1859 lines
71 KiB
C
1859 lines
71 KiB
C
|
|
// Copyright 2011 The Chromium Authors
|
||
|
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
|
// found in the LICENSE file.
|
||
|
|
|
||
|
|
#ifndef BASE_FUNCTIONAL_BIND_INTERNAL_H_
|
||
|
|
#define BASE_FUNCTIONAL_BIND_INTERNAL_H_
|
||
|
|
|
||
|
|
#include <stddef.h>
|
||
|
|
|
||
|
|
#include <functional>
|
||
|
|
#include <memory>
|
||
|
|
#include <tuple>
|
||
|
|
#include <type_traits>
|
||
|
|
#include <utility>
|
||
|
|
|
||
|
|
#include "base/allocator/partition_allocator/partition_alloc_buildflags.h"
|
||
|
|
#include "base/allocator/partition_allocator/partition_alloc_config.h"
|
||
|
|
#include "base/allocator/partition_allocator/pointers/raw_ptr.h"
|
||
|
|
#include "base/check.h"
|
||
|
|
#include "base/compiler_specific.h"
|
||
|
|
#include "base/functional/callback_internal.h"
|
||
|
|
#include "base/functional/disallow_unretained.h"
|
||
|
|
#include "base/functional/unretained_traits.h"
|
||
|
|
#include "base/memory/raw_ptr.h"
|
||
|
|
#include "base/memory/raw_ptr_asan_bound_arg_tracker.h"
|
||
|
|
#include "base/memory/raw_ptr_asan_service.h"
|
||
|
|
#include "base/memory/raw_ref.h"
|
||
|
|
#include "base/memory/raw_scoped_refptr_mismatch_checker.h"
|
||
|
|
#include "base/memory/weak_ptr.h"
|
||
|
|
#include "base/notreached.h"
|
||
|
|
#include "base/types/always_false.h"
|
||
|
|
#include "build/build_config.h"
|
||
|
|
#include "third_party/abseil-cpp/absl/functional/function_ref.h"
|
||
|
|
|
||
|
|
#if BUILDFLAG(IS_APPLE) && !HAS_FEATURE(objc_arc)
|
||
|
|
#include "base/mac/scoped_block.h"
|
||
|
|
#endif
|
||
|
|
|
||
|
|
// See base/functional/callback.h for user documentation.
|
||
|
|
//
|
||
|
|
//
|
||
|
|
// CONCEPTS:
|
||
|
|
// Functor -- A movable type representing something that should be called.
|
||
|
|
// All function pointers and Callback<> are functors even if the
|
||
|
|
// invocation syntax differs.
|
||
|
|
// RunType -- A function type (as opposed to function _pointer_ type) for
|
||
|
|
// a Callback<>::Run(). Usually just a convenience typedef.
|
||
|
|
// (Bound)Args -- A set of types that stores the arguments.
|
||
|
|
//
|
||
|
|
// Types:
|
||
|
|
// ForceVoidReturn<> -- Helper class for translating function signatures to
|
||
|
|
// equivalent forms with a "void" return type.
|
||
|
|
// FunctorTraits<> -- Type traits used to determine the correct RunType and
|
||
|
|
// invocation manner for a Functor. This is where function
|
||
|
|
// signature adapters are applied.
|
||
|
|
// StorageTraits<> -- Type traits that determine how a bound argument is
|
||
|
|
// stored in BindState.
|
||
|
|
// InvokeHelper<> -- Take a Functor + arguments and actually invokes it.
|
||
|
|
// Handle the differing syntaxes needed for WeakPtr<>
|
||
|
|
// support. This is separate from Invoker to avoid creating
|
||
|
|
// multiple version of Invoker<>.
|
||
|
|
// Invoker<> -- Unwraps the curried parameters and executes the Functor.
|
||
|
|
// BindState<> -- Stores the curried parameters, and is the main entry point
|
||
|
|
// into the Bind() system.
|
||
|
|
|
||
|
|
#if BUILDFLAG(IS_WIN)
|
||
|
|
namespace Microsoft {
|
||
|
|
namespace WRL {
|
||
|
|
template <typename>
|
||
|
|
class ComPtr;
|
||
|
|
} // namespace WRL
|
||
|
|
} // namespace Microsoft
|
||
|
|
#endif
|
||
|
|
|
||
|
|
namespace base {
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct IsWeakReceiver;
|
||
|
|
|
||
|
|
template <typename>
|
||
|
|
struct BindUnwrapTraits;
|
||
|
|
|
||
|
|
template <typename Functor, typename BoundArgsTuple, typename SFINAE = void>
|
||
|
|
struct CallbackCancellationTraits;
|
||
|
|
|
||
|
|
template <typename Signature>
|
||
|
|
class FunctionRef;
|
||
|
|
|
||
|
|
namespace unretained_traits {
|
||
|
|
|
||
|
|
// UnretainedWrapper will check and report if pointer is dangling upon
|
||
|
|
// invocation.
|
||
|
|
struct MayNotDangle {};
|
||
|
|
// UnretainedWrapper won't check if pointer is dangling upon invocation. For
|
||
|
|
// extra safety, the receiver must be of type MayBeDangling<>.
|
||
|
|
struct MayDangle {};
|
||
|
|
// UnretainedWrapper won't check if pointer is dangling upon invocation. The
|
||
|
|
// receiver doesn't have to be a raw_ptr<>. This is just a temporary state, to
|
||
|
|
// allow dangling pointers that would otherwise crash if MayNotDangle was used.
|
||
|
|
// It should be replaced ASAP with MayNotDangle (after fixing the dangling
|
||
|
|
// pointers) or with MayDangle if there is really no other way (after making
|
||
|
|
// receivers MayBeDangling<>).
|
||
|
|
struct MayDangleUntriaged {};
|
||
|
|
|
||
|
|
} // namespace unretained_traits
|
||
|
|
|
||
|
|
namespace internal {
|
||
|
|
|
||
|
|
template <typename Functor, typename SFINAE = void>
|
||
|
|
struct FunctorTraits;
|
||
|
|
|
||
|
|
template <typename T,
|
||
|
|
typename UnretainedTrait,
|
||
|
|
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
|
||
|
|
class UnretainedWrapper {
|
||
|
|
// Note that if PtrTraits already includes MayDangle, DanglingRawPtrType
|
||
|
|
// will be identical to `raw_ptr<T, PtrTraits>`.
|
||
|
|
using DanglingRawPtrType = MayBeDangling<T, PtrTraits>;
|
||
|
|
|
||
|
|
public:
|
||
|
|
// We want the getter type to match the receiver parameter that it is passed
|
||
|
|
// into, to minimize `raw_ptr<T>` <-> `T*` conversions. We also would like to
|
||
|
|
// match `StorageType`, but sometimes we can't have both, as shown in
|
||
|
|
// https://docs.google.com/document/d/1dLM34aKqbNBfRdOYxxV_T-zQU4J5wjmXwIBJZr7JvZM/edit
|
||
|
|
// When we can't have both, prefer the former, mostly because
|
||
|
|
// `GetPtrType`=`raw_ptr<T>` would break if e.g. UnretainedWrapper() is
|
||
|
|
// constructed using `char*`, but the receiver is of type `std::string&`.
|
||
|
|
// This is enforced by static_asserts in base::internal::AssertConstructible.
|
||
|
|
using GetPtrType = std::conditional_t<
|
||
|
|
raw_ptr_traits::IsSupportedType<T>::value &&
|
||
|
|
std::is_same_v<UnretainedTrait, unretained_traits::MayDangle>,
|
||
|
|
DanglingRawPtrType,
|
||
|
|
T*>;
|
||
|
|
|
||
|
|
static_assert(TypeSupportsUnretainedV<T>,
|
||
|
|
"Callback cannot capture an unprotected C++ pointer since this "
|
||
|
|
"Type is annotated with DISALLOW_UNRETAINED(). Please see "
|
||
|
|
"base/functional/disallow_unretained.h for alternatives.");
|
||
|
|
|
||
|
|
// Raw pointer makes sense only if there are no PtrTraits. If there are,
|
||
|
|
// it means that a `raw_ptr` is being passed, so use the ctors below instead.
|
||
|
|
template <RawPtrTraits PTraits = PtrTraits,
|
||
|
|
typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>>
|
||
|
|
explicit UnretainedWrapper(T* o) : ptr_(o) {}
|
||
|
|
|
||
|
|
// Trick to only instantiate these constructors if they are used. Otherwise,
|
||
|
|
// instantiating UnretainedWrapper with a T that is not supported by
|
||
|
|
// raw_ptr would trigger raw_ptr<T>'s static_assert.
|
||
|
|
template <typename U = T>
|
||
|
|
explicit UnretainedWrapper(const raw_ptr<U, PtrTraits>& o) : ptr_(o) {}
|
||
|
|
template <typename U = T>
|
||
|
|
explicit UnretainedWrapper(raw_ptr<U, PtrTraits>&& o) : ptr_(std::move(o)) {}
|
||
|
|
|
||
|
|
GetPtrType get() const { return GetInternal(ptr_); }
|
||
|
|
|
||
|
|
private:
|
||
|
|
// `ptr_` is either a `raw_ptr` or a regular C++ pointer.
|
||
|
|
template <typename U>
|
||
|
|
static GetPtrType GetInternal(U* ptr) {
|
||
|
|
static_assert(std::is_same_v<T, U>);
|
||
|
|
return ptr;
|
||
|
|
}
|
||
|
|
template <typename U, RawPtrTraits Traits>
|
||
|
|
static GetPtrType GetInternal(const raw_ptr<U, Traits>& ptr) {
|
||
|
|
static_assert(std::is_same_v<T, U>);
|
||
|
|
if constexpr (std::is_same_v<UnretainedTrait,
|
||
|
|
unretained_traits::MayNotDangle>) {
|
||
|
|
ptr.ReportIfDangling();
|
||
|
|
}
|
||
|
|
return ptr;
|
||
|
|
}
|
||
|
|
|
||
|
|
// `Unretained()` arguments often dangle by design (a common design pattern
|
||
|
|
// is to manage an object's lifetime inside the callback itself, using
|
||
|
|
// stateful information), so disable direct dangling pointer detection
|
||
|
|
// of `ptr_`.
|
||
|
|
//
|
||
|
|
// If the callback is invoked, dangling pointer detection will be triggered
|
||
|
|
// before invoking the bound functor (unless stated otherwise, see
|
||
|
|
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
|
||
|
|
// pointer value via `get()` above.
|
||
|
|
using StorageType =
|
||
|
|
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
|
||
|
|
DanglingRawPtrType,
|
||
|
|
T*>;
|
||
|
|
// Avoid converting between different `raw_ptr` types when calling `get()`.
|
||
|
|
// It is allowable to convert `raw_ptr<T>` -> `T*`, but not in the other
|
||
|
|
// direction. See the comment by `GetPtrType` describing for more details.
|
||
|
|
static_assert(std::is_pointer_v<GetPtrType> ||
|
||
|
|
std::is_same_v<GetPtrType, StorageType>);
|
||
|
|
StorageType ptr_;
|
||
|
|
};
|
||
|
|
|
||
|
|
// Storage type for std::reference_wrapper so `BindState` can internally store
|
||
|
|
// unprotected references using raw_ref.
|
||
|
|
//
|
||
|
|
// std::reference_wrapper<T> and T& do not work, since the reference lifetime is
|
||
|
|
// not safely protected by MiraclePtr.
