/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "config/aom_dsp_rtcd.h" #include "config/aom_config.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/sum_neon.h" #include "aom/aom_integer.h" #include "aom_ports/mem.h" #if defined(__ARM_FEATURE_DOTPROD) static INLINE void variance_4xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { uint32x4_t src_sum = vdupq_n_u32(0); uint32x4_t ref_sum = vdupq_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); int i = 0; do { uint8x16_t s = load_unaligned_u8q(src, src_stride); uint8x16_t r = load_unaligned_u8q(ref, ref_stride); src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1)); ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1)); uint8x16_t abs_diff = vabdq_u8(s, r); sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff); src += 4 * src_stride; ref += 4 * ref_stride; i += 4; } while (i < h); int32x4_t sum_diff = vsubq_s32(vreinterpretq_s32_u32(src_sum), vreinterpretq_s32_u32(ref_sum)); *sum = horizontal_add_s32x4(sum_diff); *sse = horizontal_add_u32x4(sse_u32); } static INLINE void variance_8xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { uint32x4_t src_sum = vdupq_n_u32(0); uint32x4_t ref_sum = vdupq_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); int i = 0; do { uint8x16_t s = vcombine_u8(vld1_u8(src), vld1_u8(src + src_stride)); uint8x16_t r = vcombine_u8(vld1_u8(ref), vld1_u8(ref + ref_stride)); src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1)); ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1)); uint8x16_t abs_diff = vabdq_u8(s, r); sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff); src += 2 * src_stride; ref += 2 * ref_stride; i += 2; } while (i < h); int32x4_t sum_diff = vsubq_s32(vreinterpretq_s32_u32(src_sum), vreinterpretq_s32_u32(ref_sum)); *sum = horizontal_add_s32x4(sum_diff); *sse = horizontal_add_u32x4(sse_u32); } static INLINE void variance_16xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { uint32x4_t src_sum = vdupq_n_u32(0); uint32x4_t ref_sum = vdupq_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); int i = 0; do { uint8x16_t s = vld1q_u8(src); uint8x16_t r = vld1q_u8(ref); src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1)); ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1)); uint8x16_t abs_diff = vabdq_u8(s, r); sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff); src += src_stride; ref += ref_stride; i++; } while (i < h); int32x4_t sum_diff = vsubq_s32(vreinterpretq_s32_u32(src_sum), vreinterpretq_s32_u32(ref_sum)); *sum = horizontal_add_s32x4(sum_diff); *sse = horizontal_add_u32x4(sse_u32); } static INLINE void variance_large_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int w, int h, uint32_t *sse, int *sum) { uint32x4_t src_sum = vdupq_n_u32(0); uint32x4_t ref_sum = vdupq_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); int i = 0; do { int j = 0; do { uint8x16_t s = vld1q_u8(src + j); uint8x16_t r = vld1q_u8(ref + j); src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1)); ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1)); uint8x16_t abs_diff = vabdq_u8(s, r); sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff); j += 16; } while (j < w); src += src_stride; ref += ref_stride; i++; } while (i < h); int32x4_t sum_diff = vsubq_s32(vreinterpretq_s32_u32(src_sum), vreinterpretq_s32_u32(ref_sum)); *sum = horizontal_add_s32x4(sum_diff); *sse = horizontal_add_u32x4(sse_u32); } static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 32, h, sse, sum); } static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 64, h, sse, sum); } static INLINE void variance_128xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 128, h, sse, sum); } #else // !defined(__ARM_FEATURE_DOTPROD) static INLINE void variance_4xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { int16x8_t sum_s16 = vdupq_n_s16(0); int32x4_t sse_s32 = vdupq_n_s32(0); // Number of rows we can process