578 lines
23 KiB
C++
578 lines
23 KiB
C++
|
|
/*
|
||
|
|
* Copyright (C) 2022 The Android Open Source Project
|
||
|
|
*
|
||
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
|
* you may not use this file except in compliance with the License.
|
||
|
|
* You may obtain a copy of the License at
|
||
|
|
*
|
||
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
*
|
||
|
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
|
* See the License for the specific language governing permissions and
|
||
|
|
* limitations under the License.
|
||
|
|
*/
|
||
|
|
|
||
|
|
#include "TestHelpers.h"
|
||
|
|
|
||
|
|
#include <chrono>
|
||
|
|
#include <vector>
|
||
|
|
|
||
|
|
#include <attestation/HmacKeyManager.h>
|
||
|
|
#include <gtest/gtest.h>
|
||
|
|
#include <input/InputTransport.h>
|
||
|
|
|
||
|
|
using namespace std::chrono_literals;
|
||
|
|
|
||
|
|
namespace android {
|
||
|
|
|
||
|
|
struct Pointer {
|
||
|
|
int32_t id;
|
||
|
|
float x;
|
||
|
|
float y;
|
||
|
|
bool isResampled = false;
|
||
|
|
};
|
||
|
|
|
||
|
|
struct InputEventEntry {
|
||
|
|
std::chrono::nanoseconds eventTime;
|
||
|
|
std::vector<Pointer> pointers;
|
||
|
|
int32_t action;
|
||
|
|
};
|
||
|
|
|
||
|
|
class TouchResamplingTest : public testing::Test {
|
||
|
|
protected:
|
||
|
|
std::unique_ptr<InputPublisher> mPublisher;
|
||
|
|
std::unique_ptr<InputConsumer> mConsumer;
|
||
|
|
PreallocatedInputEventFactory mEventFactory;
|
||
|
|
|
||
|
|
uint32_t mSeq = 1;
|
||
|
|
|
||
|
|
void SetUp() override {
|
||
|
|
std::unique_ptr<InputChannel> serverChannel, clientChannel;
|
||
|
|
status_t result =
|
||
|
|
InputChannel::openInputChannelPair("channel name", serverChannel, clientChannel);
|
||
|
|
ASSERT_EQ(OK, result);
|
||
|
|
|
||
|
|
mPublisher = std::make_unique<InputPublisher>(std::move(serverChannel));
|
||
|
|
mConsumer = std::make_unique<InputConsumer>(std::move(clientChannel),
|
||
|
|
/*enableTouchResampling=*/true);
|
||
|
|
}
|
||
|
|
|
||
|
|
status_t publishSimpleMotionEventWithCoords(int32_t action, nsecs_t eventTime,
|
||
|
|
const std::vector<PointerProperties>& properties,
|
||
|
|
const std::vector<PointerCoords>& coords);
|
||
|
|
void publishSimpleMotionEvent(int32_t action, nsecs_t eventTime,
|
||
|
|
const std::vector<Pointer>& pointers);
|
||
|
|
void publishInputEventEntries(const std::vector<InputEventEntry>& entries);
|
||
|
|
void consumeInputEventEntries(const std::vector<InputEventEntry>& entries,
|
||
|
|
std::chrono::nanoseconds frameTime);
|
||
|
|
void receiveResponseUntilSequence(uint32_t seq);
|
||
|
|
};
|
||
|
|
|
||
|
|
status_t TouchResamplingTest::publishSimpleMotionEventWithCoords(
|
||
|
|
int32_t action, nsecs_t eventTime, const std::vector<PointerProperties>& properties,
|
||
|
|
const std::vector<PointerCoords>& coords) {
|
||
|
|
const ui::Transform identityTransform;
|
||
|
|
const nsecs_t downTime = 0;
|
||
|
|
|
||
|
|
if (action == AMOTION_EVENT_ACTION_DOWN && eventTime != 0) {
|
||
|
|
ADD_FAILURE() << "Downtime should be equal to 0 (hardcoded for convenience)";
|
||
|
|
}
|
||
|
|
return mPublisher->publishMotionEvent(mSeq++, InputEvent::nextId(), /*deviceId=*/1,
|
||
|
|
AINPUT_SOURCE_TOUCHSCREEN, /*displayId=*/0, INVALID_HMAC,
|
||
|
|
action, /*actionButton=*/0, /*flags=*/0, /*edgeFlags=*/0,