|
||
|
|
//
|
||
|
|
// UnretainedWrapper<T> and raw_ptr<T> do not work, since BindUnwrapTraits would
|
||
|
|
// try to pass by T* rather than T&.
|
||
|
|
template <typename T,
|
||
|
|
typename UnretainedTrait,
|
||
|
|
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
|
||
|
|
class UnretainedRefWrapper {
|
||
|
|
public:
|
||
|
|
static_assert(
|
||
|
|
TypeSupportsUnretainedV<T>,
|
||
|
|
"Callback cannot capture an unprotected C++ reference since this "
|
||
|
|
"type is annotated with DISALLOW_UNRETAINED(). Please see "
|
||
|
|
"base/functional/disallow_unretained.h for alternatives.");
|
||
|
|
|
||
|
|
// Raw reference makes sense only if there are no PtrTraits. If there are,
|
||
|
|
// it means that a `raw_ref` is being passed, so use the ctors below instead.
|
||
|
|
template <RawPtrTraits PTraits = PtrTraits,
|
||
|
|
typename = std::enable_if_t<PTraits == RawPtrTraits::kEmpty>>
|
||
|
|
explicit UnretainedRefWrapper(T& o) : ref_(o) {}
|
||
|
|
|
||
|
|
// Trick to only instantiate these constructors if they are used. Otherwise,
|
||
|
|
// instantiating UnretainedWrapper with a T that is not supported by
|
||
|
|
// raw_ref would trigger raw_ref<T>'s static_assert.
|
||
|
|
template <typename U = T>
|
||
|
|
explicit UnretainedRefWrapper(const raw_ref<U, PtrTraits>& o) : ref_(o) {}
|
||
|
|
template <typename U = T>
|
||
|
|
explicit UnretainedRefWrapper(raw_ref<U, PtrTraits>&& o)
|
||
|
|
: ref_(std::move(o)) {}
|
||
|
|
|
||
|
|
T& get() const { return GetInternal(ref_); }
|
||
|
|
|
||
|
|
private:
|
||
|
|
// `ref_` is either a `raw_ref` or a regular C++ reference.
|
||
|
|
template <typename U>
|
||
|
|
static T& GetInternal(U& ref) {
|
||
|
|
static_assert(std::is_same_v<T, U>);
|
||
|
|
return ref;
|
||
|
|
}
|
||
|
|
template <typename U, RawPtrTraits Traits>
|
||
|
|
static T& GetInternal(const raw_ref<U, Traits>& ref) {
|
||
|
|
static_assert(std::is_same_v<T, U>);
|
||
|
|
// The ultimate goal is to crash when a callback is invoked with a
|
||
|
|
// dangling pointer. This is checked here. For now, it is configured to
|
||
|
|
// either crash, DumpWithoutCrashing or be ignored. This depends on the
|
||
|
|
// PartitionAllocUnretainedDanglingPtr feature.
|
||
|
|
if constexpr (std::is_same_v<UnretainedTrait,
|
||
|
|
unretained_traits::MayNotDangle>) {
|
||
|
|
ref.ReportIfDangling();
|
||
|
|
}
|
||
|
|
// We can't use operator* here, we need to use raw_ptr's GetForExtraction
|
||
|
|
// instead of GetForDereference. If we did use GetForDereference then we'd
|
||
|
|
// crash in ASAN builds on calling a bound callback with a dangling
|
||
|
|
// reference parameter even if that parameter is not used. This could hide
|
||
|
|
// a later unprotected issue that would be reached in release builds.
|
||
|
|
return ref.get();
|
||
|
|
}
|
||
|
|
|
||
|
|
// `Unretained()` arguments often dangle by design (a common design pattern
|
||
|
|
// is to manage an object's lifetime inside the callback itself, using
|
||
|
|
// stateful information), so disable direct dangling pointer detection
|
||
|
|
// of `ref_`.
|
||
|
|
//
|
||
|
|
// If the callback is invoked, dangling pointer detection will be triggered
|
||
|
|
// before invoking the bound functor (unless stated otherwise, see
|
||
|
|
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
|
||
|
|
// pointer value via `get()` above.
|
||
|
|
using StorageType =
|
||
|
|
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
|
||
|
|
raw_ref<T, DisableDanglingPtrDetection>,
|
||
|
|
T&>;
|
||
|
|
|
||
|
|
StorageType ref_;
|
||
|
|
};
|
||
|
|
|
||
|
|
// The class is used to wrap `UnretainedRefWrapper` when the latter is used as
|
||
|
|
// a method receiver (a reference on `this` argument). This is needed because
|
||
|
|
// the internal callback mechanism expects the receiver to have the type
|
||
|
|
// `MyClass*` and to have `operator*`.
|
||
|
|
// This is used as storage.
|
||
|
|
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
|
||
|
|
class UnretainedRefWrapperReceiver {
|
||
|
|
public:
|
||
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
||
|
|
UnretainedRefWrapperReceiver(
|
||
|
|
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>&& o)
|
||
|
|
: obj_(std::move(o)) {}
|
||
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
||
|
|
T& operator*() const { return obj_.get(); }
|
||
|
|
|
||
|
|
private:
|
||
|
|
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits> obj_;
|
||
|
|
};
|
||
|
|
|
||
|
|
// MethodReceiverStorageType converts the current receiver type to its stored
|
||
|
|
// type. For instance, it converts pointers to `scoped_refptr`, and wraps
|
||
|
|
// `UnretainedRefWrapper` to make it compliant with the internal callback
|
||
|
|
// invocation mechanism.
|
||
|
|
template <typename T>
|
||
|
|
struct MethodReceiverStorageType {
|
||
|
|
using Type =
|
||
|
|
std::conditional_t<IsPointerV<T>, scoped_refptr<RemovePointerT<T>>, T>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
|
||
|
|
struct MethodReceiverStorageType<
|
||
|
|
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
|
||
|
|
// We can't use UnretainedRefWrapper as a receiver directly (see
|
||
|
|
// UnretainedRefWrapperReceiver for why).
|
||
|
|
using Type = UnretainedRefWrapperReceiver<T, UnretainedTrait, PtrTraits>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
class RetainedRefWrapper {
|
||
|
|
public:
|
||
|
|
explicit RetainedRefWrapper(T* o) : ptr_(o) {}
|
||
|
|
explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
|
||
|
|
T* get() const { return ptr_.get(); }
|
||
|
|
|
||
|
|
private:
|
||
|
|
scoped_refptr<T> ptr_;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct IgnoreResultHelper {
|
||
|
|
explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
|
||
|
|
explicit operator bool() const { return !!functor_; }
|
||
|
|
|
||
|
|
T functor_;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T, typename Deleter = std::default_delete<T>>
|
||
|
|
class OwnedWrapper {
|
||
|
|
public:
|
||
|
|
explicit OwnedWrapper(T* o) : ptr_(o) {}
|
||
|
|
explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr)
|
||
|
|
: ptr_(std::move(ptr)) {}
|
||
|
|
T* get() const { return ptr_.get(); }
|
||
|
|
|
||
|
|
private:
|
||
|
|
std::unique_ptr<T, Deleter> ptr_;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
class OwnedRefWrapper {
|
||
|
|
public:
|
||
|
|
explicit OwnedRefWrapper(const T& t) : t_(t) {}
|
||
|
|
explicit OwnedRefWrapper(T&& t) : t_(std::move(t)) {}
|
||
|
|
T& get() const { return t_; }
|
||
|
|
|
||
|
|
private:
|
||
|
|
mutable T t_;
|
||
|
|
};
|
||
|
|
|
||
|
|
// PassedWrapper is a copyable adapter for a scoper that ignores const.
|
||
|
|
//
|
||
|
|
// It is needed to get around the fact that Bind() takes a const reference to
|
||
|
|
// all its arguments. Because Bind() takes a const reference to avoid
|
||
|
|
// unnecessary copies, it is incompatible with movable-but-not-copyable
|
||
|
|
// types; doing a destructive "move" of the type into Bind() would violate
|
||
|
|
// the const correctness.
|
||
|
|
//
|
||
|
|
// This conundrum cannot be solved without either C++11 rvalue references or
|
||
|
|
// a O(2^n) blowup of Bind() templates to handle each combination of regular
|
||
|
|
// types and movable-but-not-copyable types. Thus we introduce a wrapper type
|
||
|
|
// that is copyable to transmit the correct type information down into
|
||
|
|
// BindState<>. Ignoring const in this type makes sense because it is only
|
||
|
|
// created when we are explicitly trying to do a destructive move.
|
||
|
|
//
|
||
|
|
// Two notes:
|
||
|
|
// 1) PassedWrapper supports any type that has a move constructor, however
|
||
|
|
// the type will need to be specifically allowed in order for it to be
|
||
|
|
// bound to a Callback. We guard this explicitly at the call of Passed()
|
||
|
|
// to make for clear errors. Things not given to Passed() will be forwarded
|
||
|
|
// and stored by value which will not work for general move-only types.
|
||
|
|
// 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
|
||
|
|
// scoper to a Callback and allow the Callback to execute once.
|
||
|
|
template <typename T>
|
||
|
|
class PassedWrapper {
|
||
|
|
public:
|
||
|
|
explicit PassedWrapper(T&& scoper) : scoper_(std::move(scoper)) {}
|
||
|
|
PassedWrapper(PassedWrapper&& other)
|
||
|
|
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
|
||
|
|
T Take() const {
|
||
|
|
CHECK(is_valid_);
|
||
|
|
is_valid_ = false;
|
||
|
|
return std::move(scoper_);
|
||
|
|
}
|
||
|
|
|
||
|
|
private:
|
||
|
|
mutable bool is_valid_ = true;
|
||
|
|
mutable T scoper_;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
using Unwrapper = BindUnwrapTraits<std::decay_t<T>>;
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
decltype(auto) Unwrap(T&& o) {
|
||
|
|
return Unwrapper<T>::Unwrap(std::forward<T>(o));
|
||
|
|
}
|
||
|
|
|
||
|
|
// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
|
||
|
|
// method. It is used internally by Bind() to select the correct
|
||
|
|
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
|
||
|
|
// the target object is invalidated.
|
||
|
|
//
|
||
|
|
// The first argument should be the type of the object that will be received by
|
||
|
|
// the method.
|
||
|
|
template <bool is_method, typename... Args>
|
||
|
|
struct IsWeakMethod : std::false_type {};
|
||
|
|
|
||
|
|
template <typename T, typename... Args>
|
||
|
|
struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};
|
||
|
|
|
||
|
|
// Packs a list of types to hold them in a single type.
|
||
|
|
template <typename... Types>
|
||
|
|
struct TypeList {};
|
||
|
|
|
||
|
|
// Used for DropTypeListItem implementation.
|
||
|
|
template <size_t n, typename List>
|
||
|
|
struct DropTypeListItemImpl;
|
||
|
|
|
||
|
|
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
|
||
|
|
template <size_t n, typename T, typename... List>
|
||
|
|
struct DropTypeListItemImpl<n, TypeList<T, List...>>
|
||
|
|
: DropTypeListItemImpl<n - 1, TypeList<List...>> {};
|
||
|
|
|
||
|
|
template <typename T, typename... List>
|
||
|
|
struct DropTypeListItemImpl<0, TypeList<T, List...>> {
|
||
|
|
using Type = TypeList<T, List...>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <>
|
||
|
|
struct DropTypeListItemImpl<0, TypeList<>> {
|
||
|
|
using Type = TypeList<>;
|
||
|
|
};
|
||
|
|
|
||
|
|
// A type-level function that drops |n| list item from given TypeList.
