870 lines
31 KiB
C++
870 lines
31 KiB
C++
|
|
// Copyright 2012 The Chromium Authors
|
||
|
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
|
// found in the LICENSE file.
|
||
|
|
|
||
|
|
#include "base/message_loop/message_pump_glib.h"
|
||
|
|
|
||
|
|
#include <fcntl.h>
|
||
|
|
#include <glib.h>
|
||
|
|
#include <math.h>
|
||
|
|
|
||
|
|
#include "base/logging.h"
|
||
|
|
#include "base/memory/raw_ptr.h"
|
||
|
|
#include "base/notreached.h"
|
||
|
|
#include "base/numerics/safe_conversions.h"
|
||
|
|
#include "base/posix/eintr_wrapper.h"
|
||
|
|
#include "base/synchronization/lock.h"
|
||
|
|
#include "base/threading/platform_thread.h"
|
||
|
|
|
||
|
|
namespace base {
|
||
|
|
|
||
|
|
namespace {
|
||
|
|
|
||
|
|
// Priorities of event sources are important to let everything be processed.
|
||
|
|
// In particular, GTK event source should have the highest priority (because
|
||
|
|
// UI events come from it), then Wayland events (the ones coming from the FD
|
||
|
|
// watcher), and the lowest priority is GLib events (our base message pump).
|
||
|
|
//
|
||
|
|
// The g_source API uses ints to denote priorities, and the lower is its value,
|
||
|
|
// the higher is the priority (i.e., they are ordered backwards).
|
||
|
|
constexpr int kPriorityWork = G_PRIORITY_DEFAULT_IDLE;
|
||
|
|
constexpr int kPriorityFdWatch = G_PRIORITY_DEFAULT_IDLE - 10;
|
||
|
|
|
||
|
|
// See the explanation above.
|
||
|
|
static_assert(G_PRIORITY_DEFAULT < kPriorityFdWatch &&
|
||
|
|
kPriorityFdWatch < kPriorityWork,
|
||
|
|
"Wrong priorities are set for event sources!");
|
||
|
|
|
||
|
|
// Return a timeout suitable for the glib loop according to |next_task_time|, -1
|
||
|
|
// to block forever, 0 to return right away, or a timeout in milliseconds from
|
||
|
|
// now.
|
||
|
|
int GetTimeIntervalMilliseconds(TimeTicks next_task_time) {
|
||
|
|
if (next_task_time.is_null())
|
||
|
|
return 0;
|
||
|
|
else if (next_task_time.is_max())
|
||
|
|
return -1;
|
||
|
|
|
||
|
|
auto timeout_ms =
|
||
|
|
(next_task_time - TimeTicks::Now()).InMillisecondsRoundedUp();
|
||
|
|
|
||
|
|
return timeout_ms < 0 ? 0 : saturated_cast<int>(timeout_ms);
|
||
|
|
}
|
||
|
|
|
||
|
|
bool RunningOnMainThread() {
|
||
|
|
auto pid = getpid();
|
||
|
|
auto tid = PlatformThread::CurrentId();
|
||
|
|
return pid > 0 && tid > 0 && pid == tid;
|
||
|
|
}
|
||
|
|
|
||
|
|
// A brief refresher on GLib:
|
||
|
|
// GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
|
||
|
|
// On each iteration of the GLib pump, it calls each source's Prepare function.
|
||
|
|
// This function should return TRUE if it wants GLib to call its Dispatch, and
|
||
|
|
// FALSE otherwise. It can also set a timeout in this case for the next time
|
||
|
|
// Prepare should be called again (it may be called sooner).
|
||
|
|
// After the Prepare calls, GLib does a poll to check for events from the
|
||
|
|
// system. File descriptors can be attached to the sources. The poll may block
|
||
|
|
// if none of the Prepare calls returned TRUE. It will block indefinitely, or
|
||
|
|
// by the minimum time returned by a source in Prepare.
|
||
|
|
// After the poll, GLib calls Check for each source that returned FALSE
|
||
|
|
// from Prepare. The return value of Check has the same meaning as for Prepare,
|
||
|
|
// making Check a second chance to tell GLib we are ready for Dispatch.
|
||
|
|
// Finally, GLib calls Dispatch for each source that is ready. If Dispatch
|
||
|
|
// returns FALSE, GLib will destroy the source. Dispatch calls may be recursive
|
||
|
|
// (i.e., you can call Run from them), but Prepare and Check cannot.
|
||
|
|
// Finalize is called when the source is destroyed.
|
||
|
|
// NOTE: It is common for subsystems to want to process pending events while
|
||
|
|
// doing intensive work, for example the flash plugin. They usually use the
|
||
|
|
// following pattern (recommended by the GTK docs):
|
||
|
|
// while (gtk_events_pending()) {
|
||
|
|
// gtk_main_iteration();
|
||
|
|
// }
|
||
|
|
//
|
||
|
|
// gtk_events_pending just calls g_main_context_pending, which does the
|
||
|
|
// following:
|
||
|
|
// - Call prepare on all the sources.
|
||
|
|
// - Do the poll with a timeout of 0 (not blocking).
|
||
|
|
// - Call check on all the sources.
|
||
|
|
// - *Does not* call dispatch on the sources.
|
||
|
|
// - Return true if any of prepare() or check() returned true.
