496 lines
21 KiB
C
496 lines
21 KiB
C
|
|
/*
|
||
|
|
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
|
||
|
|
*
|
||
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
||
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
||
|
|
* was not distributed with this source code in the LICENSE file, you can
|
||
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
||
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
||
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
||
|
|
*/
|
||
|
|
#include <immintrin.h>
|
||
|
|
|
||
|
|
#include "config/av1_rtcd.h"
|
||
|
|
|
||
|
|
#include "av1/common/cfl.h"
|
||
|
|
|
||
|
|
#include "av1/common/x86/cfl_simd.h"
|
||
|
|
|
||
|
|
#define CFL_GET_SUBSAMPLE_FUNCTION_AVX2(sub, bd) \
|
||
|
|
CFL_SUBSAMPLE(avx2, sub, bd, 32, 32) \
|
||
|
|
CFL_SUBSAMPLE(avx2, sub, bd, 32, 16) \
|
||
|
|
CFL_SUBSAMPLE(avx2, sub, bd, 32, 8) \
|
||
|
|
cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_avx2( \
|
||
|
|
TX_SIZE tx_size) { \
|
||
|
|
static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \
|
||
|
|
cfl_subsample_##bd##_##sub##_4x4_ssse3, /* 4x4 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_8x8_ssse3, /* 8x8 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_16x16_ssse3, /* 16x16 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_32x32_avx2, /* 32x32 */ \
|
||
|
|
NULL, /* 64x64 (invalid CFL size) */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_4x8_ssse3, /* 4x8 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_8x4_ssse3, /* 8x4 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_8x16_ssse3, /* 8x16 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_16x8_ssse3, /* 16x8 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_16x32_ssse3, /* 16x32 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_32x16_avx2, /* 32x16 */ \
|
||
|
|
NULL, /* 32x64 (invalid CFL size) */ \
|
||
|
|
NULL, /* 64x32 (invalid CFL size) */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_4x16_ssse3, /* 4x16 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_16x4_ssse3, /* 16x4 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_8x32_ssse3, /* 8x32 */ \
|
||
|
|
cfl_subsample_##bd##_##sub##_32x8_avx2, /* 32x8 */ \
|
||
|
|
NULL, /* 16x64 (invalid CFL size) */ \
|
||
|
|
NULL, /* 64x16 (invalid CFL size) */ \
|
||
|
|
}; \
|
||
|
|
return subfn_##sub[tx_size]; \
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
|
||
|
|
* precise version of a box filter 4:2:0 pixel subsampling in Q3.
|
||
|
|
*
|
||
|
|
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
|
||
|
|
* active area is specified using width and height.
|
||
|
|
*
|
||
|
|
* Note: We don't need to worry about going over the active area, as long as we
|
||
|
|
* stay inside the CfL prediction buffer.
|
||
|
|
*
|
||
|
|
* Note: For 4:2:0 luma subsampling, the width will never be greater than 16.
|
||
|
|
*/
|
||
|
|
static void cfl_luma_subsampling_420_lbd_avx2(const uint8_t *input,
|
||
|
|
int input_stride,
|
||
|
|
uint16_t *pred_buf_q3, int width,
|
||
|
|
int height) {
|
||
|
|
(void)width; // Forever 32
|
||
|
|
const __m256i twos = _mm256_set1_epi8(2); // Thirty two twos
|
||
|
|
const int luma_stride = input_stride << 1;
|
||
|
|
__m256i *row = (__m256i *)pred_buf_q3;
|
||
|
|
const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256;
|
||
|
|
do {
|
||
|
|
__m256i top = _mm256_loadu_si256((__m256i *)input);
|
||
|
|
__m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride));
|
||
|
|
|
||
|
|
__m256i top_16x16 = _mm256_maddubs_epi16(top, twos);
|
||
|
|
__m256i bot_16x16 = _mm256_maddubs_epi16(bot, twos);
|
||
|
|
__m256i sum_16x16 = _mm256_add_epi16(top_16x16, bot_16x16);
|
||
|
|
|
||
|
|
_mm256_storeu_si256(row, sum_16x16);
|
||
|
|
|
||
|
|
input += luma_stride;
|
||
|
|
} while ((row += CFL_BUF_LINE_I256) < row_end);
|
||
|
|
}
|
||
|
|
|
||
|
|
CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, lbd)
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
|
||
|
|
* precise version of a box filter 4:2:2 pixel subsampling in Q3.