|
||
|
|
template <size_t n, typename List>
|
||
|
|
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
|
||
|
|
|
||
|
|
// Used for TakeTypeListItem implementation.
|
||
|
|
template <size_t n, typename List, typename... Accum>
|
||
|
|
struct TakeTypeListItemImpl;
|
||
|
|
|
||
|
|
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
|
||
|
|
template <size_t n, typename T, typename... List, typename... Accum>
|
||
|
|
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
|
||
|
|
: TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
|
||
|
|
|
||
|
|
template <typename T, typename... List, typename... Accum>
|
||
|
|
struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
|
||
|
|
using Type = TypeList<Accum...>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename... Accum>
|
||
|
|
struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
|
||
|
|
using Type = TypeList<Accum...>;
|
||
|
|
};
|
||
|
|
|
||
|
|
// A type-level function that takes first |n| list item from given TypeList.
|
||
|
|
// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
|
||
|
|
// TypeList<A, B, C>.
|
||
|
|
template <size_t n, typename List>
|
||
|
|
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
|
||
|
|
|
||
|
|
// Used for ConcatTypeLists implementation.
|
||
|
|
template <typename List1, typename List2>
|
||
|
|
struct ConcatTypeListsImpl;
|
||
|
|
|
||
|
|
template <typename... Types1, typename... Types2>
|
||
|
|
struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
|
||
|
|
using Type = TypeList<Types1..., Types2...>;
|
||
|
|
};
|
||
|
|
|
||
|
|
// A type-level function that concats two TypeLists.
|
||
|
|
template <typename List1, typename List2>
|
||
|
|
using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
|
||
|
|
|
||
|
|
// Used for MakeFunctionType implementation.
|
||
|
|
template <typename R, typename ArgList>
|
||
|
|
struct MakeFunctionTypeImpl;
|
||
|
|
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
|
||
|
|
// MSVC 2013 doesn't support Type Alias of function types.
|
||
|
|
// Revisit this after we update it to newer version.
|
||
|
|
typedef R Type(Args...);
|
||
|
|
};
|
||
|
|
|
||
|
|
// A type-level function that constructs a function type that has |R| as its
|
||
|
|
// return type and has TypeLists items as its arguments.
|
||
|
|
template <typename R, typename ArgList>
|
||
|
|
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
|
||
|
|
|
||
|
|
// Used for ExtractArgs and ExtractReturnType.
|
||
|
|
template <typename Signature>
|
||
|
|
struct ExtractArgsImpl;
|
||
|
|
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct ExtractArgsImpl<R(Args...)> {
|
||
|
|
using ReturnType = R;
|
||
|
|
using ArgsList = TypeList<Args...>;
|
||
|
|
};
|
||
|
|
|
||
|
|
// A type-level function that extracts function arguments into a TypeList.
|
||
|
|
// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
|
||
|
|
template <typename Signature>
|
||
|
|
using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
|
||
|
|
|
||
|
|
// A type-level function that extracts the return type of a function.
|
||
|
|
// E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
|
||
|
|
template <typename Signature>
|
||
|
|
using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
|
||
|
|
|
||
|
|
template <typename Callable,
|
||
|
|
typename Signature = decltype(&Callable::operator())>
|
||
|
|
struct ExtractCallableRunTypeImpl;
|
||
|
|
|
||
|
|
template <typename Callable, typename R, typename... Args>
|
||
|
|
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...)> {
|
||
|
|
using Type = R(Args...);
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename Callable, typename R, typename... Args>
|
||
|
|
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) const> {
|
||
|
|
using Type = R(Args...);
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename Callable, typename R, typename... Args>
|
||
|
|
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) noexcept> {
|
||
|
|
using Type = R(Args...);
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename Callable, typename R, typename... Args>
|
||
|
|
struct ExtractCallableRunTypeImpl<Callable,
|
||
|
|
R (Callable::*)(Args...) const noexcept> {
|
||
|
|
using Type = R(Args...);
|
||
|
|
};
|
||
|
|
|
||
|
|
// Evaluated to RunType of the given callable type.
|
||
|
|
// Example:
|
||
|
|
// auto f = [](int, char*) { return 0.1; };
|
||
|
|
// ExtractCallableRunType<decltype(f)>
|
||
|
|
// is evaluated to
|
||
|
|
// double(int, char*);
|
||
|
|
template <typename Callable>
|
||
|
|
using ExtractCallableRunType =
|
||
|
|
typename ExtractCallableRunTypeImpl<Callable>::Type;
|
||
|
|
|
||
|
|
// IsCallableObject<Functor> is std::true_type if |Functor| has operator().
|
||
|
|
// Otherwise, it's std::false_type.
|
||
|
|
// Example:
|
||
|
|
// IsCallableObject<void(*)()>::value is false.
|
||
|
|
//
|
||
|
|
// struct Foo {};
|
||
|
|
// IsCallableObject<void(Foo::*)()>::value is false.
|
||
|
|
//
|
||
|
|
// int i = 0;
|
||
|
|
// auto f = [i]() {};
|
||
|
|
// IsCallableObject<decltype(f)>::value is false.
|
||
|
|
template <typename Functor, typename SFINAE = void>
|
||
|
|
struct IsCallableObject : std::false_type {};
|
||
|
|
|
||
|
|
template <typename Callable>
|
||
|
|
struct IsCallableObject<Callable, std::void_t<decltype(&Callable::operator())>>
|
||
|
|
: std::true_type {};
|
||
|
|
|
||
|
|
// HasRefCountedTypeAsRawPtr inherits from true_type when any of the |Args| is a
|
||
|
|
// raw pointer to a RefCounted type.
|
||
|
|
template <typename... Ts>
|
||
|
|
struct HasRefCountedTypeAsRawPtr
|
||
|
|
: std::disjunction<NeedsScopedRefptrButGetsRawPtr<Ts>...> {};
|
||
|
|
|
||
|
|
// ForceVoidReturn<>
|
||
|
|
//
|
||
|
|
// Set of templates that support forcing the function return type to void.
|
||
|
|
template <typename Sig>
|
||
|
|
struct ForceVoidReturn;
|
||
|
|
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct ForceVoidReturn<R(Args...)> {
|
||
|
|
using RunType = void(Args...);
|
||
|
|
};
|
||
|
|
|
||
|
|
// FunctorTraits<>
|
||
|
|
//
|
||
|
|
// See description at top of file.
|
||
|
|
template <typename Functor, typename SFINAE>
|
||
|
|
struct FunctorTraits;
|
||
|
|
|
||
|
|
// For callable types.
|
||
|
|
// This specialization handles lambdas (captureless and capturing) and functors
|
||
|
|
// with a call operator. Capturing lambdas and stateful functors are explicitly
|
||
|
|
// disallowed by BindImpl().
|
||
|
|
//
|
||
|
|
// Example:
|
||
|
|
//
|
||
|
|
// // Captureless lambdas are allowed.
|
||
|
|
// []() {return 42;};
|
||
|
|
//
|
||
|
|
// // Capturing lambdas are *not* allowed.
|
||
|
|
// int x;
|
||
|
|
// [x]() {return x;};
|
||
|
|
//
|
||
|
|
// // Any empty class with operator() is allowed.
|
||
|
|
// struct Foo {
|
||
|
|
// void operator()() const {}
|
||
|
|
// // No non-static member variable and no virtual functions.
|
||
|
|
// };
|
||
|
|
template <typename Functor>
|
||
|
|
struct FunctorTraits<Functor,
|
||
|
|
std::enable_if_t<IsCallableObject<Functor>::value>> {
|
||
|
|
using RunType = ExtractCallableRunType<Functor>;
|
||
|
|
static constexpr bool is_method = false;
|
||
|
|
static constexpr bool is_nullable = false;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = std::is_empty_v<Functor>;
|
||
|
|
|
||
|
|
template <typename RunFunctor, typename... RunArgs>
|
||
|
|
static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
|
||
|
|
RunArgs&&... args) {
|
||
|
|
return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// For functions.
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct FunctorTraits<R (*)(Args...)> {
|
||
|
|
using RunType = R(Args...);
|
||
|
|
static constexpr bool is_method = false;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename Function, typename... RunArgs>
|
||
|
|
static R Invoke(Function&& function, RunArgs&&... args) {
|
||
|
|
return std::forward<Function>(function)(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
|
||
|
|
|
||
|
|
// For functions.
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct FunctorTraits<R(__stdcall*)(Args...)> {
|
||
|
|
using RunType = R(Args...);
|
||
|
|
static constexpr bool is_method = false;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename... RunArgs>
|
||
|
|
static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) {
|
||
|
|
return function(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// For functions.
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct FunctorTraits<R(__fastcall*)(Args...)> {
|
||
|
|
using RunType = R(Args...);
|
||
|
|
static constexpr bool is_method = false;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename... RunArgs>
|
||
|
|
static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) {
|
||
|
|
return function(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
|
||
|
|
|
||
|
|
#if BUILDFLAG(IS_APPLE)
|
||
|
|
|
||
|
|
// Support for Objective-C blocks. There are two implementation depending
|
||
|
|
// on whether Automated Reference Counting (ARC) is enabled. When ARC is
|
||
|
|
// enabled, then the block itself can be bound as the compiler will ensure
|
||
|
|
// its lifetime will be correctly managed. Otherwise, require the block to
|
||
|
|
// be wrapped in a base::mac::ScopedBlock (via base::RetainBlock) that will
|
||
|
|
// correctly manage the block lifetime.
|
||
|
|
//
|
||
|
|
// The two implementation ensure that the One Definition Rule (ODR) is not
|
||
|
|
// broken (it is not possible to write a template base::RetainBlock that would
|
||
|
|
// work correctly both with ARC enabled and disabled).
|
||
|
|
|
||
|
|
#if HAS_FEATURE(objc_arc)
|
||
|
|
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct FunctorTraits<R (^)(Args...)> {
|
||
|
|
using RunType = R(Args...);
|
||
|
|
static constexpr bool is_method = false;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename BlockType, typename... RunArgs>
|
||
|
|
static R Invoke(BlockType&& block, RunArgs&&... args) {
|
||
|
|
// According to LLVM documentation (§ 6.3), "local variables of automatic
|
||
|
|
// storage duration do not have precise lifetime." Use objc_precise_lifetime
|
||
|
|
// to ensure that the Objective-C block is not deallocated until it has
|
||
|
|
// finished executing even if the Callback<> is destroyed during the block
|
||
|
|
// execution.
|
||
|
|
// https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics
|
||
|
|
__attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block;
|
||
|
|
return scoped_block(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
#else // HAS_FEATURE(objc_arc)
|
||
|
|
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct FunctorTraits<base::mac::ScopedBlock<R (^)(Args...)>> {
|
||
|
|
using RunType = R(Args...);
|
||
|
|
static constexpr bool is_method = false;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename BlockType, typename... RunArgs>
|
||
|
|
static R Invoke(BlockType&& block, RunArgs&&... args) {
|
||
|
|
// Copy the block to ensure that the Objective-C block is not deallocated
|
||
|
|
// until it has finished executing even if the Callback<> is destroyed
|
||
|
|
// during the block execution.