|
||
|
|
//
|
||
|
|
// gtk_main_iteration just calls g_main_context_iteration, which does the whole
|
||
|
|
// thing, respecting the timeout for the poll (and block, although it is to if
|
||
|
|
// gtk_events_pending returned true), and call dispatch.
|
||
|
|
//
|
||
|
|
// Thus it is important to only return true from prepare or check if we
|
||
|
|
// actually have events or work to do. We also need to make sure we keep
|
||
|
|
// internal state consistent so that if prepare/check return true when called
|
||
|
|
// from gtk_events_pending, they will still return true when called right
|
||
|
|
// after, from gtk_main_iteration.
|
||
|
|
//
|
||
|
|
// For the GLib pump we try to follow the Windows UI pump model:
|
||
|
|
// - Whenever we receive a wakeup event or the timer for delayed work expires,
|
||
|
|
// we run DoWork. That part will also run in the other event pumps.
|
||
|
|
// - We also run DoWork, and possibly DoIdleWork, in the main loop,
|
||
|
|
// around event handling.
|
||
|
|
//
|
||
|
|
// ---------------------------------------------------------------------------
|
||
|
|
//
|
||
|
|
// An overview on the way that we track work items:
|
||
|
|
//
|
||
|
|
// ScopedDoWorkItems are used by this pump to track native work. They are
|
||
|
|
// stored by value in |state_| and are set/cleared as the pump runs. Their
|
||
|
|
// setting and clearing is done in the functions
|
||
|
|
// {Set,Clear,EnsureSet,EnsureCleared}ScopedWorkItem. Control flow in GLib is
|
||
|
|
// quite non-obvious because chrome is not notified when a nested loop is
|
||
|
|
// entered/exited. To detect nested loops, MessagePumpGlib uses
|
||
|
|
// |state_->do_work_depth| which is incremented when DoWork is entered, and a
|
||
|
|
// GLib library function, g_main_depth(), which indicates the current number of
|
||
|
|
// Dispatch() calls on the stack. To react to them, two separate
|
||
|
|
// ScopedDoWorkItems are used (a standard one used for all native work, and a
|
||
|
|
// second one used exclusively for forcing nesting when there is a native loop
|
||
|
|
// spinning). Note that `ThreadController` flags all nesting as
|
||
|
|
// `Phase::kNested` so separating native and application work while nested isn't
|
||
|
|
// supported nor a goal.
|
||
|
|
//
|
||
|
|
// It should also be noted that a second GSource has been added to GLib,
|
||
|
|
// referred to as the "observer" source. It is used because in the case where
|
||
|
|
// native work occurs on wakeup that is higher priority than Chrome (all of
|
||
|
|
// GTK), chrome won't even get notified that the pump is awake.
|
||
|
|
//
|
||
|
|
// There are several cases to consider wrt. nesting level and order. In
|
||
|
|
// order, we have:
|
||
|
|
// A. [root] -> MessagePump::Run() -> native event -> g_main_context_iteration
|
||
|
|
// B. [root] -> MessagePump::Run() -> DoWork -> g_main_context_iteration
|
||
|
|
// C. [root] -> native -> DoWork -> MessagePump -> [...]
|
||
|
|
// The second two cases are identical for our purposes, and the last one turns
|
||
|
|
// out to be handled without any extra headache.
|
||
|
|
//
|
||
|
|
// Consider nesting case A, where native work is called from
|
||
|
|
// |g_main_context_iteration()| from the pump, and that native work spins up a
|
||
|
|
// loop. For our purposes, this is a nested loop, because control is not
|
||
|
|
// returned to the pump once one iteration of the pump is complete. In this
|
||
|
|
// case, the pump needs to enter nesting without DoWork being involved at
|
||
|
|
// all. This is accomplished using |MessagePumpGlib::NestIfRequired()|, which is
|
||
|
|
// called during the Prepare() phase of GLib. As the pump records state on entry
|
||
|
|
// and exit from GLib using |OnEntryToGlib| and |OnExitFromGlib|, we can compare
|
||
|
|
// |g_main_depth| at |HandlePrepare| with the one before we entered
|
||
|
|
// |g_main_context_iteration|. If it is higher, there is a native loop being
|
||
|
|
// spun, and |RegisterNesting| is called, forcing nesting by initializing two
|
||
|
|
// work items at once. These are destroyed after the exit from
|
||
|
|
// |g_main_context_iteration| using |OnExitFromGlib|.
|
||
|
|
//
|
||
|
|
// Then, considering nesting case B, |state_->do_work_depth| is incremented
|
||
|
|
// during any Chrome work, to allow the pump to detect re-entrancy during a
|
||
|
|
// chrome work item. This is required because `g_main_depth` is not incremented
|
||
|
|
// in any `DoWork` call not occuring during `Dispatch()` (i.e. during
|
||
|
|
// `MessagePumpGlib::Run()`). In this case, a nested loop is recorded, and the
|
||
|
|
// pump sets-and-clears scoped work items during Prepare, Check, and Dispatch. A
|
||
|
|
// work item can never be active when control flow returns to GLib (i.e. on
|
||
|
|
// return) during a nested loop, because the nested loop could exit at any
|
||
|
|
// point. This is fine because TimeKeeper is only concerned with the fact that a
|
||
|
|
// nested loop is in progress, as opposed to the various phases of the nested
|
||
|
|
// loop.