|
||
|
|
*
|
||
|
|
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
|
||
|
|
* active area is specified using width and height.
|
||
|
|
*
|
||
|
|
* Note: We don't need to worry about going over the active area, as long as we
|
||
|
|
* stay inside the CfL prediction buffer.
|
||
|
|
*/
|
||
|
|
static void cfl_luma_subsampling_422_lbd_avx2(const uint8_t *input,
|
||
|
|
int input_stride,
|
||
|
|
uint16_t *pred_buf_q3, int width,
|
||
|
|
int height) {
|
||
|
|
(void)width; // Forever 32
|
||
|
|
const __m256i fours = _mm256_set1_epi8(4); // Thirty two fours
|
||
|
|
__m256i *row = (__m256i *)pred_buf_q3;
|
||
|
|
const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
|
||
|
|
do {
|
||
|
|
__m256i top = _mm256_loadu_si256((__m256i *)input);
|
||
|
|
__m256i top_16x16 = _mm256_maddubs_epi16(top, fours);
|
||
|
|
_mm256_storeu_si256(row, top_16x16);
|
||
|
|
input += input_stride;
|
||
|
|
} while ((row += CFL_BUF_LINE_I256) < row_end);
|
||
|
|
}
|
||
|
|
|
||
|
|
CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, lbd)
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Multiplies the pixels by 8 (scaling in Q3). The AVX2 subsampling is only
|
||
|
|
* performed on block of width 32.
|
||
|
|
*
|
||
|
|
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
|
||
|
|
* active area is specified using width and height.
|
||
|
|
*
|
||
|
|
* Note: We don't need to worry about going over the active area, as long as we
|
||
|
|
* stay inside the CfL prediction buffer.
|
||
|
|
*/
|
||
|
|
static void cfl_luma_subsampling_444_lbd_avx2(const uint8_t *input,
|
||
|
|
int input_stride,
|
||
|
|
uint16_t *pred_buf_q3, int width,
|
||
|
|
int height) {
|
||
|
|
(void)width; // Forever 32
|
||
|
|
__m256i *row = (__m256i *)pred_buf_q3;
|
||
|
|
const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
|
||
|
|
const __m256i zeros = _mm256_setzero_si256();
|
||
|
|
do {
|
||
|
|
__m256i top = _mm256_loadu_si256((__m256i *)input);
|
||
|
|
top = _mm256_permute4x64_epi64(top, _MM_SHUFFLE(3, 1, 2, 0));
|
||
|
|
|
||
|
|
__m256i row_lo = _mm256_unpacklo_epi8(top, zeros);
|
||
|
|
row_lo = _mm256_slli_epi16(row_lo, 3);
|
||
|
|
__m256i row_hi = _mm256_unpackhi_epi8(top, zeros);
|
||
|
|
row_hi = _mm256_slli_epi16(row_hi, 3);
|
||
|
|
|
||
|
|
_mm256_storeu_si256(row, row_lo);
|
||
|
|
_mm256_storeu_si256(row + 1, row_hi);
|
||
|
|
|
||
|
|
input += input_stride;
|
||
|
|
} while ((row += CFL_BUF_LINE_I256) < row_end);
|
||
|
|
}
|
||
|
|
|
||
|
|
CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, lbd)
|
||
|
|
|
||
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
||
|
|
/**
|
||
|
|
* Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
|
||
|
|
* precise version of a box filter 4:2:0 pixel subsampling in Q3.
|
||
|
|
*
|
||
|
|
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
|
||
|
|
* active area is specified using width and height.
|
||
|
|
*
|
||
|
|
* Note: We don't need to worry about going over the active area, as long as we
|
||
|
|
* stay inside the CfL prediction buffer.
|
||
|
|
*
|
||
|
|
* Note: For 4:2:0 luma subsampling, the width will never be greater than 16.