|
||
|
|
base::mac::ScopedBlock<R (^)(Args...)> scoped_block(block);
|
||
|
|
return scoped_block.get()(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
#endif // HAS_FEATURE(objc_arc)
|
||
|
|
#endif // BUILDFLAG(IS_APPLE)
|
||
|
|
|
||
|
|
// For methods.
|
||
|
|
template <typename R, typename Receiver, typename... Args>
|
||
|
|
struct FunctorTraits<R (Receiver::*)(Args...)> {
|
||
|
|
using RunType = R(Receiver*, Args...);
|
||
|
|
static constexpr bool is_method = true;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename Method, typename ReceiverPtr, typename... RunArgs>
|
||
|
|
static R Invoke(Method method,
|
||
|
|
ReceiverPtr&& receiver_ptr,
|
||
|
|
RunArgs&&... args) {
|
||
|
|
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// For const methods.
|
||
|
|
template <typename R, typename Receiver, typename... Args>
|
||
|
|
struct FunctorTraits<R (Receiver::*)(Args...) const> {
|
||
|
|
using RunType = R(const Receiver*, Args...);
|
||
|
|
static constexpr bool is_method = true;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename Method, typename ReceiverPtr, typename... RunArgs>
|
||
|
|
static R Invoke(Method method,
|
||
|
|
ReceiverPtr&& receiver_ptr,
|
||
|
|
RunArgs&&... args) {
|
||
|
|
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
|
||
|
|
|
||
|
|
// For __stdcall methods.
|
||
|
|
template <typename R, typename Receiver, typename... Args>
|
||
|
|
struct FunctorTraits<R (__stdcall Receiver::*)(Args...)> {
|
||
|
|
using RunType = R(Receiver*, Args...);
|
||
|
|
static constexpr bool is_method = true;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename Method, typename ReceiverPtr, typename... RunArgs>
|
||
|
|
static R Invoke(Method method,
|
||
|
|
ReceiverPtr&& receiver_ptr,
|
||
|
|
RunArgs&&... args) {
|
||
|
|
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// For __stdcall const methods.
|
||
|
|
template <typename R, typename Receiver, typename... Args>
|
||
|
|
struct FunctorTraits<R (__stdcall Receiver::*)(Args...) const> {
|
||
|
|
using RunType = R(const Receiver*, Args...);
|
||
|
|
static constexpr bool is_method = true;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = false;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename Method, typename ReceiverPtr, typename... RunArgs>
|
||
|
|
static R Invoke(Method method,
|
||
|
|
ReceiverPtr&& receiver_ptr,
|
||
|
|
RunArgs&&... args) {
|
||
|
|
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
|
||
|
|
|
||
|
|
#ifdef __cpp_noexcept_function_type
|
||
|
|
// noexcept makes a distinct function type in C++17.
|
||
|
|
// I.e. `void(*)()` and `void(*)() noexcept` are same in pre-C++17, and
|
||
|
|
// different in C++17.
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct FunctorTraits<R (*)(Args...) noexcept> : FunctorTraits<R (*)(Args...)> {
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename R, typename Receiver, typename... Args>
|
||
|
|
struct FunctorTraits<R (Receiver::*)(Args...) noexcept>
|
||
|
|
: FunctorTraits<R (Receiver::*)(Args...)> {};
|
||
|
|
|
||
|
|
template <typename R, typename Receiver, typename... Args>
|
||
|
|
struct FunctorTraits<R (Receiver::*)(Args...) const noexcept>
|
||
|
|
: FunctorTraits<R (Receiver::*)(Args...) const> {};
|
||
|
|
#endif
|
||
|
|
|
||
|
|
// For IgnoreResults.
|
||
|
|
template <typename T>
|
||
|
|
struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> {
|
||
|
|
using RunType =
|
||
|
|
typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType;
|
||
|
|
|
||
|
|
template <typename IgnoreResultType, typename... RunArgs>
|
||
|
|
static void Invoke(IgnoreResultType&& ignore_result_helper,
|
||
|
|
RunArgs&&... args) {
|
||
|
|
FunctorTraits<T>::Invoke(
|
||
|
|
std::forward<IgnoreResultType>(ignore_result_helper).functor_,
|
||
|
|
std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// For OnceCallbacks.
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct FunctorTraits<OnceCallback<R(Args...)>> {
|
||
|
|
using RunType = R(Args...);
|
||
|
|
static constexpr bool is_method = false;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = true;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename CallbackType, typename... RunArgs>
|
||
|
|
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
|
||
|
|
DCHECK(!callback.is_null());
|
||
|
|
return std::forward<CallbackType>(callback).Run(
|
||
|
|
std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// For RepeatingCallbacks.
|
||
|
|
template <typename R, typename... Args>
|
||
|
|
struct FunctorTraits<RepeatingCallback<R(Args...)>> {
|
||
|
|
using RunType = R(Args...);
|
||
|
|
static constexpr bool is_method = false;
|
||
|
|
static constexpr bool is_nullable = true;
|
||
|
|
static constexpr bool is_callback = true;
|
||
|
|
static constexpr bool is_stateless = true;
|
||
|
|
|
||
|
|
template <typename CallbackType, typename... RunArgs>
|
||
|
|
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
|
||
|
|
DCHECK(!callback.is_null());
|
||
|
|
return std::forward<CallbackType>(callback).Run(
|
||
|
|
std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename Functor>
|
||
|
|
using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>;
|
||
|
|
|
||
|
|
// StorageTraits<>
|
||
|
|
//
|
||
|
|
// See description at top of file.
|
||
|
|
template <typename T>
|
||
|
|
struct StorageTraits {
|
||
|
|
using Type = T;
|
||
|
|
};
|
||
|
|
|
||
|
|
// For T*, store as UnretainedWrapper<T> for safety, as it internally uses
|
||
|
|
// raw_ptr<T> (when possible).
|
||
|
|
template <typename T>
|
||
|
|
struct StorageTraits<T*> {
|
||
|
|
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle>;
|
||
|
|
};
|
||
|
|
|
||
|
|
// For raw_ptr<T>, store as UnretainedWrapper<T> for safety. This may seem
|
||
|
|
// contradictory, but this ensures guaranteed protection for the pointer even
|
||
|
|
// during execution of callbacks with parameters of type raw_ptr<T>.
|
||
|
|
template <typename T, RawPtrTraits PtrTraits>
|
||
|
|
struct StorageTraits<raw_ptr<T, PtrTraits>> {
|
||
|
|
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle, PtrTraits>;
|
||
|
|
};
|
||
|
|
|
||
|
|
// Unwrap std::reference_wrapper and store it in a custom wrapper so that
|
||
|
|
// references are also protected with raw_ptr<T>.
|
||
|
|
template <typename T>
|
||
|
|
struct StorageTraits<std::reference_wrapper<T>> {
|
||
|
|
using Type = UnretainedRefWrapper<T, unretained_traits::MayNotDangle>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
using MakeStorageType = typename StorageTraits<std::decay_t<T>>::Type;
|
||
|
|
|
||
|
|
// InvokeHelper<>
|
||
|
|
//
|
||
|
|
// There are 2 logical InvokeHelper<> specializations: normal, WeakCalls.
|
||
|
|
//
|
||
|
|
// The normal type just calls the underlying runnable.
|
||
|
|
//
|
||
|
|
// WeakCalls need special syntax that is applied to the first argument to check
|
||
|
|
// if they should no-op themselves.
|
||
|
|
template <bool is_weak_call, typename ReturnType, size_t... indices>
|
||
|
|
struct InvokeHelper;
|
||
|
|
|
||
|
|
template <typename ReturnType, size_t... indices>
|
||
|
|
struct InvokeHelper<false, ReturnType, indices...> {
|
||
|
|
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
|
||
|
|
static inline ReturnType MakeItSo(Functor&& functor,
|
||
|
|
BoundArgsTuple&& bound,
|
||
|
|
RunArgs&&... args) {
|
||
|
|
using Traits = MakeFunctorTraits<Functor>;
|
||
|
|
return Traits::Invoke(
|
||
|
|
std::forward<Functor>(functor),
|
||
|
|
Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))...,
|
||
|
|
std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename ReturnType, size_t index_target, size_t... index_tail>
|
||
|
|
struct InvokeHelper<true, ReturnType, index_target, index_tail...> {
|
||
|
|
// WeakCalls are only supported for functions with a void return type.
|
||
|
|
// Otherwise, the function result would be undefined if the WeakPtr<>
|
||
|
|
// is invalidated.
|
||
|
|
static_assert(std::is_void_v<ReturnType>,
|
||
|
|
"weak_ptrs can only bind to methods without return values");
|
||
|
|
|
||
|
|
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
|
||
|
|
static inline void MakeItSo(Functor&& functor,
|
||
|
|
BoundArgsTuple&& bound,
|
||
|
|
RunArgs&&... args) {
|
||
|
|
static_assert(index_target == 0);
|
||
|
|
// Note the validity of the weak pointer should be tested _after_ it is
|
||
|
|
// unwrapped, otherwise it creates a race for weak pointer implementations
|
||
|
|
// that allow cross-thread usage and perform `Lock()` in Unwrap() traits.
|
||
|
|
const auto& target = Unwrap(std::get<0>(bound));
|
||
|
|
if (!target) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
using Traits = MakeFunctorTraits<Functor>;
|
||
|
|
Traits::Invoke(
|
||
|
|
std::forward<Functor>(functor), target,
|
||
|
|
Unwrap(std::get<index_tail>(std::forward<BoundArgsTuple>(bound)))...,
|
||
|
|
std::forward<RunArgs>(args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// Invoker<>
|
||
|
|
//
|
||
|
|
// See description at the top of the file.
|
||
|
|
template <typename StorageType, typename UnboundRunType>
|
||
|
|
struct Invoker;
|
||
|
|
|
||
|
|
template <typename StorageType, typename R, typename... UnboundArgs>
|
||
|
|
struct Invoker<StorageType, R(UnboundArgs...)> {
|
||
|
|
static R RunOnce(BindStateBase* base,
|
||
|
|
PassingType<UnboundArgs>... unbound_args) {
|
||
|
|
// Local references to make debugger stepping easier. If in a debugger,
|
||
|
|
// you really want to warp ahead and step through the
|
||
|
|
// InvokeHelper<>::MakeItSo() call below.
|
||
|
|
StorageType* storage = static_cast<StorageType*>(base);
|
||
|
|
static constexpr size_t num_bound_args =
|
||
|
|
std::tuple_size_v<decltype(storage->bound_args_)>;
|
||
|
|
return RunImpl(std::move(storage->functor_),
|
||
|
|
std::move(storage->bound_args_),
|
||
|
|
std::make_index_sequence<num_bound_args>(),
|
||
|
|
std::forward<UnboundArgs>(unbound_args)...);
|
||
|
|
}
|
||
|
|
|
||
|
|
static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) {
|
||
|
|
// Local references to make debugger stepping easier. If in a debugger,
|
||
|
|
// you really want to warp ahead and step through the
|
||
|
|
// InvokeHelper<>::MakeItSo() call below.