|
||
|
|
//
|
||
|
|
// Finally, consider nesting case C, where a native loop is spinning
|
||
|
|
// entirely outside of Chrome, such as inside a signal handler, the pump might
|
||
|
|
// create and destroy DoWorkItems during Prepare() and Check(), but these work
|
||
|
|
// items will always get cleared during Dispatch(), before the pump enters a
|
||
|
|
// DoWork(), leading to the pump showing non-nested native work without the
|
||
|
|
// thread controller being active, the correct situation (which won't occur
|
||
|
|
// outside of startup or shutdown). Once Dispatch() is called, the pump's
|
||
|
|
// nesting tracking works correctly, as state_->do_work_depth is increased, and
|
||
|
|
// upon re-entrancy we detect the nested loop, which is correct, as this is the
|
||
|
|
// only point at which the loop actually becomes "nested".
|
||
|
|
//
|
||
|
|
// -----------------------------------------------------------------------------
|
||
|
|
//
|
||
|
|
// As an overview of the steps taken by MessagePumpGLib to ensure that nested
|
||
|
|
// loops are detected adequately during each phase of the GLib loop:
|
||
|
|
//
|
||
|
|
// 0: Before entering GLib:
|
||
|
|
// 0.1: Record state about current state of GLib (g_main_depth()) for
|
||
|
|
// case 1.1.2.
|
||
|
|
//
|
||
|
|
// 1: Prepare.
|
||
|
|
// 1.1: Detection of nested loops
|
||
|
|
|
||
|
|
// 1.1.1: If |state_->do_work_depth| > 0, we are in nesting case B detailed
|
||
|
|
// above. A work item must be newly created during this function to
|
||
|
|
// trigger nesting, and is destroyed to ensure proper destruction order
|
||
|
|
// in the case where GLib quits after Prepare().
|
||
|
|
//
|
||
|
|
// 1.1.2: Otherwise, check if we are in nesting case A above. If yes, trigger
|
||
|
|
// nesting using ScopedDoWorkItems. The nesting will be cleared at exit
|
||
|
|
// from GLib.
|
||
|
|
//
|
||
|
|
// This check occurs only in |HandleObserverPrepare|, not in
|
||
|
|
// |HandlePrepare|.
|
||
|
|
//
|
||
|
|
// A third party is running a glib message loop. Since Chrome work is
|
||
|
|
// registered with GLib at |G_PRIORITY_DEFAULT_IDLE|, a relatively low
|
||
|
|
// priority, sources of default-or-higher priority will be Dispatch()ed
|
||
|
|
// first. Since only one source is Dispatched per loop iteration,
|
||
|
|
// |HandlePrepare| can get called several times in a row in the case that
|
||
|
|
// there are any other events in the queue. A ScopedDoWorkItem is created
|
||
|
|
// and destroyed to record this. That work item triggers nesting.
|
||
|
|
//
|
||
|
|
// 1.2: Other considerations
|
||
|
|
// 1.2.1: Sleep occurs between Prepare() and Check(). If Chrome will pass a
|
||
|
|
// nonzero poll time to GLib, the inner ScopedDoWorkItem is cleared and
|
||
|
|
// BeforeWait() is called. In nesting case A, the nesting work item will
|
||
|
|
// not be cleared. A nested loop will typically not block.
|
||
|
|
//
|
||
|
|
// Since Prepare() is called before Check() in all cases, the bulk of
|
||
|
|
// nesting detection is done in Prepare().
|
||
|
|
//
|
||
|
|
// 2: Check.
|
||
|
|
// 2.1: Detection of nested loops:
|
||
|
|
// 2.1.1: In nesting case B, |ClearScopedWorkItem()| on exit. A third party is
|
||
|
|
// running a glib message loop. It is possible that at any point the
|
||
|
|
// nested message loop will quit. In this case, we don't want to leave a
|
||
|
|
// nested DoWorkItem on the stack.
|
||
|
|
//
|
||
|
|
// 2.2: Other considerations
|
||
|
|
// 2.2.1: A ScopedDoWorkItem may be created (if it was not already present) at
|
||
|
|
// the entry to Check() to record a wakeup in the case that the pump
|
||
|
|
// slept. It is important to note that this occurs both in
|
||
|
|
// |HandleObserverCheck| and |HandleCheck| to ensure that at every point
|
||
|
|
// as the pump enters the Dispatch phase it is awake. In the case it is
|
||
|
|
// already awake, this is a very cheap operation.
|
||
|
|
//
|
||
|
|
// 3: Dispatch
|
||
|
|
// 3.1 Detection of nested loops
|
||
|
|
// 3.1.1: |state_->do_work_depth| is incremented on entry and decremented on
|
||
|
|
// exit. This is used to detect nesting case B.
|
||
|
|
//
|
||
|
|
// 3.1.2: Nested loops can be quit at any point, and so ScopedDoWorkItems can't
|
||
|
|
// be left on the stack for the same reasons as in 1.1.1/2.1.1.
|
||
|
|
//
|
||
|
|
// 3.2 Other considerations
|
||
|
|
// 3.2.1: Since DoWork creates its own work items, ScopedDoWorkItems are not
|
||
|
|
// used as this would trigger nesting in all cases.
|
||
|
|
//
|
||
|
|
// 4: Post GLib
|
||
|
|
// 4.1: Detection of nested loops
|
||
|
|
// 4.1.1: |state_->do_work_depth| is also increased during the DoWork in Run()
|
||
|
|
// as nesting in that case [calling glib from third party code] needs to
|
||
|
|
// clear all work items after return to avoid improper destruction order.