|
||
|
|
AMETA_NONE, /*buttonState=*/0, MotionClassification::NONE,
|
||
|
|
identityTransform, /*xPrecision=*/0, /*yPrecision=*/0,
|
||
|
|
AMOTION_EVENT_INVALID_CURSOR_POSITION,
|
||
|
|
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform,
|
||
|
|
downTime, eventTime, properties.size(), properties.data(),
|
||
|
|
coords.data());
|
||
|
|
}
|
||
|
|
|
||
|
|
void TouchResamplingTest::publishSimpleMotionEvent(int32_t action, nsecs_t eventTime,
|
||
|
|
const std::vector<Pointer>& pointers) {
|
||
|
|
std::vector<PointerProperties> properties;
|
||
|
|
std::vector<PointerCoords> coords;
|
||
|
|
|
||
|
|
for (const Pointer& pointer : pointers) {
|
||
|
|
properties.push_back({});
|
||
|
|
properties.back().clear();
|
||
|
|
properties.back().id = pointer.id;
|
||
|
|
properties.back().toolType = ToolType::FINGER;
|
||
|
|
|
||
|
|
coords.push_back({});
|
||
|
|
coords.back().clear();
|
||
|
|
coords.back().setAxisValue(AMOTION_EVENT_AXIS_X, pointer.x);
|
||
|
|
coords.back().setAxisValue(AMOTION_EVENT_AXIS_Y, pointer.y);
|
||
|
|
}
|
||
|
|
|
||
|
|
status_t result = publishSimpleMotionEventWithCoords(action, eventTime, properties, coords);
|
||
|
|
ASSERT_EQ(OK, result);
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Each entry is published separately, one entry at a time. As a result, action is used here
|
||
|
|
* on a per-entry basis.
|
||
|
|
*/
|
||
|
|
void TouchResamplingTest::publishInputEventEntries(const std::vector<InputEventEntry>& entries) {
|
||
|
|
for (const InputEventEntry& entry : entries) {
|
||
|
|
publishSimpleMotionEvent(entry.action, entry.eventTime.count(), entry.pointers);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Inside the publisher, read responses repeatedly until the desired sequence number is returned.
|
||
|
|
*
|
||
|
|
* Sometimes, when you call 'sendFinishedSignal', you would be finishing a batch which is comprised
|
||
|
|
* of several input events. As a result, consumer will generate multiple 'finish' signals on your
|
||
|
|
* behalf.
|
||
|
|
*
|
||
|
|
* In this function, we call 'receiveConsumerResponse' in a loop until the desired sequence number
|
||
|
|
* is returned.
|
||
|
|
*/
|
||
|
|
void TouchResamplingTest::receiveResponseUntilSequence(uint32_t seq) {
|
||
|
|
size_t consumedEvents = 0;
|
||
|
|
while (consumedEvents < 100) {
|
||
|
|
android::base::Result<InputPublisher::ConsumerResponse> response =
|
||
|
|
mPublisher->receiveConsumerResponse();
|
||
|
|
ASSERT_TRUE(response.ok());
|
||
|
|
ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*response));
|
||
|
|
const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*response);
|
||
|
|
ASSERT_TRUE(finish.handled)
|
||
|
|
<< "publisher receiveFinishedSignal should have set handled to consumer's reply";
|
||
|
|
if (finish.seq == seq) {
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
consumedEvents++;
|
||
|
|
}
|
||
|
|
FAIL() << "Got " << consumedEvents << "events, but still no event with seq=" << seq;
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* All entries are compared against a single MotionEvent, but the same data structure
|
||
|
|
* InputEventEntry is used here for simpler code. As a result, the entire array of InputEventEntry
|
||
|
|
* must contain identical values for the action field.
