170 lines
6.8 KiB
C++
170 lines
6.8 KiB
C++
|
|
/*
|
||
|
|
* Copyright (C) 2023 The Android Open Source Project
|
||
|
|
*
|
||
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
|
* you may not use this file except in compliance with the License.
|
||
|
|
* You may obtain a copy of the License at
|
||
|
|
*
|
||
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
*
|
||
|
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
|
* See the License for the specific language governing permissions and
|
||
|
|
* limitations under the License.
|
||
|
|
*/
|
||
|
|
|
||
|
|
#include <algorithm>
|
||
|
|
#include <cmath>
|
||
|
|
#include <fstream>
|
||
|
|
#include <ios>
|
||
|
|
#include <iterator>
|
||
|
|
#include <string>
|
||
|
|
|
||
|
|
#include <gmock/gmock.h>
|
||
|
|
#include <gtest/gtest.h>
|
||
|
|
#include <input/TfLiteMotionPredictor.h>
|
||
|
|
|
||
|
|
namespace android {
|
||
|
|
namespace {
|
||
|
|
|
||
|
|
using ::testing::Each;
|
||
|
|
using ::testing::ElementsAre;
|
||
|
|
using ::testing::FloatNear;
|
||
|
|
|
||
|
|
TEST(TfLiteMotionPredictorTest, BuffersReadiness) {
|
||
|
|
TfLiteMotionPredictorBuffers buffers(/*inputLength=*/5);
|
||
|
|
ASSERT_FALSE(buffers.isReady());
|
||
|
|
|
||
|
|
buffers.pushSample(/*timestamp=*/0, {.position = {.x = 100, .y = 100}});
|
||
|
|
ASSERT_FALSE(buffers.isReady());
|
||
|
|
|
||
|
|
buffers.pushSample(/*timestamp=*/1, {.position = {.x = 100, .y = 100}});
|
||
|
|
ASSERT_FALSE(buffers.isReady());
|
||
|
|
|
||
|
|
// Two samples with distinct positions are required.
|
||
|
|
buffers.pushSample(/*timestamp=*/2, {.position = {.x = 100, .y = 110}});
|
||
|
|
ASSERT_TRUE(buffers.isReady());
|
||
|
|
|
||
|
|
buffers.reset();
|
||
|
|
ASSERT_FALSE(buffers.isReady());
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST(TfLiteMotionPredictorTest, BuffersRecentData) {
|
||
|
|
TfLiteMotionPredictorBuffers buffers(/*inputLength=*/5);
|
||
|
|
|
||
|
|
buffers.pushSample(/*timestamp=*/1, {.position = {.x = 100, .y = 200}});
|
||
|
|
ASSERT_EQ(buffers.lastTimestamp(), 1);
|
||
|
|
|
||
|
|
buffers.pushSample(/*timestamp=*/2, {.position = {.x = 150, .y = 250}});
|
||
|
|
ASSERT_EQ(buffers.lastTimestamp(), 2);
|
||
|
|
ASSERT_TRUE(buffers.isReady());
|
||
|
|
ASSERT_EQ(buffers.axisFrom().position.x, 100);
|
||
|
|
ASSERT_EQ(buffers.axisFrom().position.y, 200);
|
||
|
|
ASSERT_EQ(buffers.axisTo().position.x, 150);
|
||
|
|
ASSERT_EQ(buffers.axisTo().position.y, 250);
|
||
|
|
|
||
|
|
// Position doesn't change, so neither do the axes.
|
||
|
|
buffers.pushSample(/*timestamp=*/3, {.position = {.x = 150, .y = 250}});
|
||
|
|
ASSERT_EQ(buffers.lastTimestamp(), 3);
|
||
|
|
ASSERT_TRUE(buffers.isReady());
|
||
|
|
ASSERT_EQ(buffers.axisFrom().position.x, 100);
|
||
|
|
ASSERT_EQ(buffers.axisFrom().position.y, 200);
|
||
|
|
ASSERT_EQ(buffers.axisTo().position.x, 150);
|
||
|
|
ASSERT_EQ(buffers.axisTo().position.y, 250);
|
||
|
|
|
||
|
|
buffers.pushSample(/*timestamp=*/4, {.position = {.x = 180, .y = 280}});
|
||
|
|
ASSERT_EQ(buffers.lastTimestamp(), 4);
|
||
|
|
ASSERT_TRUE(buffers.isReady());
|
||
|
|
ASSERT_EQ(buffers.axisFrom().position.x, 150);
|
||
|
|
ASSERT_EQ(buffers.axisFrom().position.y, 250);
|
||
|
|
ASSERT_EQ(buffers.axisTo().position.x, 180);
|
||
|
|
ASSERT_EQ(buffers.axisTo().position.y, 280);
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST(TfLiteMotionPredictorTest, BuffersCopyTo) {
|
||
|
|
std::unique_ptr<TfLiteMotionPredictorModel> model = TfLiteMotionPredictorModel::create();
|
||
|
|
TfLiteMotionPredictorBuffers buffers(model->inputLength());
|
||
|
|
|
||
|
|
buffers.pushSample(/*timestamp=*/1,
|
||
|
|
{.position = {.x = 10, .y = 10},
|
||
|
|
.pressure = 0,
|
||
|
|
.orientation = 0,
|
||
|
|
.tilt = 0.2});
|
||
|
|