|
||
|
|
*/
|
||
|
|
static void cfl_luma_subsampling_420_hbd_avx2(const uint16_t *input,
|
||
|
|
int input_stride,
|
||
|
|
uint16_t *pred_buf_q3, int width,
|
||
|
|
int height) {
|
||
|
|
(void)width; // Forever 32
|
||
|
|
const int luma_stride = input_stride << 1;
|
||
|
|
__m256i *row = (__m256i *)pred_buf_q3;
|
||
|
|
const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256;
|
||
|
|
do {
|
||
|
|
__m256i top = _mm256_loadu_si256((__m256i *)input);
|
||
|
|
__m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride));
|
||
|
|
__m256i sum = _mm256_add_epi16(top, bot);
|
||
|
|
|
||
|
|
__m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
|
||
|
|
__m256i bot_1 = _mm256_loadu_si256((__m256i *)(input + 16 + input_stride));
|
||
|
|
__m256i sum_1 = _mm256_add_epi16(top_1, bot_1);
|
||
|
|
|
||
|
|
__m256i hsum = _mm256_hadd_epi16(sum, sum_1);
|
||
|
|
hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
|
||
|
|
hsum = _mm256_add_epi16(hsum, hsum);
|
||
|
|
|
||
|
|
_mm256_storeu_si256(row, hsum);
|
||
|
|
|
||
|
|
input += luma_stride;
|
||
|
|
} while ((row += CFL_BUF_LINE_I256) < row_end);
|
||
|
|
}
|
||
|
|
|
||
|
|
CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, hbd)
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
|
||
|
|
* precise version of a box filter 4:2:2 pixel subsampling in Q3.
|
||
|
|
*
|
||
|
|
* The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
|
||
|
|
* active area is specified using width and height.
|
||
|
|
*
|
||
|
|
* Note: We don't need to worry about going over the active area, as long as we
|
||
|
|
* stay inside the CfL prediction buffer.
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
static void cfl_luma_subsampling_422_hbd_avx2(const uint16_t *input,
|
||
|
|
int input_stride,
|
||
|
|
uint16_t *pred_buf_q3, int width,
|
||
|
|
int height) {
|
||
|
|
(void)width; // Forever 32
|
||
|
|
__m256i *row = (__m256i *)pred_buf_q3;
|
||
|
|
const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
|
||
|
|
do {
|
||
|
|
__m256i top = _mm256_loadu_si256((__m256i *)input);
|
||
|
|
__m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
|
||
|
|
__m256i hsum = _mm256_hadd_epi16(top, top_1);
|
||
|
|
hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
|
||
|
|
hsum = _mm256_slli_epi16(hsum, 2);
|
||
|
|
|
||
|
|
_mm256_storeu_si256(row, hsum);
|
||
|
|
|
||
|
|
input += input_stride;
|
||
|
|
} while ((row += CFL_BUF_LINE_I256) < row_end);
|
||
|
|
}
|
||
|
|
|
||
|
|
CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, hbd)
|
||
|
|
|
||
|
|
static void cfl_luma_subsampling_444_hbd_avx2(const uint16_t *input,
|
||
|
|
int input_stride,
|
||
|
|
uint16_t *pred_buf_q3, int width,
|
||
|
|
int height) {
|
||
|
|
(void)width; // Forever 32
|
||
|
|
__m256i *row = (__m256i *)pred_buf_q3;
|
||
|
|
const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
|
||
|
|
do {
|
||
|
|
__m256i top = _mm256_loadu_si256((__m256i *)input);
|
||
|
|
__m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
|
||
|
|