|
||
|
|
//
|
||
|
|
// 4.2: Other considerations:
|
||
|
|
// 4.2.1: DoWork uses its own work item, so no ScopedDoWorkItems are active in
|
||
|
|
// this case.
|
||
|
|
|
||
|
|
struct WorkSource : public GSource {
|
||
|
|
raw_ptr<MessagePumpGlib> pump;
|
||
|
|
};
|
||
|
|
|
||
|
|
gboolean WorkSourcePrepare(GSource* source, gint* timeout_ms) {
|
||
|
|
*timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
|
||
|
|
// We always return FALSE, so that our timeout is honored. If we were
|
||
|
|
// to return TRUE, the timeout would be considered to be 0 and the poll
|
||
|
|
// would never block. Once the poll is finished, Check will be called.
|
||
|
|
return FALSE;
|
||
|
|
}
|
||
|
|
|
||
|
|
gboolean WorkSourceCheck(GSource* source) {
|
||
|
|
// Only return TRUE if Dispatch should be called.
|
||
|
|
return static_cast<WorkSource*>(source)->pump->HandleCheck();
|
||
|
|
}
|
||
|
|
|
||
|
|
gboolean WorkSourceDispatch(GSource* source,
|
||
|
|
GSourceFunc unused_func,
|
||
|
|
gpointer unused_data) {
|
||
|
|
static_cast<WorkSource*>(source)->pump->HandleDispatch();
|
||
|
|
// Always return TRUE so our source stays registered.
|
||
|
|
return TRUE;
|
||
|
|
}
|
||
|
|
|
||
|
|
// I wish these could be const, but g_source_new wants non-const.
|
||
|
|
GSourceFuncs g_work_source_funcs = {WorkSourcePrepare, WorkSourceCheck,
|
||
|
|
WorkSourceDispatch, nullptr};
|
||
|
|
|
||
|
|
struct ObserverSource : public GSource {
|
||
|
|
raw_ptr<MessagePumpGlib> pump;
|
||
|
|
};
|
||
|
|
|
||
|
|
gboolean ObserverPrepare(GSource* gsource, gint* timeout_ms) {
|
||
|
|
auto* source = static_cast<ObserverSource*>(gsource);
|
||
|
|
source->pump->HandleObserverPrepare();
|
||
|
|
*timeout_ms = -1;
|
||
|
|
// We always want to poll.
|
||
|
|
return FALSE;
|
||
|
|
}
|
||
|
|
|
||
|
|
gboolean ObserverCheck(GSource* gsource) {
|
||
|
|
auto* source = static_cast<ObserverSource*>(gsource);
|
||
|
|
return source->pump->HandleObserverCheck();
|
||
|
|
}
|
||
|
|
|
||
|
|
GSourceFuncs g_observer_funcs = {ObserverPrepare, ObserverCheck, nullptr,
|
||
|
|
nullptr};
|
||
|
|
|
||
|
|
struct FdWatchSource : public GSource {
|
||
|
|
raw_ptr<MessagePumpGlib> pump;
|
||
|
|
raw_ptr<MessagePumpGlib::FdWatchController> controller;
|
||
|
|
};
|
||
|
|
|
||
|
|
gboolean FdWatchSourcePrepare(GSource* source, gint* timeout_ms) {
|
||
|
|
*timeout_ms = -1;
|
||
|
|
return FALSE;
|
||
|
|
}
|
||
|
|
|
||
|
|
gboolean FdWatchSourceCheck(GSource* gsource) {
|
||
|
|
auto* source = static_cast<FdWatchSource*>(gsource);
|
||
|
|
return source->pump->HandleFdWatchCheck(source->controller) ? TRUE : FALSE;
|
||
|
|
}
|
||
|
|
|
||
|
|
gboolean FdWatchSourceDispatch(GSource* gsource,
|
||
|
|
GSourceFunc unused_func,
|
||
|
|
gpointer unused_data) {
|
||
|
|
auto* source = static_cast<FdWatchSource*>(gsource);
|
||
|
|
source->pump->HandleFdWatchDispatch(source->controller);
|
||
|
|
return TRUE;
|
||
|
|
}
|
||
|
|
|
||
|
|
GSourceFuncs g_fd_watch_source_funcs = {
|
||
|
|
FdWatchSourcePrepare, FdWatchSourceCheck, FdWatchSourceDispatch, nullptr};
|
||
|
|
|
||
|
|
} // namespace
|
||
|
|
|
||
|
|
struct MessagePumpGlib::RunState {
|
||
|
|
explicit RunState(Delegate* delegate) : delegate(delegate) {
|
||
|
|
CHECK(delegate);
|
||
|
|
}
|
||
|
|
|
||
|
|
const raw_ptr<Delegate> delegate;
|
||
|
|
|
||
|
|
// Used to flag that the current Run() invocation should return ASAP.
|
||
|
|
bool should_quit = false;
|
||
|
|
|
||
|
|
// Keeps track of the number of calls to DoWork() on the stack for the current
|
||
|
|
// Run() invocation. Used to detect reentrancy from DoWork in order to make
|
||
|
|
// decisions about tracking nested work.
|
||
|
|
int do_work_depth = 0;
|
||
|
|
|
||
|
|
// Value of g_main_depth() captured before the call to
|
||
|
|
// g_main_context_iteration() in Run(). nullopt if Run() is not calling
|
||
|
|
// g_main_context_iteration(). Used to track whether the pump has forced a
|
||
|
|
// nested state due to a native pump.