|
||
|
|
const StorageType* storage = static_cast<StorageType*>(base);
|
||
|
|
static constexpr size_t num_bound_args =
|
||
|
|
std::tuple_size_v<decltype(storage->bound_args_)>;
|
||
|
|
return RunImpl(storage->functor_, storage->bound_args_,
|
||
|
|
std::make_index_sequence<num_bound_args>(),
|
||
|
|
std::forward<UnboundArgs>(unbound_args)...);
|
||
|
|
}
|
||
|
|
|
||
|
|
private:
|
||
|
|
template <typename Functor, typename BoundArgsTuple, size_t... indices>
|
||
|
|
static inline R RunImpl(Functor&& functor,
|
||
|
|
BoundArgsTuple&& bound,
|
||
|
|
std::index_sequence<indices...> seq,
|
||
|
|
UnboundArgs&&... unbound_args) {
|
||
|
|
static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method;
|
||
|
|
|
||
|
|
using DecayedArgsTuple = std::decay_t<BoundArgsTuple>;
|
||
|
|
|
||
|
|
#if BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
|
||
|
|
RawPtrAsanBoundArgTracker raw_ptr_asan_bound_arg_tracker;
|
||
|
|
raw_ptr_asan_bound_arg_tracker.AddArgs(
|
||
|
|
std::get<indices>(std::forward<BoundArgsTuple>(bound))...,
|
||
|
|
std::forward<UnboundArgs>(unbound_args)...);
|
||
|
|
#endif // BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
|
||
|
|
|
||
|
|
static constexpr bool is_weak_call =
|
||
|
|
IsWeakMethod<is_method,
|
||
|
|
std::tuple_element_t<indices, DecayedArgsTuple>...>();
|
||
|
|
|
||
|
|
// Do not `Unwrap()` here, as that immediately triggers dangling pointer
|
||
|
|
// detection. Dangling pointer detection should only be triggered if the
|
||
|
|
// callback is not cancelled, but cancellation status is not determined
|
||
|
|
// until later inside the InvokeHelper::MakeItSo specialization for weak
|
||
|
|
// calls.
|
||
|
|
//
|
||
|
|
// Dangling pointers when invoking a cancelled callback are not considered
|
||
|
|
// a memory safety error because protecting raw pointers usage with weak
|
||
|
|
// receivers (where the weak receiver usually own the pointed objects) is a
|
||
|
|
// common and broadly used pattern in the codebase.
|
||
|
|
return InvokeHelper<is_weak_call, R, indices...>::MakeItSo(
|
||
|
|
std::forward<Functor>(functor), std::forward<BoundArgsTuple>(bound),
|
||
|
|
std::forward<UnboundArgs>(unbound_args)...);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// Extracts necessary type info from Functor and BoundArgs.
|
||
|
|
// Used to implement MakeUnboundRunType, BindOnce and BindRepeating.
|
||
|
|
template <typename Functor, typename... BoundArgs>
|
||
|
|
struct BindTypeHelper {
|
||
|
|
static constexpr size_t num_bounds = sizeof...(BoundArgs);
|
||
|
|
using FunctorTraits = MakeFunctorTraits<Functor>;
|
||
|
|
|
||
|
|
// Example:
|
||
|
|
// When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs
|
||
|
|
// is a template pack of `Foo*` and `int16_t`:
|
||
|
|
// - RunType is `double(Foo*, int, const std::string&)`,
|
||
|
|
// - ReturnType is `double`,
|
||
|
|
// - RunParamsList is `TypeList<Foo*, int, const std::string&>`,
|
||
|
|
// - BoundParamsList is `TypeList<Foo*, int>`,
|
||
|
|
// - UnboundParamsList is `TypeList<const std::string&>`,
|
||
|
|
// - BoundArgsList is `TypeList<Foo*, int16_t>`,
|
||
|
|
// - UnboundRunType is `double(const std::string&)`.
|
||
|
|
using RunType = typename FunctorTraits::RunType;
|
||
|
|
using ReturnType = ExtractReturnType<RunType>;
|
||
|
|
|
||
|
|
using RunParamsList = ExtractArgs<RunType>;
|
||
|
|
using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>;
|
||
|
|
using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>;
|
||
|
|
|
||
|
|
using BoundArgsList = TypeList<BoundArgs...>;
|
||
|
|
|
||
|
|
using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename Functor>
|
||
|
|
std::enable_if_t<FunctorTraits<Functor>::is_nullable, bool> IsNull(
|
||
|
|
const Functor& functor) {
|
||
|
|
return !functor;
|
||
|
|
}
|
||
|
|
|
||
|
|
template <typename Functor>
|
||
|
|
std::enable_if_t<!FunctorTraits<Functor>::is_nullable, bool> IsNull(
|
||
|
|
const Functor&) {
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Used by QueryCancellationTraits below.
|
||
|
|
template <typename Functor, typename BoundArgsTuple, size_t... indices>
|
||
|
|
bool QueryCancellationTraitsImpl(BindStateBase::CancellationQueryMode mode,
|
||
|
|
const Functor& functor,
|
||
|
|
const BoundArgsTuple& bound_args,
|
||
|
|
std::index_sequence<indices...>) {
|
||
|
|
switch (mode) {
|
||
|
|
case BindStateBase::IS_CANCELLED:
|
||
|
|
return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled(
|
||
|
|
functor, std::get<indices>(bound_args)...);
|
||
|
|
case BindStateBase::MAYBE_VALID:
|
||
|
|
return CallbackCancellationTraits<Functor, BoundArgsTuple>::MaybeValid(
|
||
|
|
functor, std::get<indices>(bound_args)...);
|
||
|
|
}
|
||
|
|
NOTREACHED();
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns
|
||
|
|
// true if the callback |base| represents is canceled.
|
||
|
|
template <typename BindStateType>
|
||
|
|
bool QueryCancellationTraits(const BindStateBase* base,
|
||
|
|
BindStateBase::CancellationQueryMode mode) {
|
||
|
|
const BindStateType* storage = static_cast<const BindStateType*>(base);
|
||
|
|
static constexpr size_t num_bound_args =
|
||
|
|
std::tuple_size_v<decltype(storage->bound_args_)>;
|
||
|
|
return QueryCancellationTraitsImpl(
|
||
|
|
mode, storage->functor_, storage->bound_args_,
|
||
|
|
std::make_index_sequence<num_bound_args>());
|
||
|
|
}
|
||
|
|
|
||
|
|
// The base case of BanUnconstructedRefCountedReceiver that checks nothing.
|
||
|
|
template <typename Functor, typename Receiver, typename... Unused>
|
||
|
|
std::enable_if_t<
|
||
|
|
!(MakeFunctorTraits<Functor>::is_method &&
|
||
|
|
IsPointerV<std::decay_t<Receiver>> &&
|
||
|
|
IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value)>
|
||
|
|
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {}
|
||
|
|
|
||
|
|
template <typename Functor>
|
||
|
|
void BanUnconstructedRefCountedReceiver() {}
|
||
|
|
|
||
|
|
// Asserts that Callback is not the first owner of a ref-counted receiver.
|
||
|
|
template <typename Functor, typename Receiver, typename... Unused>
|
||
|
|
std::enable_if_t<
|
||
|
|
MakeFunctorTraits<Functor>::is_method &&
|
||
|
|
IsPointerV<std::decay_t<Receiver>> &&
|
||
|
|
IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>::value>
|
||
|
|
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {
|
||
|
|
DCHECK(receiver);
|
||
|
|
|
||
|
|
// It's error prone to make the implicit first reference to ref-counted types.
|
||
|
|
// In the example below, base::BindOnce() would make the implicit first
|
||
|
|
// reference to the ref-counted Foo. If PostTask() failed or the posted task
|
||
|
|
// ran fast enough, the newly created instance could be destroyed before `oo`
|
||
|
|
// makes another reference.
|
||
|
|
// Foo::Foo() {
|
||
|
|
// base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, this));
|
||
|
|
// }
|
||
|
|
//
|
||
|
|
// scoped_refptr<Foo> oo = new Foo();
|
||
|
|
//
|
||
|
|
// Hence, base::Bind{Once,Repeating}() refuses to create the first reference
|
||
|
|
// to ref-counted objects, and DCHECK()s otherwise. As above, that typically
|
||
|
|
// happens around PostTask() in their constructor, and such objects can be
|
||
|
|
// destroyed before `new` returns if the task resolves fast enough.
|
||
|
|
//
|
||
|
|
// Instead of doing the above, please consider adding a static constructor,
|
||
|
|
// and keep the first reference alive explicitly.
|
||
|
|
// // static
|
||
|
|
// scoped_refptr<Foo> Foo::Create() {
|
||
|
|
// auto foo = base::WrapRefCounted(new Foo());
|
||
|
|
// base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, foo));
|
||
|
|
// return foo;
|
||
|
|
// }
|
||
|
|
//
|
||
|
|
// Foo::Foo() {}
|
||
|
|
//
|
||
|
|
// scoped_refptr<Foo> oo = Foo::Create();
|
||
|
|
//
|
||
|
|
DCHECK(receiver->HasAtLeastOneRef());
|
||
|
|
}
|
||
|
|
|
||
|
|
// BindState<>
|
||
|
|
//
|
||
|
|
// This stores all the state passed into Bind().
|
||
|
|
template <typename Functor, typename... BoundArgs>
|
||
|
|
struct BindState final : BindStateBase {
|
||
|
|
using IsCancellable = std::bool_constant<
|
||
|
|
CallbackCancellationTraits<Functor,
|
||
|
|
std::tuple<BoundArgs...>>::is_cancellable>;
|
||
|
|
template <typename ForwardFunctor, typename... ForwardBoundArgs>
|
||
|
|
static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func,
|
||
|
|
ForwardFunctor&& functor,
|
||
|
|
ForwardBoundArgs&&... bound_args) {
|
||
|
|
// Ban ref counted receivers that were not yet fully constructed to avoid
|
||
|
|
// a common pattern of racy situation.
|
||
|
|
BanUnconstructedRefCountedReceiver<ForwardFunctor>(bound_args...);
|
||
|
|
|
||
|
|
// IsCancellable is std::false_type if
|
||
|
|
// CallbackCancellationTraits<>::IsCancelled returns always false.
|
||
|
|
// Otherwise, it's std::true_type.
|
||
|
|
return new BindState(IsCancellable{}, invoke_func,
|
||
|
|
std::forward<ForwardFunctor>(functor),
|
||
|
|
std::forward<ForwardBoundArgs>(bound_args)...);
|
||
|
|
}
|
||
|
|
|
||
|
|
Functor functor_;
|
||
|
|
std::tuple<BoundArgs...> bound_args_;
|
||
|
|
|
||
|
|
private:
|
||
|
|
static constexpr bool is_nested_callback =
|
||
|
|
MakeFunctorTraits<Functor>::is_callback;
|
||
|
|
|
||
|
|
template <typename ForwardFunctor, typename... ForwardBoundArgs>
|
||
|
|
explicit BindState(std::true_type,
|
||
|
|
BindStateBase::InvokeFuncStorage invoke_func,
|
||
|
|
ForwardFunctor&& functor,
|
||
|
|
ForwardBoundArgs&&... bound_args)
|
||
|
|
: BindStateBase(invoke_func,
|
||
|
|
&Destroy,
|
||
|
|
&QueryCancellationTraits<BindState>),
|
||
|
|
functor_(std::forward<ForwardFunctor>(functor)),
|
||
|
|
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
|
||
|
|
// We check the validity of nested callbacks (e.g., Bind(callback, ...)) in
|
||
|
|
// release builds to avoid null pointers from ending up in posted tasks,
|
||
|
|
// causing hard-to-diagnose crashes. Ideally we'd do this for all functors
|
||
|
|
// here, but that would have a large binary size impact.