_mm256_storeu_si256(row, _mm256_slli_epi16(top, 3));
|
||
|
|
_mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3));
|
||
|
|
input += input_stride;
|
||
|
|
} while ((row += CFL_BUF_LINE_I256) < row_end);
|
||
|
|
}
|
||
|
|
|
||
|
|
CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, hbd)
|
||
|
|
#endif // CONFIG_AV1_HIGHBITDEPTH
|
||
|
|
|
||
|
|
static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12,
|
||
|
|
__m256i alpha_sign, __m256i dc_q0) {
|
||
|
|
__m256i ac_q3 = _mm256_loadu_si256(input);
|
||
|
|
__m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3);
|
||
|
|
__m256i scaled_luma_q0 =
|
||
|
|
_mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12);
|
||
|
|
scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign);
|
||
|
|
return _mm256_add_epi16(scaled_luma_q0, dc_q0);
|
||
|
|
}
|
||
|
|
|
||
|
|
static INLINE void cfl_predict_lbd_avx2(const int16_t *pred_buf_q3,
|
||
|
|
uint8_t *dst, int dst_stride,
|
||
|
|
int alpha_q3, int width, int height) {
|
||
|
|
(void)width;
|
||
|
|
const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3);
|
||
|
|
const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9);
|
||
|
|
const __m256i dc_q0 = _mm256_set1_epi16(*dst);
|
||
|
|
__m256i *row = (__m256i *)pred_buf_q3;
|
||
|
|
const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
|
||
|
|
|
||
|
|
do {
|
||
|
|
__m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
|
||
|
|
__m256i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
|
||
|
|
res = _mm256_packus_epi16(res, next);
|
||
|
|
res = _mm256_permute4x64_epi64(res, _MM_SHUFFLE(3, 1, 2, 0));
|
||
|
|
_mm256_storeu_si256((__m256i *)dst, res);
|
||
|
|
dst += dst_stride;
|
||
|
|
} while ((row += CFL_BUF_LINE_I256) < row_end);
|
||
|
|
}
|
||
|
|
|
||
|
|
CFL_PREDICT_X(avx2, 32, 8, lbd)
|
||
|
|
CFL_PREDICT_X(avx2, 32, 16, lbd)
|
||
|
|
CFL_PREDICT_X(avx2, 32, 32, lbd)
|
||
|
|
|
||
|
|
cfl_predict_lbd_fn cfl_get_predict_lbd_fn_avx2(TX_SIZE tx_size) {
|
||
|
|
static const cfl_predict_lbd_fn pred[TX_SIZES_ALL] = {
|
||
|
|
cfl_predict_lbd_4x4_ssse3, /* 4x4 */
|
||
|
|
cfl_predict_lbd_8x8_ssse3, /* 8x8 */
|
||
|
|
cfl_predict_lbd_16x16_ssse3, /* 16x16 */
|
||
|
|
cfl_predict_lbd_32x32_avx2, /* 32x32 */
|
||
|
|
NULL, /* 64x64 (invalid CFL size) */
|
||
|
|
cfl_predict_lbd_4x8_ssse3, /* 4x8 */
|
||
|
|
cfl_predict_lbd_8x4_ssse3, /* 8x4 */
|
||
|
|
cfl_predict_lbd_8x16_ssse3, /* 8x16 */
|
||
|
|
cfl_predict_lbd_16x8_ssse3, /* 16x8 */
|
||
|
|
cfl_predict_lbd_16x32_ssse3, /* 16x32 */
|
||
|
|
cfl_predict_lbd_32x16_avx2, /* 32x16 */
|
||
|
|
NULL, /* 32x64 (invalid CFL size) */
|
||
|
|
NULL, /* 64x32 (invalid CFL size) */
|
||
|
|
cfl_predict_lbd_4x16_ssse3, /* 4x16 */
|
||
|
|
cfl_predict_lbd_16x4_ssse3, /* 16x4 */
|
||
|
|
cfl_predict_lbd_8x32_ssse3, /* 8x32 */
|
||
|
|
cfl_predict_lbd_32x8_avx2, /* 32x8 */
|
||
|
|
NULL, /* 16x64 (invalid CFL size) */
|
||
|
|
NULL, /* 64x16 (invalid CFL size) */
|
||
|
|
};
|
||
|
|
// Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the
|
||
|
|
// function pointer array out of bounds.