buffers.pushSample(/*timestamp=*/2,
|
||
|
|
{.position = {.x = 10, .y = 50},
|
||
|
|
.pressure = 0.4,
|
||
|
|
.orientation = M_PI / 4,
|
||
|
|
.tilt = 0.3});
|
||
|
|
buffers.pushSample(/*timestamp=*/3,
|
||
|
|
{.position = {.x = 30, .y = 50},
|
||
|
|
.pressure = 0.5,
|
||
|
|
.orientation = -M_PI / 4,
|
||
|
|
.tilt = 0.4});
|
||
|
|
buffers.pushSample(/*timestamp=*/3,
|
||
|
|
{.position = {.x = 30, .y = 60},
|
||
|
|
.pressure = 0,
|
||
|
|
.orientation = 0,
|
||
|
|
.tilt = 0.5});
|
||
|
|
buffers.copyTo(*model);
|
||
|
|
|
||
|
|
const int zeroPadding = model->inputLength() - 3;
|
||
|
|
ASSERT_GE(zeroPadding, 0);
|
||
|
|
|
||
|
|
EXPECT_THAT(model->inputR().subspan(0, zeroPadding), Each(0));
|
||
|
|
EXPECT_THAT(model->inputPhi().subspan(0, zeroPadding), Each(0));
|
||
|
|
EXPECT_THAT(model->inputPressure().subspan(0, zeroPadding), Each(0));
|
||
|
|
EXPECT_THAT(model->inputTilt().subspan(0, zeroPadding), Each(0));
|
||
|
|
EXPECT_THAT(model->inputOrientation().subspan(0, zeroPadding), Each(0));
|
||
|
|
|
||
|
|
EXPECT_THAT(model->inputR().subspan(zeroPadding), ElementsAre(40, 20, 10));
|
||
|
|
EXPECT_THAT(model->inputPhi().subspan(zeroPadding), ElementsAre(0, -M_PI / 2, M_PI / 2));
|
||
|
|
EXPECT_THAT(model->inputPressure().subspan(zeroPadding), ElementsAre(0.4, 0.5, 0));
|
||
|
|
EXPECT_THAT(model->inputTilt().subspan(zeroPadding), ElementsAre(0.3, 0.4, 0.5));
|
||
|
|
EXPECT_THAT(model->inputOrientation().subspan(zeroPadding),
|
||
|
|
ElementsAre(FloatNear(-M_PI / 4, 1e-5), FloatNear(M_PI / 4, 1e-5),
|
||
|
|
FloatNear(M_PI / 2, 1e-5)));
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST(TfLiteMotionPredictorTest, ModelInputOutputLength) {
|
||
|
|
std::unique_ptr<TfLiteMotionPredictorModel> model = TfLiteMotionPredictorModel::create();
|
||
|
|
ASSERT_GT(model->inputLength(), 0u);
|
||
|
|
|
||
|
|
const int inputLength = model->inputLength();
|
||
|
|
ASSERT_EQ(inputLength, model->inputR().size());
|
||
|
|
ASSERT_EQ(inputLength, model->inputPhi().size());
|
||
|
|
ASSERT_EQ(inputLength, model->inputPressure().size());
|
||
|
|
ASSERT_EQ(inputLength, model->inputOrientation().size());
|
||
|
|
ASSERT_EQ(inputLength, model->inputTilt().size());
|
||
|
|
|
||
|
|
ASSERT_TRUE(model->invoke());
|
||
|
|
|
||
|
|
const int outputLength = model->outputLength();
|
||
|
|
ASSERT_EQ(outputLength, model->outputR().size());
|
||
|
|
ASSERT_EQ(outputLength, model->outputPhi().size());
|
||
|
|
ASSERT_EQ(outputLength, model->outputPressure().size());
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST(TfLiteMotionPredictorTest, ModelOutput) {
|
||
|
|
std::unique_ptr<TfLiteMotionPredictorModel> model = TfLiteMotionPredictorModel::create();
|
||
|
|
TfLiteMotionPredictorBuffers buffers(model->inputLength());
|
||
|
|
|
||
|
|
buffers.pushSample(/*timestamp=*/1, {.position = {.x = 100, .y = 200}, .pressure = 0.2});
|
||
|
|
buffers.pushSample(/*timestamp=*/2, {.position = {.x = 150, .y = 250}, .pressure = 0.4});
|
||
|
|
buffers.pushSample(/*timestamp=*/3, {.position = {.x = 180, .y = 280}, .pressure = 0.6});
|
||
|
|
buffers.copyTo(*model);
|
||
|
|
|
||
|
|
ASSERT_TRUE(model->invoke());
|
||
|
|
|
||
|
|
// The actual model output is implementation-defined, but it should at least be non-zero and
|
||
|
|
// non-NaN.
|
||
|
|
const auto is_valid = [](float value) { return !isnan(value) && value != 0; };
|
||
|
|
ASSERT_TRUE(std::all_of(model->outputR().begin(), model->outputR().end(), is_valid));
|
||
|
|
ASSERT_TRUE(std::all_of(model->outputPhi().begin(), model->outputPhi().end(), is_valid));
|
||
|
|
ASSERT_TRUE(
|
||
|
|
std::all_of(model->outputPressure().begin(), model->outputPressure().end(), is_valid));
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace
|
||
|
|
} // namespace android
|