|
||
|
|
absl::optional<int> g_depth_on_iteration;
|
||
|
|
|
||
|
|
// Used to keep track of the native event work items processed by the message
|
||
|
|
// pump.
|
||
|
|
Delegate::ScopedDoWorkItem scoped_do_work_item;
|
||
|
|
|
||
|
|
// Used to force the pump into a nested state when a native runloop was
|
||
|
|
// dispatched from main.
|
||
|
|
Delegate::ScopedDoWorkItem native_loop_do_work_item;
|
||
|
|
|
||
|
|
// The information of the next task available at this run-level. Stored in
|
||
|
|
// RunState because different set of tasks can be accessible at various
|
||
|
|
// run-levels (e.g. non-nestable tasks).
|
||
|
|
Delegate::NextWorkInfo next_work_info;
|
||
|
|
};
|
||
|
|
|
||
|
|
MessagePumpGlib::MessagePumpGlib()
|
||
|
|
: state_(nullptr), wakeup_gpollfd_(std::make_unique<GPollFD>()) {
|
||
|
|
DCHECK(!g_main_context_get_thread_default());
|
||
|
|
if (RunningOnMainThread()) {
|
||
|
|
context_ = g_main_context_default();
|
||
|
|
} else {
|
||
|
|
owned_context_ = std::unique_ptr<GMainContext, GMainContextDeleter>(
|
||
|
|
g_main_context_new());
|
||
|
|
context_ = owned_context_.get();
|
||
|
|
g_main_context_push_thread_default(context_);
|
||
|
|
}
|
||
|
|
|
||
|
|
// Create our wakeup pipe, which is used to flag when work was scheduled.
|
||
|
|
int fds[2];
|
||
|
|
[[maybe_unused]] int ret = pipe2(fds, O_CLOEXEC);
|
||
|
|
DCHECK_EQ(ret, 0);
|
||
|
|
|
||
|
|
wakeup_pipe_read_ = fds[0];
|
||
|
|
wakeup_pipe_write_ = fds[1];
|
||
|
|
wakeup_gpollfd_->fd = wakeup_pipe_read_;
|
||
|
|
wakeup_gpollfd_->events = G_IO_IN;
|
||
|
|
|
||
|
|
observer_source_ = std::unique_ptr<GSource, GSourceDeleter>(
|
||
|
|
g_source_new(&g_observer_funcs, sizeof(ObserverSource)));
|
||
|
|
static_cast<ObserverSource*>(observer_source_.get())->pump = this;
|
||
|
|
g_source_attach(observer_source_.get(), context_);
|
||
|
|
|
||
|
|
work_source_ = std::unique_ptr<GSource, GSourceDeleter>(
|
||
|
|
g_source_new(&g_work_source_funcs, sizeof(WorkSource)));
|
||
|
|
static_cast<WorkSource*>(work_source_.get())->pump = this;
|
||
|
|
g_source_add_poll(work_source_.get(), wakeup_gpollfd_.get());
|
||
|
|
g_source_set_priority(work_source_.get(), kPriorityWork);
|
||
|
|
// This is needed to allow Run calls inside Dispatch.
|
||
|
|
g_source_set_can_recurse(work_source_.get(), TRUE);
|
||
|
|
g_source_attach(work_source_.get(), context_);
|
||
|
|
}
|
||
|
|
|
||
|
|
MessagePumpGlib::~MessagePumpGlib() {
|
||
|
|
work_source_.reset();
|
||
|
|
close(wakeup_pipe_read_);
|
||
|
|
close(wakeup_pipe_write_);
|
||
|
|
context_ = nullptr;
|
||
|
|
owned_context_.reset();
|
||
|
|
}
|
||
|
|
|
||
|
|
MessagePumpGlib::FdWatchController::FdWatchController(const Location& location)
|
||
|
|
: FdWatchControllerInterface(location) {}
|
||
|
|
|
||
|
|
MessagePumpGlib::FdWatchController::~FdWatchController() {
|
||
|
|
if (IsInitialized()) {
|
||
|
|
CHECK(StopWatchingFileDescriptor());
|
||
|
|
}
|
||
|
|
if (was_destroyed_) {
|
||
|
|
DCHECK(!*was_destroyed_);
|
||
|
|
*was_destroyed_ = true;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
bool MessagePumpGlib::FdWatchController::StopWatchingFileDescriptor() {
|
||
|
|
if (!IsInitialized())
|
||
|
|
return false;
|
||
|
|
|
||
|
|
g_source_destroy(source_);
|
||
|
|
g_source_unref(source_.ExtractAsDangling());
|
||
|
|
watcher_ = nullptr;
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
bool MessagePumpGlib::FdWatchController::IsInitialized() const {
|
||
|
|
return !!source_;
|
||
|
|
}
|
||
|
|
|
||
|
|
bool MessagePumpGlib::FdWatchController::InitOrUpdate(int fd,
|
||
|
|
int mode,
|
||
|
|
FdWatcher* watcher) {
|
||
|
|
gushort event_flags = 0;
|
||
|
|
if (mode & WATCH_READ) {
|
||
|
|
event_flags |= G_IO_IN;
|
||
|
|
}
|
||
|
|
if (mode & WATCH_WRITE) {
|
||
|
|
event_flags |= G_IO_OUT;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (!IsInitialized()) {
|
||
|
|
poll_fd_ = std::make_unique<GPollFD>();
|
||
|
|
poll_fd_->fd = fd;
|
||
|
|
} else {
|
||
|
|
if (poll_fd_->fd != fd)
|
||
|
|
return false;
|
||
|
|
// Combine old/new event masks.