|
||
|
|
return pred[tx_size % TX_SIZES_ALL];
|
||
|
|
}
|
||
|
|
|
||
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
||
|
|
static __m256i highbd_max_epi16(int bd) {
|
||
|
|
const __m256i neg_one = _mm256_set1_epi16(-1);
|
||
|
|
// (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd)
|
||
|
|
return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one);
|
||
|
|
}
|
||
|
|
|
||
|
|
static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) {
|
||
|
|
return _mm256_max_epi16(_mm256_min_epi16(u, max), zero);
|
||
|
|
}
|
||
|
|
|
||
|
|
static INLINE void cfl_predict_hbd_avx2(const int16_t *pred_buf_q3,
|
||
|
|
uint16_t *dst, int dst_stride,
|
||
|
|
int alpha_q3, int bd, int width,
|
||
|
|
int height) {
|
||
|
|
// Use SSSE3 version for smaller widths
|
||
|
|
assert(width == 16 || width == 32);
|
||
|
|
const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3);
|
||
|
|
const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9);
|
||
|
|
const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst);
|
||
|
|
const __m256i max = highbd_max_epi16(bd);
|
||
|
|
|
||
|
|
__m256i *row = (__m256i *)pred_buf_q3;
|
||
|
|
const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
|
||
|
|
do {
|
||
|
|
const __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
|
||
|
|
_mm256_storeu_si256((__m256i *)dst,
|
||
|
|
highbd_clamp_epi16(res, _mm256_setzero_si256(), max));
|
||
|
|
if (width == 32) {
|
||
|
|
const __m256i res_1 =
|
||
|
|
predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
|
||
|
|
_mm256_storeu_si256(
|
||
|
|
(__m256i *)(dst + 16),
|
||
|
|
highbd_clamp_epi16(res_1, _mm256_setzero_si256(), max));
|
||
|
|
}
|
||
|
|
dst += dst_stride;
|
||
|
|
} while ((row += CFL_BUF_LINE_I256) < row_end);
|
||
|
|
}
|
||
|
|
|
||
|
|
CFL_PREDICT_X(avx2, 16, 4, hbd)
|
||
|
|
CFL_PREDICT_X(avx2, 16, 8, hbd)
|
||
|
|
CFL_PREDICT_X(avx2, 16, 16, hbd)
|
||
|
|
CFL_PREDICT_X(avx2, 16, 32, hbd)
|
||
|
|
CFL_PREDICT_X(avx2, 32, 8, hbd)
|
||
|
|
CFL_PREDICT_X(avx2, 32, 16, hbd)
|
||
|
|
CFL_PREDICT_X(avx2, 32, 32, hbd)
|
||
|
|
|
||
|
|
cfl_predict_hbd_fn cfl_get_predict_hbd_fn_avx2(TX_SIZE tx_size) {
|
||
|
|
static const cfl_predict_hbd_fn pred[TX_SIZES_ALL] = {
|
||
|
|
cfl_predict_hbd_4x4_ssse3, /* 4x4 */
|
||
|
|
cfl_predict_hbd_8x8_ssse3, /* 8x8 */
|
||
|
|
cfl_predict_hbd_16x16_avx2, /* 16x16 */
|
||
|
|
cfl_predict_hbd_32x32_avx2, /* 32x32 */
|
||
|
|
NULL, /* 64x64 (invalid CFL size) */
|
||
|
|
cfl_predict_hbd_4x8_ssse3, /* 4x8 */
|
||
|
|
cfl_predict_hbd_8x4_ssse3, /* 8x4 */
|
||
|
|
cfl_predict_hbd_8x16_ssse3, /* 8x16 */
|
||
|
|
cfl_predict_hbd_16x8_avx2, /* 16x8 */
|
||
|
|
cfl_predict_hbd_16x32_avx2, /* 16x32 */
|
||
|
|
cfl_predict_hbd_32x16_avx2, /* 32x16 */
|
||
|
|
NULL, /* 32x64 (invalid CFL size) */
|
||
|
|
NULL, /* 64x32 (invalid CFL size) */
|
||
|
|
cfl_predict_hbd_4x16_ssse3, /* 4x16 */
|
||
|
|
cfl_predict_hbd_16x4_avx2, /* 16x4 */
|
||
|
|
cfl_predict_hbd_8x32_ssse3, /* 8x32 */
|
||
|
|
cfl_predict_hbd_32x8_avx2, /* 32x8 */
|
||
|
|
NULL, /* 16x64 (invalid CFL size) */
|
||
|
|
NULL, /* 64x16 (invalid CFL size) */
|
||
|
|
};
|
||
|
|
// Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the
|
||
|
|
// function pointer array out of bounds.