|
||
|
|
*/
|
||
|
|
void TouchResamplingTest::consumeInputEventEntries(const std::vector<InputEventEntry>& entries,
|
||
|
|
std::chrono::nanoseconds frameTime) {
|
||
|
|
ASSERT_GE(entries.size(), 1U) << "Must have at least 1 InputEventEntry to compare against";
|
||
|
|
|
||
|
|
uint32_t consumeSeq;
|
||
|
|
InputEvent* event;
|
||
|
|
|
||
|
|
status_t status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, frameTime.count(),
|
||
|
|
&consumeSeq, &event);
|
||
|
|
ASSERT_EQ(OK, status);
|
||
|
|
MotionEvent* motionEvent = static_cast<MotionEvent*>(event);
|
||
|
|
|
||
|
|
ASSERT_EQ(entries.size() - 1, motionEvent->getHistorySize());
|
||
|
|
for (size_t i = 0; i < entries.size(); i++) { // most recent sample is last
|
||
|
|
SCOPED_TRACE(i);
|
||
|
|
const InputEventEntry& entry = entries[i];
|
||
|
|
ASSERT_EQ(entry.action, motionEvent->getAction());
|
||
|
|
ASSERT_EQ(entry.eventTime.count(), motionEvent->getHistoricalEventTime(i));
|
||
|
|
ASSERT_EQ(entry.pointers.size(), motionEvent->getPointerCount());
|
||
|
|
|
||
|
|
for (size_t p = 0; p < motionEvent->getPointerCount(); p++) {
|
||
|
|
SCOPED_TRACE(p);
|
||
|
|
// The pointers can be in any order, both in MotionEvent as well as InputEventEntry
|
||
|
|
ssize_t motionEventPointerIndex = motionEvent->findPointerIndex(entry.pointers[p].id);
|
||
|
|
ASSERT_GE(motionEventPointerIndex, 0) << "Pointer must be present in MotionEvent";
|
||
|
|
ASSERT_EQ(entry.pointers[p].x,
|
||
|
|
motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_X,
|
||
|
|
motionEventPointerIndex, i));
|
||
|
|
ASSERT_EQ(entry.pointers[p].x,
|
||
|
|
motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_X,
|
||
|
|
motionEventPointerIndex, i));
|
||
|
|
ASSERT_EQ(entry.pointers[p].y,
|
||
|
|
motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_Y,
|
||
|
|
motionEventPointerIndex, i));
|
||
|
|
ASSERT_EQ(entry.pointers[p].y,
|
||
|
|
motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y,
|
||
|
|
motionEventPointerIndex, i));
|
||
|
|
ASSERT_EQ(entry.pointers[p].isResampled,
|
||
|
|
motionEvent->isResampled(motionEventPointerIndex, i));
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
status = mConsumer->sendFinishedSignal(consumeSeq, true);
|
||
|
|
ASSERT_EQ(OK, status);
|
||
|
|
|
||
|
|
receiveResponseUntilSequence(consumeSeq);
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Timeline
|
||
|
|
* ---------+------------------+------------------+--------+-----------------+----------------------
|
||
|
|
* 0 ms 10 ms 20 ms 25 ms 35 ms
|
||
|
|
* ACTION_DOWN ACTION_MOVE ACTION_MOVE ^ ^
|
||
|
|
* | |
|
||
|
|
* resampled value |
|
||
|
|
* frameTime
|
||
|
|
* Typically, the prediction is made for time frameTime - RESAMPLE_LATENCY, or 30 ms in this case
|
||
|
|
* However, that would be 10 ms later than the last real sample (which came in at 20 ms).
