// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include class VLReLUMicrokernelTester { public: inline VLReLUMicrokernelTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline VLReLUMicrokernelTester& positive_scale(float positive_scale) { assert(positive_scale > 0.0f); assert(std::isnormal(positive_scale)); this->positive_scale_ = positive_scale; return *this; } inline float positive_scale() const { return this->positive_scale_; } inline VLReLUMicrokernelTester& negative_scale(float negative_scale) { assert(std::isnormal(negative_scale)); this->negative_scale_ = negative_scale; return *this; } inline float negative_scale() const { return this->negative_scale_; } inline VLReLUMicrokernelTester& input_zero_point(int16_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } inline int16_t input_zero_point() const { return this->input_zero_point_; } inline VLReLUMicrokernelTester& output_zero_point(int16_t output_zero_point) { this->output_zero_point_ = output_zero_point; return *this; } inline int16_t output_zero_point() const { return this->output_zero_point_; } inline VLReLUMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_qs8_vlrelu_ukernel_function vlrelu, xnn_init_qs8_lrelu_params_fn init_params) const { ASSERT_GE(input_zero_point(), std::numeric_limits::min()); ASSERT_LE(input_zero_point(), std::numeric_limits::max()); ASSERT_GE(output_zero_point(), std::numeric_limits::min()); ASSERT_LE(output_zero_point(), std::numeric_limits::max()); std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_int_distribution i8dist( std::numeric_limits::min(), std::numeric_limits::max()); std::vector input(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector output(batch_size()); std::vector output_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::fill(output.begin(), output.end(), INT8_C(0xA5)); union xnn_qs8_lrelu_params params; init_params(¶ms, positive_scale(), negative_scale(), input_zero_point(), output_zero_point()); // Call optimized micro-kernel. vlrelu(batch_size() * sizeof(int8_t), input.data(), output.data(), ¶ms); // Compute reference results const int32_t positive_multiplier = (int32_t) lrintf(-256.0f * positive_scale()); const int32_t negative_multiplier = (int32_t) lrintf(-256.0f * negative_scale()); for (size_t i = 0; i < batch_size(); i++) { const int32_t input_value = (input_zero_point() - input[i]) << 7; const int32_t multiplier = input_value <= 0 ? positive_multiplier : negative_multiplier; int32_t output_value = math_asr_s32(input_value * multiplier + INT32_C(0x4000), 15) + output_zero_point(); output_value = std::min(output_value, std::numeric_limits::max()); output_value = std::max(output_value, std::numeric_limits::min()); output_ref[i] = static_cast(output_value); } // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i])) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << int32_t(input[i]); } } } void Test(xnn_qu8_vlrelu_ukernel_function vlrelu, xnn_init_qu8_lrelu_params_fn init_params) const { ASSERT_GE(input_zero_point(), std::numeric_limits::min()); ASSERT_LE(input_zero_point(), std::numeric_limits::max()); ASSERT_GE(output_zero_point(), std::numeric_limits::min()); ASSERT_LE(output_zero_point(), std::numeric_limits::max()); std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_int_distribution u8dist( std::numeric_limits::min(), std::numeric_limits::max()); std::vector input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output(batch_size()); std::vector output_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::fill(output.begin(), output.end(), UINT8_C(0xA5)); union xnn_qu8_lrelu_params params; init_params(¶ms, positive_scale(), negative_scale(), input_zero_point(), output_zero_point()); // Call optimized micro-kernel. vlrelu(batch_size() * sizeof(uint8_t), input.data(), output.data(), ¶ms); // Compute reference results const int32_t positive_multiplier = (int32_t) lrintf(-256.0f * positive_scale()); const int32_t negative_multiplier = (int32_t) lrintf(-256.0f * negative_scale()); for (size_t i = 0; i < batch_size(); i++) { const int32_t input_value = (input_zero_point() - input[i]) << 7; const int32_t multiplier = input_value <= 0 ? positive_multiplier : negative_multiplier; int32_t output_value = math_asr_s32(input_value * multiplier + INT32_C(0x4000), 15) + output_zero_point(); output_value = std::min(output_value, std::numeric_limits::max()); output_value = std::max(output_value, std::numeric_limits::min()); output_ref[i] = static_cast(output_value); } // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i])) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << int32_t(input[i]); } } } private: float positive_scale_ = 1.75f; float negative_scale_ = 0.75f; int16_t input_zero_point_ = 1; int16_t output_zero_point_ = 5; size_t batch_size_ = 1; size_t iterations_ = 15; };