|
||
|
|
return pred[tx_size % TX_SIZES_ALL];
|
||
|
|
}
|
||
|
|
#endif // CONFIG_AV1_HIGHBITDEPTH
|
||
|
|
|
||
|
|
// Returns a vector where all the (32-bits) elements are the sum of all the
|
||
|
|
// lanes in a.
|
||
|
|
static INLINE __m256i fill_sum_epi32(__m256i a) {
|
||
|
|
// Given that a == [A, B, C, D, E, F, G, H]
|
||
|
|
a = _mm256_hadd_epi32(a, a);
|
||
|
|
// Given that A' == A + B, C' == C + D, E' == E + F, G' == G + H
|
||
|
|
// a == [A', C', A', C', E', G', E', G']
|
||
|
|
a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(3, 1, 2, 0));
|
||
|
|
// a == [A', C', E', G', A', C', E', G']
|
||
|
|
a = _mm256_hadd_epi32(a, a);
|
||
|
|
// Given that A'' == A' + C' and E'' == E' + G'
|
||
|
|
// a == [A'', E'', A'', E'', A'', E'', A'', E'']
|
||
|
|
return _mm256_hadd_epi32(a, a);
|
||
|
|
// Given that A''' == A'' + E''
|
||
|
|
// a == [A''', A''', A''', A''', A''', A''', A''', A''']
|
||
|
|
}
|
||
|
|
|
||
|
|
static INLINE __m256i _mm256_addl_epi16(__m256i a) {
|
||
|
|
return _mm256_add_epi32(_mm256_unpacklo_epi16(a, _mm256_setzero_si256()),
|
||
|
|
_mm256_unpackhi_epi16(a, _mm256_setzero_si256()));
|
||
|
|
}
|
||
|
|
|
||
|
|
static INLINE void subtract_average_avx2(const uint16_t *src_ptr,
|
||
|
|
int16_t *dst_ptr, int width,
|
||
|
|
int height, int round_offset,
|
||
|
|
int num_pel_log2) {
|
||
|
|
// Use SSE2 version for smaller widths
|
||
|
|
assert(width == 16 || width == 32);
|
||
|
|
|
||
|
|
const __m256i *src = (__m256i *)src_ptr;
|
||
|
|
const __m256i *const end = src + height * CFL_BUF_LINE_I256;
|
||
|
|
// To maximize usage of the AVX2 registers, we sum two rows per loop
|
||
|
|
// iteration
|
||
|
|
const int step = 2 * CFL_BUF_LINE_I256;
|
||
|
|
|
||
|
|
__m256i sum = _mm256_setzero_si256();
|
||
|
|
// For width 32, we use a second sum accumulator to reduce accumulator
|
||
|
|
// dependencies in the loop.
|
||
|
|
__m256i sum2;
|
||
|
|
if (width == 32) sum2 = _mm256_setzero_si256();
|
||
|
|
|
||
|
|
do {
|
||
|
|
// Add top row to the bottom row
|
||
|
|
__m256i l0 = _mm256_add_epi16(_mm256_loadu_si256(src),
|
||
|
|
_mm256_loadu_si256(src + CFL_BUF_LINE_I256));
|
||
|
|
sum = _mm256_add_epi32(sum, _mm256_addl_epi16(l0));
|
||
|
|
if (width == 32) { /* Don't worry, this if it gets optimized out. */
|
||
|
|
// Add the second part of the top row to the second part of the bottom row
|
||
|
|
__m256i l1 =
|
||
|
|
_mm256_add_epi16(_mm256_loadu_si256(src + 1),
|
||
|
|
_mm256_loadu_si256(src + 1 + CFL_BUF_LINE_I256));
|
||
|
|
sum2 = _mm256_add_epi32(sum2, _mm256_addl_epi16(l1));
|
||
|
|
}
|
||
|
|
src += step;
|
||
|
|
} while (src < end);
|
||
|
|
// Combine both sum accumulators