|
||
|
|
event_flags |= poll_fd_->events;
|
||
|
|
// Destroy previous source
|
||
|
|
bool stopped = StopWatchingFileDescriptor();
|
||
|
|
DCHECK(stopped);
|
||
|
|
}
|
||
|
|
poll_fd_->events = event_flags;
|
||
|
|
poll_fd_->revents = 0;
|
||
|
|
|
||
|
|
source_ = g_source_new(&g_fd_watch_source_funcs, sizeof(FdWatchSource));
|
||
|
|
DCHECK(source_);
|
||
|
|
g_source_add_poll(source_, poll_fd_.get());
|
||
|
|
g_source_set_can_recurse(source_, TRUE);
|
||
|
|
g_source_set_callback(source_, nullptr, nullptr, nullptr);
|
||
|
|
g_source_set_priority(source_, kPriorityFdWatch);
|
||
|
|
|
||
|
|
watcher_ = watcher;
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
bool MessagePumpGlib::FdWatchController::Attach(MessagePumpGlib* pump) {
|
||
|
|
DCHECK(pump);
|
||
|
|
if (!IsInitialized()) {
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
auto* source = static_cast<FdWatchSource*>(source_);
|
||
|
|
source->controller = this;
|
||
|
|
source->pump = pump;
|
||
|
|
g_source_attach(source_, pump->context_);
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::FdWatchController::NotifyCanRead() {
|
||
|
|
if (!watcher_)
|
||
|
|
return;
|
||
|
|
DCHECK(poll_fd_);
|
||
|
|
watcher_->OnFileCanReadWithoutBlocking(poll_fd_->fd);
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::FdWatchController::NotifyCanWrite() {
|
||
|
|
if (!watcher_)
|
||
|
|
return;
|
||
|
|
DCHECK(poll_fd_);
|
||
|
|
watcher_->OnFileCanWriteWithoutBlocking(poll_fd_->fd);
|
||
|
|
}
|
||
|
|
|
||
|
|
bool MessagePumpGlib::WatchFileDescriptor(int fd,
|
||
|
|
bool persistent,
|
||
|
|
int mode,
|
||
|
|
FdWatchController* controller,
|
||
|
|
FdWatcher* watcher) {
|
||
|
|
DCHECK_GE(fd, 0);
|
||
|
|
DCHECK(controller);
|
||
|
|
DCHECK(watcher);
|
||
|
|
DCHECK(mode == WATCH_READ || mode == WATCH_WRITE || mode == WATCH_READ_WRITE);
|
||
|
|
// WatchFileDescriptor should be called on the pump thread. It is not
|
||
|
|
// threadsafe, so the watcher may never be registered.
|
||
|
|
DCHECK_CALLED_ON_VALID_THREAD(watch_fd_caller_checker_);
|
||
|
|
|
||
|
|
if (!controller->InitOrUpdate(fd, mode, watcher)) {
|
||
|
|
DPLOG(ERROR) << "FdWatchController init failed (fd=" << fd << ")";
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
return controller->Attach(this);
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::HandleObserverPrepare() {
|
||
|
|
// |state_| may be null during tests.
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (state_->do_work_depth > 0) {
|
||
|
|
// Contingency 1.1.1 detailed above
|
||
|
|
SetScopedWorkItem();
|
||
|
|
ClearScopedWorkItem();
|
||
|
|
} else {
|
||
|
|
// Contingency 1.1.2 detailed above
|
||
|
|
NestIfRequired();
|
||
|
|
}
|
||
|
|
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
|
||
|
|
bool MessagePumpGlib::HandleObserverCheck() {
|
||
|
|
// |state_| may be null in tests.
|
||
|
|
if (!state_) {
|
||
|
|
return FALSE;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Make sure we record the fact that we're awake. Chrome won't get Check()ed
|
||
|
|
// if a higher priority work item returns TRUE from Check().
|
||
|
|
EnsureSetScopedWorkItem();
|
||
|
|
if (state_->do_work_depth > 0) {
|
||
|
|
// Contingency 2.1.1
|
||
|
|
ClearScopedWorkItem();
|
||
|
|
}
|
||
|
|
|
||
|
|
// The observer never needs to run anything.
|
||
|
|
return FALSE;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Return the timeout we want passed to poll.
|
||
|
|
int MessagePumpGlib::HandlePrepare() {
|
||
|
|
// |state_| may be null during tests.
|
||
|
|
if (!state_)
|
||
|
|
return 0;
|
||
|
|
|
||
|
|
const int next_wakeup_millis =
|
||
|
|
GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time);
|
||
|
|
if (next_wakeup_millis != 0) {
|
||
|
|
// When this is called, it is not possible to know for sure if a
|
||
|
|
// ScopedWorkItem is on the stack, because HandleObserverCheck may have set
|
||
|
|
// it during an iteration of the pump where a high priority native work item
|
||
|
|
// executed.
|
||
|
|
EnsureClearedScopedWorkItem();
|
||
|
|
state_->delegate->BeforeWait();
|
||
|
|
}
|
||
|
|
|
||
|
|
return next_wakeup_millis;
|
||
|
|
}
|
||
|
|
|
||
|
|
bool MessagePumpGlib::HandleCheck() {
|
||
|
|
if (!state_) // state_ may be null during tests.
