute_depthwise_convolution_qu8_reference_results(
|
||
|
|
size_t batch_size,
|
||
|
|
size_t output_height,
|
||
|
|
size_t output_width,
|
||
|
|
size_t input_height,
|
||
|
|
size_t input_width,
|
||
|
|
size_t input_padding_top,
|
||
|
|
size_t input_padding_right,
|
||
|
|
size_t input_padding_bottom,
|
||
|
|
size_t input_padding_left,
|
||
|
|
size_t kernel_height,
|
||
|
|
size_t kernel_width,
|
||
|
|
size_t subsampling_height,
|
||
|
|
size_t subsampling_width,
|
||
|
|
size_t dilation_height,
|
||
|
|
size_t dilation_width,
|
||
|
|
size_t input_channels,
|
||
|
|
size_t depth_multiplier,
|
||
|
|
uint8_t input_zero_point,
|
||
|
|
uint8_t kernel_zero_point,
|
||
|
|
const std::vector<uint8_t>& input,
|
||
|
|
const std::vector<uint8_t>& filter,
|
||
|
|
std::vector<int32_t>& accumulators,
|
||
|
|
bool has_bias,
|
||
|
|
const std::vector<int32_t>& bias)
|
||
|
|
{
|
||
|
|
compute_depthwise_convolution_qu8_reference_results(
|
||
|
|
batch_size,
|
||
|
|
output_height,
|
||
|
|
output_width,
|
||
|
|
input_height,
|
||
|
|
input_width,
|
||
|
|
input_padding_top,
|
||
|
|
input_padding_right,
|
||
|
|
input_padding_bottom,
|
||
|
|
input_padding_left,
|
||
|
|
kernel_height,
|
||
|
|
kernel_width,
|
||
|
|
subsampling_height,
|
||
|
|
subsampling_width,
|
||
|
|
dilation_height,
|
||
|
|
dilation_width,
|
||
|
|
input_channels,
|
||
|
|
depth_multiplier,
|
||
|
|
input_channels,
|
||
|
|
input_zero_point,
|
||
|
|
kernel_zero_point,
|
||
|
|
input,
|
||
|
|
filter,
|
||
|
|
accumulators,
|
||
|
|
has_bias,
|
||
|
|
bias);
|
||
|
|
}
|
||
|
|
}
|