|
||
|
|
if (width == 32) sum = _mm256_add_epi32(sum, sum2);
|
||
|
|
|
||
|
|
__m256i fill = fill_sum_epi32(sum);
|
||
|
|
|
||
|
|
__m256i avg_epi16 = _mm256_srli_epi32(
|
||
|
|
_mm256_add_epi32(fill, _mm256_set1_epi32(round_offset)), num_pel_log2);
|
||
|
|
avg_epi16 = _mm256_packs_epi32(avg_epi16, avg_epi16);
|
||
|
|
|
||
|
|
// Store and subtract loop
|
||
|
|
src = (__m256i *)src_ptr;
|
||
|
|
__m256i *dst = (__m256i *)dst_ptr;
|
||
|
|
do {
|
||
|
|
_mm256_storeu_si256(dst,
|
||
|
|
_mm256_sub_epi16(_mm256_loadu_si256(src), avg_epi16));
|
||
|
|
if (width == 32) {
|
||
|
|
_mm256_storeu_si256(
|
||
|
|
dst + 1, _mm256_sub_epi16(_mm256_loadu_si256(src + 1), avg_epi16));
|
||
|
|
}
|
||
|
|
src += CFL_BUF_LINE_I256;
|
||
|
|
dst += CFL_BUF_LINE_I256;
|
||
|
|
} while (src < end);
|
||
|
|
}
|
||
|
|
|
||
|
|
// Declare wrappers for AVX2 sizes
|
||
|
|
CFL_SUB_AVG_X(avx2, 16, 4, 32, 6)
|
||
|
|
CFL_SUB_AVG_X(avx2, 16, 8, 64, 7)
|
||
|
|
CFL_SUB_AVG_X(avx2, 16, 16, 128, 8)
|
||
|
|
CFL_SUB_AVG_X(avx2, 16, 32, 256, 9)
|
||
|
|
CFL_SUB_AVG_X(avx2, 32, 8, 128, 8)
|
||
|
|
CFL_SUB_AVG_X(avx2, 32, 16, 256, 9)
|
||
|
|
CFL_SUB_AVG_X(avx2, 32, 32, 512, 10)
|
||
|
|
|
||
|
|
// Based on the observation that for small blocks AVX2 does not outperform
|
||
|
|
// SSE2, we call the SSE2 code for block widths 4 and 8.
|
||
|
|
cfl_subtract_average_fn cfl_get_subtract_average_fn_avx2(TX_SIZE tx_size) {
|
||
|
|
static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = {
|
||
|
|
cfl_subtract_average_4x4_sse2, /* 4x4 */
|
||
|
|
cfl_subtract_average_8x8_sse2, /* 8x8 */
|
||
|
|
cfl_subtract_average_16x16_avx2, /* 16x16 */
|
||
|
|
cfl_subtract_average_32x32_avx2, /* 32x32 */
|
||
|
|
NULL, /* 64x64 (invalid CFL size) */
|
||
|
|
cfl_subtract_average_4x8_sse2, /* 4x8 */
|
||
|
|
cfl_subtract_average_8x4_sse2, /* 8x4 */
|
||
|
|
cfl_subtract_average_8x16_sse2, /* 8x16 */
|
||
|
|
cfl_subtract_average_16x8_avx2, /* 16x8 */
|
||
|
|
cfl_subtract_average_16x32_avx2, /* 16x32 */
|
||
|
|
cfl_subtract_average_32x16_avx2, /* 32x16 */
|
||
|
|
NULL, /* 32x64 (invalid CFL size) */
|
||
|
|
NULL, /* 64x32 (invalid CFL size) */
|
||
|
|
cfl_subtract_average_4x16_sse2, /* 4x16 */
|
||
|
|
cfl_subtract_average_16x4_avx2, /* 16x4 */
|
||
|
|
cfl_subtract_average_8x32_sse2, /* 8x32 */
|
||
|
|
cfl_subtract_average_32x8_avx2, /* 32x8 */
|
||
|
|
NULL, /* 16x64 (invalid CFL size) */
|
||
|
|
NULL, /* 64x16 (invalid CFL size) */
|
||
|
|
};
|
||
|
|
// Modulo TX_SIZES_ALL to ensure that an attacker won't be able to
|
||
|
|
// index the function pointer array out of bounds.
|
||
|
|
return sub_avg[tx_size % TX_SIZES_ALL];
|
||
|
|
}
|