|
||
|
|
if (is_nested_callback) {
|
||
|
|
CHECK(!IsNull(functor_));
|
||
|
|
} else {
|
||
|
|
DCHECK(!IsNull(functor_));
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
template <typename ForwardFunctor, typename... ForwardBoundArgs>
|
||
|
|
explicit BindState(std::false_type,
|
||
|
|
BindStateBase::InvokeFuncStorage invoke_func,
|
||
|
|
ForwardFunctor&& functor,
|
||
|
|
ForwardBoundArgs&&... bound_args)
|
||
|
|
: BindStateBase(invoke_func, &Destroy),
|
||
|
|
functor_(std::forward<ForwardFunctor>(functor)),
|
||
|
|
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
|
||
|
|
// See above for CHECK/DCHECK rationale.
|
||
|
|
if (is_nested_callback) {
|
||
|
|
CHECK(!IsNull(functor_));
|
||
|
|
} else {
|
||
|
|
DCHECK(!IsNull(functor_));
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
~BindState() = default;
|
||
|
|
|
||
|
|
static void Destroy(const BindStateBase* self) {
|
||
|
|
delete static_cast<const BindState*>(self);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// Used to implement MakeBindStateType.
|
||
|
|
template <bool is_method, typename Functor, typename... BoundArgs>
|
||
|
|
struct MakeBindStateTypeImpl;
|
||
|
|
|
||
|
|
template <typename Functor, typename... BoundArgs>
|
||
|
|
struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> {
|
||
|
|
static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
|
||
|
|
"A parameter is a refcounted type and needs scoped_refptr.");
|
||
|
|
using Type = BindState<std::decay_t<Functor>, MakeStorageType<BoundArgs>...>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename Functor>
|
||
|
|
struct MakeBindStateTypeImpl<true, Functor> {
|
||
|
|
using Type = BindState<std::decay_t<Functor>>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename Functor, typename Receiver, typename... BoundArgs>
|
||
|
|
struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> {
|
||
|
|
private:
|
||
|
|
using DecayedReceiver = std::decay_t<Receiver>;
|
||
|
|
static_assert(!std::is_array_v<std::remove_reference_t<Receiver>>,
|
||
|
|
"First bound argument to a method cannot be an array.");
|
||
|
|
static_assert(
|
||
|
|
!IsRawRefV<DecayedReceiver>,
|
||
|
|
"Receivers may not be raw_ref<T>. If using a raw_ref<T> here is safe"
|
||
|
|
" and has no lifetime concerns, use base::Unretained() and document why"
|
||
|
|
" it's safe.");
|
||
|
|
static_assert(
|
||
|
|
!IsPointerV<DecayedReceiver> ||
|
||
|
|
IsRefCountedType<RemovePointerT<DecayedReceiver>>::value,
|
||
|
|
"Receivers may not be raw pointers. If using a raw pointer here is safe"
|
||
|
|
" and has no lifetime concerns, use base::Unretained() and document why"
|
||
|
|
" it's safe.");
|
||
|
|
|
||
|
|
static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
|
||
|
|
"A parameter is a refcounted type and needs scoped_refptr.");
|
||
|
|
|
||
|
|
using ReceiverStorageType =
|
||
|
|
typename MethodReceiverStorageType<DecayedReceiver>::Type;
|
||
|
|
|
||
|
|
public:
|
||
|
|
using Type = BindState<std::decay_t<Functor>,
|
||
|
|
ReceiverStorageType,
|
||
|
|
MakeStorageType<BoundArgs>...>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename Functor, typename... BoundArgs>
|
||
|
|
using MakeBindStateType =
|
||
|
|
typename MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method,
|
||
|
|
Functor,
|
||
|
|
BoundArgs...>::Type;
|
||
|
|
|
||
|
|
// Returns a RunType of bound functor.
|
||
|
|
// E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C).
|
||
|
|
template <typename Functor, typename... BoundArgs>
|
||
|
|
using MakeUnboundRunType =
|
||
|
|
typename BindTypeHelper<Functor, BoundArgs...>::UnboundRunType;
|
||
|
|
|
||
|
|
// The implementation of TransformToUnwrappedType below.
|
||
|
|
template <bool is_once, typename T>
|
||
|
|
struct TransformToUnwrappedTypeImpl;
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct TransformToUnwrappedTypeImpl<true, T> {
|
||
|
|
using StoredType = std::decay_t<T>;
|
||
|
|
using ForwardType = StoredType&&;
|
||
|
|
using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct TransformToUnwrappedTypeImpl<false, T> {
|
||
|
|
using StoredType = std::decay_t<T>;
|
||
|
|
using ForwardType = const StoredType&;
|
||
|
|
using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
|
||
|
|
};
|
||
|
|
|
||
|
|
// Transform |T| into `Unwrapped` type, which is passed to the target function.
|
||
|
|
// Example:
|
||
|
|
// In is_once == true case,
|
||
|
|
// `int&&` -> `int&&`,
|
||
|
|
// `const int&` -> `int&&`,
|
||
|
|
// `OwnedWrapper<int>&` -> `int*&&`.
|
||
|
|
// In is_once == false case,
|
||
|
|
// `int&&` -> `const int&`,
|
||
|
|
// `const int&` -> `const int&`,
|
||
|
|
// `OwnedWrapper<int>&` -> `int* const &`.
|
||
|
|
template <bool is_once, typename T>
|
||
|
|
using TransformToUnwrappedType =
|
||
|
|
typename TransformToUnwrappedTypeImpl<is_once, T>::Unwrapped;
|
||
|
|
|
||
|
|
// Transforms |Args| into `Unwrapped` types, and packs them into a TypeList.
|
||
|
|
// If |is_method| is true, tries to dereference the first argument to support
|
||
|
|
// smart pointers.
|
||
|
|
template <bool is_once, bool is_method, typename... Args>
|
||
|
|
struct MakeUnwrappedTypeListImpl {
|
||
|
|
using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>;
|
||
|
|
};
|
||
|
|
|
||
|
|
// Performs special handling for this pointers.
|
||
|
|
// Example:
|
||
|
|
// int* -> int*,
|
||
|
|
// std::unique_ptr<int> -> int*.
|
||
|
|
template <bool is_once, typename Receiver, typename... Args>
|
||
|
|
struct MakeUnwrappedTypeListImpl<is_once, true, Receiver, Args...> {
|
||
|
|
using ReceiverStorageType =
|
||
|
|
typename MethodReceiverStorageType<std::decay_t<Receiver>>::Type;
|
||
|
|
using UnwrappedReceiver =
|
||
|
|
TransformToUnwrappedType<is_once, ReceiverStorageType>;
|
||
|
|
using Type = TypeList<decltype(&*std::declval<UnwrappedReceiver>()),
|
||
|
|
TransformToUnwrappedType<is_once, Args>...>;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <bool is_once, bool is_method, typename... Args>
|
||
|
|
using MakeUnwrappedTypeList =
|
||
|
|
typename MakeUnwrappedTypeListImpl<is_once, is_method, Args...>::Type;
|
||
|
|
|
||
|
|
// IsOnceCallback<T> is a std::true_type if |T| is a OnceCallback.
|
||
|
|
template <typename T>
|
||
|
|
struct IsOnceCallback : std::false_type {};
|
||
|
|
|
||
|
|
template <typename Signature>
|
||
|
|
struct IsOnceCallback<OnceCallback<Signature>> : std::true_type {};
|
||
|
|
|
||
|
|
// IsUnretainedMayDangle is true if StorageType is of type
|
||
|
|
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>.
|
||
|
|
// Note that it is false for unretained_traits::MayDangleUntriaged.
|
||
|
|
template <typename StorageType>
|
||
|
|
inline constexpr bool IsUnretainedMayDangle = false;
|
||
|
|
template <typename T, RawPtrTraits PtrTraits>
|
||
|
|
inline constexpr bool IsUnretainedMayDangle<
|
||
|
|
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>> = true;
|
||
|
|
|
||
|
|
// UnretainedAndRawPtrHaveCompatibleTraits is true if StorageType is of type
|
||
|
|
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits1>` and
|
||
|
|
// FunctionParamType is of type `raw_ptr<T, PtrTraits2>`, and the former's
|
||
|
|
// ::GetPtrType is the same type as the latter.
|
||
|
|
template <typename StorageType, typename FunctionParamType>
|
||
|
|
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits = false;
|
||
|
|
template <typename T,
|
||
|
|
RawPtrTraits PtrTraitsInUnretained,
|
||
|
|
RawPtrTraits PtrTraitsInReceiver>
|
||
|
|
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits<
|
||
|
|
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraitsInUnretained>,
|
||
|
|
raw_ptr<T, PtrTraitsInReceiver>> =
|
||
|
|
std::is_same_v<
|
||
|
|
typename UnretainedWrapper<T,
|
||
|
|
unretained_traits::MayDangle,
|
||
|
|
PtrTraitsInUnretained>::GetPtrType,
|
||
|
|
raw_ptr<T, PtrTraitsInReceiver>>;
|
||
|
|
|
||
|
|
// Helpers to make error messages slightly more readable.
|
||
|
|
template <int i>
|
||
|
|
struct BindArgument {
|
||
|
|
template <typename ForwardingType>
|
||
|
|
struct ForwardedAs {
|
||
|
|
template <typename FunctorParamType>
|
||
|
|
struct ToParamWithType {
|
||
|
|
static constexpr bool kNotARawPtr = !IsRawPtrV<FunctorParamType>;
|
||
|
|
|
||
|
|
static constexpr bool kCanBeForwardedToBoundFunctor =
|
||
|
|
std::is_constructible_v<FunctorParamType, ForwardingType>;
|
||
|
|
|
||
|
|
// If the bound type can't be forwarded then test if `FunctorParamType` is
|
||
|
|
// a non-const lvalue reference and a reference to the unwrapped type
|
||
|
|
// *could* have been successfully forwarded.
|
||
|
|
static constexpr bool kNonConstRefParamMustBeWrapped =
|
||
|
|
kCanBeForwardedToBoundFunctor ||
|
||
|
|
!(std::is_lvalue_reference_v<FunctorParamType> &&
|
||
|
|
!std::is_const_v<std::remove_reference_t<FunctorParamType>> &&
|
||
|
|
std::is_convertible_v<std::decay_t<ForwardingType>&,
|
||
|
|
FunctorParamType>);
|
||
|
|
|
||
|
|
// Note that this intentionally drops the const qualifier from
|
||
|
|
// `ForwardingType`, to test if it *could* have been successfully
|
||
|
|
// forwarded if `Passed()` had been used.
|
||
|
|
static constexpr bool kMoveOnlyTypeMustUseBasePassed =
|
||
|
|
kCanBeForwardedToBoundFunctor ||
|
||
|
|
!std::is_constructible_v<FunctorParamType,
|
||
|
|
std::decay_t<ForwardingType>&&>;
|
||
|
|
};
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename BoundAsType>
|
||
|
|
struct BoundAs {
|
||
|
|
template <typename StorageType>
|
||
|
|
struct StoredAs {
|
||
|
|
static constexpr bool kBindArgumentCanBeCaptured =
|
||
|
|
std::is_constructible_v<StorageType, BoundAsType>;
|
||
|
|
// Note that this intentionally drops the const qualifier from
|
||
|
|
// `BoundAsType`, to test if it *could* have been successfully bound if
|
||
|
|
// `std::move()` had been used.