|
||
|
|
* Therefore, the resampling should happen at 20 ms + RESAMPLE_MAX_PREDICTION = 28 ms.
|
||
|
|
* In this situation, though, resample time is further limited by taking half of the difference
|
||
|
|
* between the last two real events, which would put this time at:
|
||
|
|
* 20 ms + (20 ms - 10 ms) / 2 = 25 ms.
|
||
|
|
*/
|
||
|
|
TEST_F(TouchResamplingTest, EventIsResampled) {
|
||
|
|
std::chrono::nanoseconds frameTime;
|
||
|
|
std::vector<InputEventEntry> entries, expectedEntries;
|
||
|
|
|
||
|
|
// Initial ACTION_DOWN should be separate, because the first consume event will only return
|
||
|
|
// InputEvent with a single action.
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 5ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 35ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Same as above test, but use pointer id=1 instead of 0 to make sure that system does not
|
||
|
|
* have these hardcoded.
|
||
|
|
*/
|
||
|
|
TEST_F(TouchResamplingTest, EventIsResampledWithDifferentId) {
|
||
|
|
std::chrono::nanoseconds frameTime;
|
||
|
|
std::vector<InputEventEntry> entries, expectedEntries;
|
||
|
|
|
||
|
|
// Initial ACTION_DOWN should be separate, because the first consume event will only return
|
||
|
|
// InputEvent with a single action.
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 5ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 35ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{25ms, {{1, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Event should not be resampled when sample time is equal to event time.
|
||
|
|
*/
|
||
|
|
TEST_F(TouchResamplingTest, SampleTimeEqualsEventTime) {
|
||
|
|
std::chrono::nanoseconds frameTime;
|
||
|
|
std::vector<InputEventEntry> entries, expectedEntries;
|
||
|
|
|
||
|
|
// Initial ACTION_DOWN should be separate, because the first consume event will only return
|
||
|
|
// InputEvent with a single action.
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 5ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
// no resampled event because the time of resample falls exactly on the existing event
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
}
|
||
|
|
|
||
|
|
/**
|
||
|
|
* Once we send a resampled value to the app, we should continue to "lie" if the pointer
|
||
|
|
* does not move. So, if the pointer keeps the same coordinates, resampled value should continue
|
||
|
|
* to be used.
|
||
|
|
*/
|
||
|
|
TEST_F(TouchResamplingTest, ResampledValueIsUsedForIdenticalCoordinates) {
|
||
|
|
std::chrono::nanoseconds frameTime;
|
||
|
|
std::vector<InputEventEntry> entries, expectedEntries;
|
||
|
|
|
||
|
|
// Initial ACTION_DOWN should be separate, because the first consume event will only return
|
||
|
|
// InputEvent with a single action.
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 5ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 35ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Coordinate value 30 has been resampled to 35. When a new event comes in with value 30 again,
|
||
|
|
// the system should still report 35.
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{40ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{40ms,
|
||
|
|
{{0, 35, 30, .isResampled = true}},
|
||
|
|
AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten
|
||
|
|
{45ms,
|
||
|
|
{{0, 35, 30, .isResampled = true}},
|
||
|
|
AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST_F(TouchResamplingTest, OldEventReceivedAfterResampleOccurs) {
|
||
|
|
std::chrono::nanoseconds frameTime;
|
||
|
|
std::vector<InputEventEntry> entries, expectedEntries;
|
||
|
|
|
||
|
|
// Initial ACTION_DOWN should be separate, because the first consume event will only return
|
||
|
|
// InputEvent with a single action.