|
||
|
|
return false;
|
||
|
|
|
||
|
|
// Ensure pump is awake.
|
||
|
|
EnsureSetScopedWorkItem();
|
||
|
|
|
||
|
|
if (state_->do_work_depth > 0) {
|
||
|
|
// Contingency 2.1.1
|
||
|
|
ClearScopedWorkItem();
|
||
|
|
}
|
||
|
|
|
||
|
|
// We usually have a single message on the wakeup pipe, since we are only
|
||
|
|
// signaled when the queue went from empty to non-empty, but there can be
|
||
|
|
// two messages if a task posted a task, hence we read at most two bytes.
|
||
|
|
// The glib poll will tell us whether there was data, so this read
|
||
|
|
// shouldn't block.
|
||
|
|
if (wakeup_gpollfd_->revents & G_IO_IN) {
|
||
|
|
char msg[2];
|
||
|
|
const long num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2));
|
||
|
|
if (num_bytes < 1) {
|
||
|
|
NOTREACHED() << "Error reading from the wakeup pipe.";
|
||
|
|
}
|
||
|
|
DCHECK((num_bytes == 1 && msg[0] == '!') ||
|
||
|
|
(num_bytes == 2 && msg[0] == '!' && msg[1] == '!'));
|
||
|
|
// Since we ate the message, we need to record that we have immediate work,
|
||
|
|
// because HandleCheck() may be called without HandleDispatch being called
|
||
|
|
// afterwards.
|
||
|
|
state_->next_work_info = {TimeTicks()};
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
// As described in the summary at the top : Check is a second-chance to
|
||
|
|
// Prepare, verify whether we have work ready again.
|
||
|
|
if (GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time) ==
|
||
|
|
0) {
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::HandleDispatch() {
|
||
|
|
// Contingency 3.2.1
|
||
|
|
EnsureClearedScopedWorkItem();
|
||
|
|
|
||
|
|
// Contingency 3.1.1
|
||
|
|
++state_->do_work_depth;
|
||
|
|
state_->next_work_info = state_->delegate->DoWork();
|
||
|
|
--state_->do_work_depth;
|
||
|
|
|
||
|
|
if (state_ && state_->do_work_depth > 0) {
|
||
|
|
// Contingency 3.1.2
|
||
|
|
EnsureClearedScopedWorkItem();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::Run(Delegate* delegate) {
|
||
|
|
RunState state(delegate);
|
||
|
|
|
||
|
|
RunState* previous_state = state_;
|
||
|
|
state_ = &state;
|
||
|
|
|
||
|
|
// We really only do a single task for each iteration of the loop. If we
|
||
|
|
// have done something, assume there is likely something more to do. This
|
||
|
|
// will mean that we don't block on the message pump until there was nothing
|
||
|
|
// more to do. We also set this to true to make sure not to block on the
|
||
|
|
// first iteration of the loop, so RunUntilIdle() works correctly.
|
||
|
|
bool more_work_is_plausible = true;
|
||
|
|
|
||
|
|
// We run our own loop instead of using g_main_loop_quit in one of the
|
||
|
|
// callbacks. This is so we only quit our own loops, and we don't quit
|
||
|
|
// nested loops run by others. TODO(deanm): Is this what we want?
|
||
|
|
for (;;) {
|
||
|
|
// ScopedWorkItem to account for any native work until the runloop starts
|
||
|
|
// running chrome work.
|
||
|
|
SetScopedWorkItem();
|
||
|
|
|
||
|
|
// Don't block if we think we have more work to do.
|
||
|
|
bool block = !more_work_is_plausible;
|
||
|
|
|
||
|
|
OnEntryToGlib();
|
||
|
|
more_work_is_plausible = g_main_context_iteration(context_, block);
|
||
|
|
OnExitFromGlib();
|
||
|
|
|
||
|
|
if (state_->should_quit)
|
||
|
|
break;
|
||
|
|
|
||
|
|
// Contingency 4.2.1
|
||
|
|
EnsureClearedScopedWorkItem();
|
||
|
|
|
||
|
|
// Contingency 4.1.1
|
||
|
|
++state_->do_work_depth;
|
||
|
|
state_->next_work_info = state_->delegate->DoWork();
|
||
|
|
--state_->do_work_depth;
|
||
|
|
|
||
|
|
more_work_is_plausible |= state_->next_work_info.is_immediate();
|
||
|
|
if (state_->should_quit)
|
||
|
|
break;
|
||
|
|
|
||
|
|
if (more_work_is_plausible)
|
||
|
|
continue;
|
||
|
|
|
||
|
|
more_work_is_plausible = state_->delegate->DoIdleWork();
|
||
|
|
if (state_->should_quit)
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
|
||
|
|
state_ = previous_state;
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::Quit() {
|
||
|
|
if (state_) {
|
||
|
|
state_->should_quit = true;
|
||
|
|
} else {
|
||
|
|
NOTREACHED() << "Quit called outside Run!";
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::ScheduleWork() {
|
||
|
|
// This can be called on any thread, so we don't want to touch any state
|
||
|
|
// variables as we would then need locks all over. This ensures that if
|
||
|
|
// we are sleeping in a poll that we will wake up.