|
||
|
|
static constexpr bool kMoveOnlyTypeMustUseStdMove =
|
||
|
|
kBindArgumentCanBeCaptured ||
|
||
|
|
!std::is_constructible_v<StorageType, std::decay_t<BoundAsType>&&>;
|
||
|
|
};
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename FunctionParamType>
|
||
|
|
struct ToParamWithType {
|
||
|
|
template <typename StorageType>
|
||
|
|
struct StoredAs {
|
||
|
|
template <bool is_method>
|
||
|
|
// true if we are handling `this` parameter.
|
||
|
|
static constexpr bool kParamIsThisPointer = is_method && i == 0;
|
||
|
|
// true if the current parameter is of type `raw_ptr<T>` with
|
||
|
|
// `RawPtrTraits::kMayDangle` trait (e.g. `MayBeDangling<T>`).
|
||
|
|
static constexpr bool kParamIsDanglingRawPtr =
|
||
|
|
IsRawPtrMayDangleV<FunctionParamType>;
|
||
|
|
// true if the bound parameter is of type
|
||
|
|
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`.
|
||
|
|
static constexpr bool kBoundPtrMayDangle =
|
||
|
|
IsUnretainedMayDangle<StorageType>;
|
||
|
|
// true if bound parameter of type `UnretainedWrapper` and parameter of
|
||
|
|
// type `raw_ptr` have compatible `RawPtrTraits`.
|
||
|
|
static constexpr bool kMayBeDanglingTraitsCorrectness =
|
||
|
|
UnretainedAndRawPtrHaveCompatibleTraits<StorageType,
|
||
|
|
FunctionParamType>;
|
||
|
|
// true if the receiver argument **must** be of type `MayBeDangling<T>`.
|
||
|
|
static constexpr bool kMayBeDanglingMustBeUsed =
|
||
|
|
kBoundPtrMayDangle && kParamIsDanglingRawPtr;
|
||
|
|
|
||
|
|
// true iff:
|
||
|
|
// - bound parameter is of type
|
||
|
|
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`
|
||
|
|
// - the receiving argument is of type `MayBeDangling<T>`
|
||
|
|
template <bool is_method>
|
||
|
|
static constexpr bool kMayBeDanglingPtrPassedCorrectly =
|
||
|
|
kParamIsThisPointer<is_method> ||
|
||
|
|
kBoundPtrMayDangle == kParamIsDanglingRawPtr;
|
||
|
|
|
||
|
|
// true if:
|
||
|
|
// - MayBeDangling<T> must not be used as receiver parameter.
|
||
|
|
// OR
|
||
|
|
// - MayBeDangling<T> must be used as receiver parameter and its traits
|
||
|
|
// are matching Unretained traits.
|
||
|
|
static constexpr bool kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits =
|
||
|
|
!kMayBeDanglingMustBeUsed || kMayBeDanglingTraitsCorrectness;
|
||
|
|
};
|
||
|
|
};
|
||
|
|
};
|
||
|
|
|
||
|
|
// Helper to assert that parameter |i| of type |Arg| can be bound, which means:
|
||
|
|
// - |Arg| can be retained internally as |Storage|.
|
||
|
|
// - |Arg| can be forwarded as |Unwrapped| to |Param|.
|
||
|
|
template <int i,
|
||
|
|
bool is_method,
|
||
|
|
typename Arg,
|
||
|
|
typename Storage,
|
||
|
|
typename Unwrapped,
|
||
|
|
typename Param>
|
||
|
|
struct AssertConstructible {
|
||
|
|
private:
|
||
|
|
// With `BindRepeating`, there are two decision points for how to handle a
|
||
|
|
// move-only type:
|
||
|
|
//
|
||
|
|
// 1. Whether the move-only argument should be moved into the internal
|
||
|
|
// `BindState`. Either `std::move()` or `Passed` is sufficient to trigger
|
||
|
|
// move-only semantics.
|
||
|
|
// 2. Whether or not the bound, move-only argument should be moved to the
|
||
|
|
// bound functor when invoked. When the argument is bound with `Passed`,
|
||
|
|
// invoking the callback will destructively move the bound, move-only
|
||
|
|
// argument to the bound functor. In contrast, if the argument is bound
|
||
|
|
// with `std::move()`, `RepeatingCallback` will attempt to call the bound
|
||
|
|
// functor with a constant reference to the bound, move-only argument. This
|
||
|
|
// will fail if the bound functor accepts that argument by value, since the
|
||
|
|
// argument cannot be copied. It is this latter case that this
|
||
|
|
// static_assert aims to catch.
|
||
|
|
//
|
||
|
|
// In contrast, `BindOnce()` only has one decision point. Once a move-only
|
||
|
|
// type is captured by value into the internal `BindState`, the bound,
|
||
|
|
// move-only argument will always be moved to the functor when invoked.
|
||
|
|
// Failure to use std::move will simply fail the `kMoveOnlyTypeMustUseStdMove`
|
||
|
|
// assert below instead.
|
||
|
|
//
|
||
|
|
// Note: `Passed()` is a legacy of supporting move-only types when repeating
|
||
|
|
// callbacks were the only callback type. A `RepeatingCallback` with a
|
||
|
|
// `Passed()` argument is really a `OnceCallback` and should eventually be
|
||
|
|
// migrated.
|
||
|
|
static_assert(
|
||
|
|
BindArgument<i>::template ForwardedAs<Unwrapped>::
|
||
|
|
template ToParamWithType<Param>::kMoveOnlyTypeMustUseBasePassed,
|
||
|
|
"base::BindRepeating() argument is a move-only type. Use base::Passed() "
|
||
|
|
"instead of std::move() to transfer ownership from the callback to the "
|
||
|
|
"bound functor.");
|
||
|
|
static_assert(
|
||
|
|
BindArgument<i>::template ForwardedAs<Unwrapped>::
|
||
|
|
template ToParamWithType<Param>::kNonConstRefParamMustBeWrapped,
|
||
|
|
"Bound argument for non-const reference parameter must be wrapped in "
|
||
|
|
"std::ref() or base::OwnedRef().");
|
||
|
|
static_assert(
|
||
|
|
BindArgument<i>::template ForwardedAs<Unwrapped>::
|
||
|
|
template ToParamWithType<Param>::kCanBeForwardedToBoundFunctor,
|
||
|
|
"Type mismatch between bound argument and bound functor's parameter.");
|
||
|
|
|
||
|
|
static_assert(BindArgument<i>::template BoundAs<Arg>::template StoredAs<
|
||
|
|
Storage>::kMoveOnlyTypeMustUseStdMove,
|
||
|
|
"Attempting to bind a move-only type. Use std::move() to "
|
||
|
|
"transfer ownership to the created callback.");
|
||
|
|
// In practice, this static_assert should be quite rare as the storage type
|
||
|
|
// is deduced from the arguments passed to `BindOnce()`/`BindRepeating()`.
|
||
|
|
static_assert(
|
||
|
|
BindArgument<i>::template BoundAs<Arg>::template StoredAs<
|
||
|
|
Storage>::kBindArgumentCanBeCaptured,
|
||
|
|
"Cannot capture argument: is the argument copyable or movable?");
|
||
|
|
|
||
|
|
// We forbid callbacks to use raw_ptr as a parameter. However, we allow
|
||
|
|
// MayBeDangling<T> iff the callback argument was created using
|
||
|
|
// `base::UnsafeDangling`.
|
||
|
|
static_assert(
|
||
|
|
BindArgument<i>::template ForwardedAs<
|
||
|
|
Unwrapped>::template ToParamWithType<Param>::kNotARawPtr ||
|
||
|
|
BindArgument<i>::template ToParamWithType<Param>::template StoredAs<
|
||
|
|
Storage>::kMayBeDanglingMustBeUsed,
|
||
|
|
"base::Bind() target functor has a parameter of type raw_ptr<T>. "
|
||
|
|
"raw_ptr<T> should not be used for function parameters, please use T* or "
|
||
|
|
"T& instead.");
|
||
|
|
|
||
|
|
// A bound functor must take a dangling pointer argument (e.g. bound using the
|
||
|
|
// UnsafeDangling helper) as a MayBeDangling<T>, to make it clear that the
|
||
|
|
// pointee's lifetime must be externally validated before using it. For
|
||
|
|
// methods, exempt a bound receiver (i.e. the this pointer) as it is not
|
||
|
|
// passed as a regular function argument.
|
||
|
|
static_assert(
|
||
|
|
BindArgument<i>::template ToParamWithType<Param>::template StoredAs<
|
||
|
|
Storage>::template kMayBeDanglingPtrPassedCorrectly<is_method>,
|
||
|
|
"base::UnsafeDangling() pointers must be received by functors with "
|
||
|
|
"MayBeDangling<T> as parameter.");
|
||
|
|
|
||
|
|
static_assert(
|
||
|
|
BindArgument<i>::template ToParamWithType<Param>::template StoredAs<
|
||
|
|
Storage>::kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits,
|
||
|
|
"MayBeDangling<T> parameter must receive the same RawPtrTraits as the "
|
||
|
|
"one passed to the corresponding base::UnsafeDangling() call.");
|
||
|
|
};
|
||
|
|
|
||
|
|
// Takes three same-length TypeLists, and applies AssertConstructible for each
|
||
|
|
// triples.
|
||
|
|
template <bool is_method,
|
||
|
|
typename Index,
|
||
|
|
typename Args,
|
||
|
|
typename UnwrappedTypeList,
|
||
|
|
typename ParamsList>
|
||
|
|
struct AssertBindArgsValidity;
|
||
|
|
|
||
|
|
template <bool is_method,
|
||
|
|
size_t... Ns,
|
||
|
|
typename... Args,
|
||
|
|
typename... Unwrapped,
|
||
|
|
typename... Params>
|
||
|
|
struct AssertBindArgsValidity<is_method,
|
||
|
|
std::index_sequence<Ns...>,
|
||
|
|
TypeList<Args...>,
|
||
|
|
TypeList<Unwrapped...>,
|
||
|
|
TypeList<Params...>>
|
||
|
|
: AssertConstructible<Ns,
|
||
|
|
is_method,
|
||
|
|
Args,
|
||
|
|
std::decay_t<Args>,
|
||
|
|
Unwrapped,
|
||
|
|
Params>... {
|
||
|
|
static constexpr bool ok = true;
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct AssertBindArgIsNotBasePassed : public std::true_type {};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct AssertBindArgIsNotBasePassed<PassedWrapper<T>> : public std::false_type {
|
||
|
|
};
|
||
|
|
|
||
|
|
template <template <typename> class CallbackT,
|
||
|
|
typename Functor,
|
||
|
|
typename... Args>
|
||
|
|
decltype(auto) BindImpl(Functor&& functor, Args&&... args) {
|
||
|
|
// This block checks if each |args| matches to the corresponding params of the
|
||
|
|
// target function. This check does not affect the behavior of Bind, but its
|
||
|
|
// error message should be more readable.