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 5ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 35ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
// Above, the resampled event is at 25ms rather than at 30 ms = 35ms - RESAMPLE_LATENCY
|
||
|
|
// because we are further bound by how far we can extrapolate by the "last time delta".
|
||
|
|
// That's 50% of (20 ms - 10ms) => 5ms. So we can't predict more than 5 ms into the future
|
||
|
|
// from the event at 20ms, which is why the resampled event is at t = 25 ms.
|
||
|
|
|
||
|
|
// We resampled the event to 25 ms. Now, an older 'real' event comes in.
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{24ms, {{0, 40, 30}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 50ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{24ms,
|
||
|
|
{{0, 35, 30, .isResampled = true}},
|
||
|
|
AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten
|
||
|
|
{26ms,
|
||
|
|
{{0, 45, 30, .isResampled = true}},
|
||
|
|
AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
}
|
||
|
|
|
||
|
|
TEST_F(TouchResamplingTest, TwoPointersAreResampledIndependently) {
|
||
|
|
std::chrono::nanoseconds frameTime;
|
||
|
|
std::vector<InputEventEntry> entries, expectedEntries;
|
||
|
|
|
||
|
|
// full action for when a pointer with id=1 appears (some other pointer must already be present)
|
||
|
|
constexpr int32_t actionPointer1Down =
|
||
|
|
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
|
||
|
|
|
||
|
|
// full action for when a pointer with id=0 disappears (some other pointer must still remain)
|
||
|
|
constexpr int32_t actionPointer0Up =
|
||
|
|
AMOTION_EVENT_ACTION_POINTER_UP + (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
|
||
|
|
|
||
|
|
// Initial ACTION_DOWN should be separate, because the first consume event will only return
|
||
|
|
// InputEvent with a single action.
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 5ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 10ms + 5ms /*RESAMPLE_LATENCY*/;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
// no resampled value because frameTime - RESAMPLE_LATENCY == eventTime
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Second pointer id=1 appears
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down},
|
||
|
|
// no resampled value because frameTime - RESAMPLE_LATENCY == eventTime
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Both pointers move
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{45ms,
|
||
|
|
{{0, 130, 130, .isResampled = true}, {1, 650, 650, .isResampled = true}},
|
||
|
|
AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Both pointers move again
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{60ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 75ms + 5ms /*RESAMPLE_LATENCY*/;
|
||
|
|
/**
|
||
|
|
* The sample at t = 60, pointer id 0 is not equal to 120, because this value of 120 was
|
||
|
|
* received twice, and resampled to 130. So if we already reported it as "130", we continue
|
||
|
|
* to report it as such. Similar with pointer id 1.
|
||
|
|
*/
|
||
|
|
expectedEntries = {
|
||
|
|
{60ms,
|
||
|
|
{{0, 130, 130, .isResampled = true}, // not 120! because it matches previous real event
|
||
|
|
{1, 650, 650, .isResampled = true}},
|
||
|
|
AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
{75ms,
|
||
|
|
{{0, 135, 135, .isResampled = true}, {1, 750, 750, .isResampled = true}},
|
||
|
|
AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// First pointer id=0 leaves the screen
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{80ms, {{1, 600, 600}}, actionPointer0Up},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 90ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{80ms, {{1, 600, 600}}, actionPointer0Up},
|
||
|
|
// no resampled event for ACTION_POINTER_UP
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
|
||
|
|
// Remaining pointer id=1 is still present, but doesn't move
|
||
|
|
entries = {
|
||
|
|
// id x y
|
||
|
|
{90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
publishInputEventEntries(entries);
|
||
|
|
frameTime = 100ms;
|
||
|
|
expectedEntries = {
|
||
|
|
// id x y
|
||
|
|
{90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
/**
|
||
|
|
* The latest event with ACTION_MOVE was at t = 70, coord = 700.
|
||
|
|
* Use that value for resampling here: (600 - 700) / (90 - 70) * 5 + 600
|
||
|
|
*/
|
||
|
|
{95ms, {{1, 575, 575, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
|
||
|
|
};
|
||
|
|
consumeInputEventEntries(expectedEntries, frameTime);
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace android
|