|
||
|
|
char msg = '!';
|
||
|
|
if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
|
||
|
|
NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::ScheduleDelayedWork(
|
||
|
|
const Delegate::NextWorkInfo& next_work_info) {
|
||
|
|
// We need to wake up the loop in case the poll timeout needs to be
|
||
|
|
// adjusted. This will cause us to try to do work, but that's OK.
|
||
|
|
ScheduleWork();
|
||
|
|
}
|
||
|
|
|
||
|
|
bool MessagePumpGlib::HandleFdWatchCheck(FdWatchController* controller) {
|
||
|
|
DCHECK(controller);
|
||
|
|
gushort flags = controller->poll_fd_->revents;
|
||
|
|
return (flags & G_IO_IN) || (flags & G_IO_OUT);
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::HandleFdWatchDispatch(FdWatchController* controller) {
|
||
|
|
DCHECK(controller);
|
||
|
|
DCHECK(controller->poll_fd_);
|
||
|
|
gushort flags = controller->poll_fd_->revents;
|
||
|
|
if ((flags & G_IO_IN) && (flags & G_IO_OUT)) {
|
||
|
|
// Both callbacks will be called. It is necessary to check that
|
||
|
|
// |controller| is not destroyed.
|
||
|
|
bool controller_was_destroyed = false;
|
||
|
|
controller->was_destroyed_ = &controller_was_destroyed;
|
||
|
|
controller->NotifyCanWrite();
|
||
|
|
if (!controller_was_destroyed)
|
||
|
|
controller->NotifyCanRead();
|
||
|
|
if (!controller_was_destroyed)
|
||
|
|
controller->was_destroyed_ = nullptr;
|
||
|
|
} else if (flags & G_IO_IN) {
|
||
|
|
controller->NotifyCanRead();
|
||
|
|
} else if (flags & G_IO_OUT) {
|
||
|
|
controller->NotifyCanWrite();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
bool MessagePumpGlib::ShouldQuit() const {
|
||
|
|
CHECK(state_);
|
||
|
|
return state_->should_quit;
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::SetScopedWorkItem() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
// If there exists a ScopedDoWorkItem in the current RunState, it cannot be
|
||
|
|
// overwritten.
|
||
|
|
CHECK(state_->scoped_do_work_item.IsNull());
|
||
|
|
|
||
|
|
// In the case that we're more than two work items deep, don't bother tracking
|
||
|
|
// individual native events anymore. Note that this won't cause out-of-order
|
||
|
|
// end work items, because the work item is cleared before entering the second
|
||
|
|
// DoWork().
|
||
|
|
if (state_->do_work_depth < 2) {
|
||
|
|
state_->scoped_do_work_item = state_->delegate->BeginWorkItem();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::ClearScopedWorkItem() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
|
||
|
|
CHECK(!state_->scoped_do_work_item.IsNull());
|
||
|
|
// See identical check in SetScopedWorkItem
|
||
|
|
if (state_->do_work_depth < 2) {
|
||
|
|
state_->scoped_do_work_item = Delegate::ScopedDoWorkItem();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::EnsureSetScopedWorkItem() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
if (state_->scoped_do_work_item.IsNull()) {
|
||
|
|
SetScopedWorkItem();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::EnsureClearedScopedWorkItem() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
if (!state_->scoped_do_work_item.IsNull()) {
|
||
|
|
ClearScopedWorkItem();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::RegisterNested() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
CHECK(state_->native_loop_do_work_item.IsNull());
|
||
|
|
|
||
|
|
// Transfer `scoped_do_work_item` to `native_do_work_item`, and so the
|
||
|
|
// ephemeral `scoped_do_work_item` will be coming in and out of existence on
|
||
|
|
// top of `native_do_work_item`, whose state hasn't been deleted.
|
||
|
|
|
||
|
|
if (state_->scoped_do_work_item.IsNull()) {
|
||
|
|
state_->native_loop_do_work_item = state_->delegate->BeginWorkItem();
|
||
|
|
} else {
|
||
|
|
// This clears state_->scoped_do_work_item.
|
||
|
|
state_->native_loop_do_work_item = std::move(state_->scoped_do_work_item);
|
||
|
|
}
|
||
|
|
SetScopedWorkItem();
|
||
|
|
ClearScopedWorkItem();
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::UnregisterNested() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
CHECK(!state_->native_loop_do_work_item.IsNull());
|
||
|
|
|
||
|
|
EnsureClearedScopedWorkItem();
|
||
|
|
// Nesting exits here.
|
||
|
|
state_->native_loop_do_work_item = Delegate::ScopedDoWorkItem();
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::NestIfRequired() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
if (state_->native_loop_do_work_item.IsNull() &&
|
||
|
|
state_->g_depth_on_iteration.has_value() &&
|
||
|
|
g_main_depth() != state_->g_depth_on_iteration.value()) {
|
||
|
|
RegisterNested();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::UnnestIfRequired() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
if (!state_->native_loop_do_work_item.IsNull()) {
|
||
|
|
UnregisterNested();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::OnEntryToGlib() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
CHECK(!state_->g_depth_on_iteration.has_value());
|
||
|
|
state_->g_depth_on_iteration.emplace(g_main_depth());
|
||
|
|
}
|
||
|
|
|
||
|
|
void MessagePumpGlib::OnExitFromGlib() {
|
||
|
|
// |state_| can be null during tests
|
||
|
|
if (!state_) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
state_->g_depth_on_iteration.reset();
|
||
|
|
UnnestIfRequired();
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace base
|