|
||
|
|
static constexpr bool kIsOnce = IsOnceCallback<CallbackT<void()>>::value;
|
||
|
|
using Helper = BindTypeHelper<Functor, Args...>;
|
||
|
|
using FunctorTraits = typename Helper::FunctorTraits;
|
||
|
|
using BoundArgsList = typename Helper::BoundArgsList;
|
||
|
|
using UnwrappedArgsList =
|
||
|
|
MakeUnwrappedTypeList<kIsOnce, FunctorTraits::is_method, Args&&...>;
|
||
|
|
using BoundParamsList = typename Helper::BoundParamsList;
|
||
|
|
static_assert(
|
||
|
|
MakeFunctorTraits<Functor>::is_stateless,
|
||
|
|
"Capturing lambdas and stateful lambdas are intentionally not supported. "
|
||
|
|
"Please use base::Bind{Once,Repeating} directly to bind arguments.");
|
||
|
|
static_assert(
|
||
|
|
AssertBindArgsValidity<FunctorTraits::is_method,
|
||
|
|
std::make_index_sequence<Helper::num_bounds>,
|
||
|
|
BoundArgsList, UnwrappedArgsList,
|
||
|
|
BoundParamsList>::ok,
|
||
|
|
"The bound args need to be convertible to the target params.");
|
||
|
|
|
||
|
|
using BindState = MakeBindStateType<Functor, Args...>;
|
||
|
|
using UnboundRunType = MakeUnboundRunType<Functor, Args...>;
|
||
|
|
using Invoker = Invoker<BindState, UnboundRunType>;
|
||
|
|
using CallbackType = CallbackT<UnboundRunType>;
|
||
|
|
|
||
|
|
// Store the invoke func into PolymorphicInvoke before casting it to
|
||
|
|
// InvokeFuncStorage, so that we can ensure its type matches to
|
||
|
|
// PolymorphicInvoke, to which CallbackType will cast back.
|
||
|
|
using PolymorphicInvoke = typename CallbackType::PolymorphicInvoke;
|
||
|
|
PolymorphicInvoke invoke_func;
|
||
|
|
if constexpr (kIsOnce) {
|
||
|
|
invoke_func = Invoker::RunOnce;
|
||
|
|
} else {
|
||
|
|
invoke_func = Invoker::Run;
|
||
|
|
}
|
||
|
|
|
||
|
|
using InvokeFuncStorage = BindStateBase::InvokeFuncStorage;
|
||
|
|
return CallbackType(BindState::Create(
|
||
|
|
reinterpret_cast<InvokeFuncStorage>(invoke_func),
|
||
|
|
std::forward<Functor>(functor), std::forward<Args>(args)...));
|
||
|
|
}
|
||
|
|
|
||
|
|
// Special cases for binding to a base::{Once, Repeating}Callback without extra
|
||
|
|
// bound arguments. We CHECK() the validity of callback to guard against null
|
||
|
|
// pointers accidentally ending up in posted tasks, causing hard-to-debug
|
||
|
|
// crashes.
|
||
|
|
template <template <typename> class CallbackT,
|
||
|
|
typename Signature,
|
||
|
|
std::enable_if_t<std::is_same_v<CallbackT<Signature>,
|
||
|
|
OnceCallback<Signature>>>* = nullptr>
|
||
|
|
OnceCallback<Signature> BindImpl(OnceCallback<Signature> callback) {
|
||
|
|
CHECK(callback);
|
||
|
|
return callback;
|
||
|
|
}
|
||
|
|
|
||
|
|
template <template <typename> class CallbackT,
|
||
|
|
typename Signature,
|
||
|
|
std::enable_if_t<std::is_same_v<CallbackT<Signature>,
|
||
|
|
OnceCallback<Signature>>>* = nullptr>
|
||
|
|
OnceCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) {
|
||
|
|
CHECK(callback);
|
||
|
|
return callback;
|
||
|
|
}
|
||
|
|
|
||
|
|
template <template <typename> class CallbackT,
|
||
|
|
typename Signature,
|
||
|
|
std::enable_if_t<std::is_same_v<CallbackT<Signature>,
|
||
|
|
RepeatingCallback<Signature>>>* =
|
||
|
|
nullptr>
|
||
|
|
RepeatingCallback<Signature> BindImpl(RepeatingCallback<Signature> callback) {
|
||
|
|
CHECK(callback);
|
||
|
|
return callback;
|
||
|
|
}
|
||
|
|
|
||
|
|
template <template <typename> class CallbackT, typename Signature>
|
||
|
|
auto BindImpl(absl::FunctionRef<Signature>, ...) {
|
||
|
|
static_assert(
|
||
|
|
AlwaysFalse<Signature>,
|
||
|
|
"base::Bind{Once,Repeating} require strong ownership: non-owning "
|
||
|
|
"function references may not bound as the functor due to potential "
|
||
|
|
"lifetime issues.");
|
||
|
|
return nullptr;
|
||
|
|
}
|
||
|
|
|
||
|
|
template <template <typename> class CallbackT, typename Signature>
|
||
|
|
auto BindImpl(FunctionRef<Signature>, ...) {
|
||
|
|
static_assert(
|
||
|
|
AlwaysFalse<Signature>,
|
||
|
|
"base::Bind{Once,Repeating} require strong ownership: non-owning "
|
||
|
|
"function references may not bound as the functor due to potential "
|
||
|
|
"lifetime issues.");
|
||
|
|
return nullptr;
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace internal
|
||
|
|
|
||
|
|
// An injection point to control |this| pointer behavior on a method invocation.
|
||
|
|
// If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
|
||
|
|
// method, base::Bind cancels the method invocation if the receiver is tested as
|
||
|
|
// false.
|
||
|
|
// E.g. Foo::bar() is not called:
|
||
|
|
// struct Foo : base::SupportsWeakPtr<Foo> {
|
||
|
|
// void bar() {}
|
||
|
|
// };
|
||
|
|
//
|
||
|
|
// WeakPtr<Foo> oo = nullptr;
|
||
|
|
// base::BindOnce(&Foo::bar, oo).Run();
|
||
|
|
template <typename T>
|
||
|
|
struct IsWeakReceiver : std::false_type {};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};
|
||
|
|
|
||
|
|
// An injection point to control how objects are checked for maybe validity,
|
||
|
|
// which is an optimistic thread-safe check for full validity.
|
||
|
|
template <typename>
|
||
|
|
struct MaybeValidTraits {
|
||
|
|
template <typename T>
|
||
|
|
static bool MaybeValid(const T& o) {
|
||
|
|
return o.MaybeValid();
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// An injection point to control how bound objects passed to the target
|
||
|
|
// function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right
|
||
|
|
// before the target function is invoked.
|
||
|
|
template <typename>
|
||
|
|
struct BindUnwrapTraits {
|
||
|
|
template <typename T>
|
||
|
|
static T&& Unwrap(T&& o) {
|
||
|
|
return std::forward<T>(o);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
|
||
|
|
struct BindUnwrapTraits<
|
||
|
|
internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>> {
|
||
|
|
static auto Unwrap(
|
||
|
|
const internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>& o) {
|
||
|
|
return o.get();
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
|
||
|
|
struct BindUnwrapTraits<
|
||
|
|
internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
|
||
|
|
static T& Unwrap(
|
||
|
|
const internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>& o) {
|
||
|
|
return o.get();
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> {
|
||
|
|
static T* Unwrap(const internal::RetainedRefWrapper<T>& o) { return o.get(); }
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T, typename Deleter>
|
||
|
|
struct BindUnwrapTraits<internal::OwnedWrapper<T, Deleter>> {
|
||
|
|
static T* Unwrap(const internal::OwnedWrapper<T, Deleter>& o) {
|
||
|
|
return o.get();
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct BindUnwrapTraits<internal::OwnedRefWrapper<T>> {
|
||
|
|
static T& Unwrap(const internal::OwnedRefWrapper<T>& o) { return o.get(); }
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename T>
|
||
|
|
struct BindUnwrapTraits<internal::PassedWrapper<T>> {
|
||
|
|
static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); }
|
||
|
|
};
|
||
|
|
|
||
|
|
#if BUILDFLAG(IS_WIN)
|
||
|
|
template <typename T>
|
||
|
|
struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> {
|
||
|
|
static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); }
|
||
|
|
};
|
||
|
|
#endif
|
||
|
|
|
||
|
|
// CallbackCancellationTraits allows customization of Callback's cancellation
|
||
|
|
// semantics. By default, callbacks are not cancellable. A specialization should
|
||
|
|
// set is_cancellable = true and implement an IsCancelled() that returns if the
|
||
|
|
// callback should be cancelled.
|
||
|
|
template <typename Functor, typename BoundArgsTuple, typename SFINAE>
|
||
|
|
struct CallbackCancellationTraits {
|
||
|
|
static constexpr bool is_cancellable = false;
|
||
|
|
};
|
||
|
|
|
||
|
|
// Specialization for method bound to weak pointer receiver.
|
||
|
|
template <typename Functor, typename... BoundArgs>
|
||
|
|
struct CallbackCancellationTraits<
|
||
|
|
Functor,
|
||
|
|
std::tuple<BoundArgs...>,
|
||
|
|
std::enable_if_t<
|
||
|
|
internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method,
|
||
|
|
BoundArgs...>::value>> {
|
||
|
|
static constexpr bool is_cancellable = true;
|
||
|
|
|
||
|
|
template <typename Receiver, typename... Args>
|
||
|
|
static bool IsCancelled(const Functor&,
|
||
|
|
const Receiver& receiver,
|
||
|
|
const Args&...) {
|
||
|
|
return !receiver;
|
||
|
|
}
|
||
|
|
|
||
|
|
template <typename Receiver, typename... Args>
|
||
|
|
static bool MaybeValid(const Functor&,
|
||
|
|
const Receiver& receiver,
|
||
|
|
const Args&...) {
|
||
|
|
return MaybeValidTraits<Receiver>::MaybeValid(receiver);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
// Specialization for a nested bind.
|
||
|
|
template <typename Signature, typename... BoundArgs>
|
||
|
|
struct CallbackCancellationTraits<OnceCallback<Signature>,
|
||
|
|
std::tuple<BoundArgs...>> {
|
||
|
|
static constexpr bool is_cancellable = true;
|
||
|
|
|
||
|
|
template <typename Functor>
|
||
|
|
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
|
||
|
|
return functor.IsCancelled();
|
||
|
|
}
|
||
|
|
|
||
|
|
template <typename Functor>
|
||
|
|
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
|
||
|
|
return MaybeValidTraits<Functor>::MaybeValid(functor);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
template <typename Signature, typename... BoundArgs>
|
||
|
|
struct CallbackCancellationTraits<RepeatingCallback<Signature>,
|
||
|
|
std::tuple<BoundArgs...>> {
|
||
|
|
static constexpr bool is_cancellable = true;
|
||
|
|
|
||
|
|
template <typename Functor>
|
||
|
|
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
|
||
|
|
return functor.IsCancelled();
|
||
|
|
}
|
||
|
|
|
||
|
|
template <typename Functor>
|
||
|
|
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
|
||
|
|
return MaybeValidTraits<Functor>::MaybeValid(functor);
|
||
|
|
}
|
||
|
|
};
|
||
|
|
|
||
|
|
} // namespace base
|
||
|
|
|
||
|
|
#endif // BASE_FUNCTIONAL_BIND_INTERNAL_H_
|