before 'sum_s16' overflows: // 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows. assert(h <= 256); int i = 0; do { uint8x8_t s = load_unaligned_u8(src, src_stride); uint8x8_t r = load_unaligned_u8(ref, ref_stride); int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r)); sum_s16 = vaddq_s16(sum_s16, diff); sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff)); sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff)); src += 2 * src_stride; ref += 2 * ref_stride; i += 2; } while (i < h); *sum = horizontal_add_s16x8(sum_s16); *sse = (uint32_t)horizontal_add_s32x4(sse_s32); } static INLINE void variance_8xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { int16x8_t sum_s16 = vdupq_n_s16(0); int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; // Number of rows we can process before 'sum_s16' overflows: // 32767 / 255 ~= 128 assert(h <= 128); int i = 0; do { uint8x8_t s = vld1_u8(src); uint8x8_t r = vld1_u8(ref); int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r)); sum_s16 = vaddq_s16(sum_s16, diff); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff)); src += src_stride; ref += ref_stride; i++; } while (i < h); *sum = horizontal_add_s16x8(sum_s16); *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1])); } static INLINE void variance_16xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) }; int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; // Number of rows we can process before 'sum_s16' accumulators overflow: // 32767 / 255 ~= 128, so 128 16-wide rows. assert(h <= 128); int i = 0; do { uint8x16_t s = vld1q_u8(src); uint8x16_t r = vld1q_u8(ref); int16x8_t diff_l = vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r))); int16x8_t diff_h = vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r))); sum_s16[0] = vaddq_s16(sum_s16[0], diff_l); sum_s16[1] = vaddq_s16(sum_s16[1], diff_h); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l)); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h)); src += src_stride; ref += ref_stride; i++; } while (i < h); *sum = horizontal_add_s16x8(vaddq_s16(sum_s16[0], sum_s16[1])); *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1])); } static INLINE void variance_large_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int w, int h, int h_limit, uint32_t *sse, int *sum) { int32x4_t sum_s32 = vdupq_n_s32(0); int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; // 'h_limit' is the number of 'w'-width rows we can process before our 16-bit // accumulator overflows. After hitting this limit we accumulate into 32-bit // elements. int h_tmp = h > h_limit ? h_limit : h; int i = 0; do { int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) }; do { int j = 0; do { uint8x16_t s = vld1q_u8(src + j); uint8x16_t r = vld1q_u8(ref + j); int16x8_t diff_l = vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r))); int16x8_t diff_h = vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r))); sum_s16[0] = vaddq_s16(sum_s16[0], diff_l); sum_s16[1] = vaddq_s16(sum_s16[1], diff_h); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l)); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h)); j += 16; } while (j < w); src += src_stride; ref += ref_stride; i++; } while (i < h_tmp); sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]); sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]); h_tmp += h_limit; } while (i < h); *sum = horizontal_add_s32x4(sum_s32); *sse = (uint32_t)horizontal_add_s32x4(vaddq_s32(sse_s32[0], sse_s32[1])); } static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum); } static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum); } static INLINE void variance_128xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 128, h, 16, sse, sum); } #endif // defined(__ARM_FEATURE_DOTPROD) #define VARIANCE_WXH_NEON(w, h, shift) \ unsigned int aom_variance##w##x##h##_neon( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ int sum; \ variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum); \ return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \ } VARIANCE_WXH_NEON(4, 4, 4) VARIANCE_WXH_NEON(4, 8, 5) VARIANCE_WXH_NEON(4, 16, 6) VARIANCE_WXH_NEON(8, 4, 5) VARIANCE_WXH_NEON(8, 8, 6) VARIANCE_WXH_NEON(8, 16, 7) VARIANCE_WXH_NEON(8, 32, 8) VARIANCE_WXH_NEON(16, 4, 6) VARIANCE_WXH_NEON(16, 8, 7) VARIANCE_WXH_NEON(16, 16, 8) VARIANCE_WXH_NEON(16, 32, 9) VARIANCE_WXH_NEON(16, 64, 10) VARIANCE_WXH_NEON(32, 8, 8) VARIANCE_WXH_NEON(32, 16, 9) VARIANCE_WXH_NEON(32, 32, 10) VARIANCE_WXH_NEON(32, 64, 11) VARIANCE_WXH_NEON(64, 16, 10) VARIANCE_WXH_NEON(64, 32, 11) VARIANCE_WXH_NEON(64, 64, 12) VARIANCE_WXH_NEON(64, 128, 13) VARIANCE_WXH_NEON(128, 64, 13) VARIANCE_WXH_NEON(128, 128, 14) #undef VARIANCE_WXH_NEON void aom_get8x8var_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse, int *sum) { variance_8xh_neon(src, src_stride, ref, ref_stride, 8, sse, sum); } void aom_get16x16var_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse, int *sum) { variance_16xh_neon(src, src_stride, ref, ref_stride, 16, sse, sum); } // TODO(yunqingwang): Perform variance of two/four 8x8 blocks similar to that of // AVX2. Also, implement the NEON for variance computation present in this // function. void aom_get_var_sse_sum_8x8_quad_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, uint32_t *sse8x8, int *sum8x8, unsigned int *tot_sse, int *tot_sum, uint32_t *var8x8) { // Loop over 4 8x8 blocks. Process one 8x32 block. for (int k = 0; k < 4; k++) { variance_8xh_neon(src + (k * 8), src_stride, ref + (k * 8), ref_stride, 8, &sse8x8[k], &sum8x8[k]); } *tot_sse += sse8x8[0] + sse8x8[1] + sse8x8[2] + sse8x8[3]; *tot_sum += sum8x8[0] + sum8x8[1] + sum8x8[2] + sum8x8[3]; for (int i = 0; i < 4; i++) var8x8[i] = sse8x8[i] - (uint32_t)(((int64_t)sum8x8[i] * sum8x8[i]) >> 6); } #if defined(__ARM_FEATURE_DOTPROD) static INLINE unsigned int mse8xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse, int h) { uint32x4_t sse_u32 = vdupq_n_u32(0); int i = 0; do { uint8x16_t s = vcombine_u8(vld1_u8(src), vld1_u8(src + src_stride)); uint8x16_t r = vcombine_u8(vld1_u8(ref), vld1_u8(ref + ref_stride)); uint8x16_t abs_diff = vabdq_u8(s, r); sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff); src += 2 * src_stride; ref += 2 * ref_stride; i += 2; } while (i < h); *sse = horizontal_add_u32x4(sse_u32); return horizontal_add_u32x4(sse_u32); } static INLINE unsigned int mse16xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse, int h) { uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) }; int i = 0; do { uint8x16_t s0 = vld1q_u8(src); uint8x16_t s1 = vld1q_u8(src + src_stride); uint8x16_t r0 = vld1q_u8(ref); uint8x16_t r1 = vld1q_u8(ref + ref_stride); uint8x16_t abs_diff0 = vabdq_u8(s0, r0); uint8x16_t abs_diff1 = vabdq_u8(s1, r1); sse_u32[0] = vdotq_u32(sse_u32[0], abs_diff0, abs_diff0); sse_u32[1] = vdotq_u32(sse_u32[1], abs_diff1, abs_diff1); src += 2 * src_stride; ref += 2 * ref_stride; i += 2; } while (i < h); *sse = horizontal_add_u32x4(vaddq_u32(sse_u32[0], sse_u32[1])); return horizontal_add_u32x4(vaddq_u32(sse_u32[0], sse_u32[1])); } unsigned int aom_get4x4sse_cs_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride) { uint8x16_t s = load_unaligned_u8q(src, src_stride); uint8x16_t r = load_unaligned_u8q(ref, ref_stride); uint8x16_t abs_diff = vabdq_u8(s, r); uint32x4_t sse = vdotq_u32(vdupq_n_u32(0), abs_diff, abs_diff); return horizontal_add_u32x4(sse); } #else // !defined(__ARM_FEATURE_DOTPROD) static INLINE unsigned int mse8xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse, int h) { uint8x8_t s[2], r[2]; int16x4_t diff_lo[2], diff_hi[2]; uint16x8_t diff[2]; int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; int i = 0; do { s[0] = vld1_u8(src); src += src_stride; s[1] = vld1_u8(src); src += src_stride; r[0] = vld1_u8(ref); ref += ref_stride; r[1] = vld1_u8(ref); ref += ref_stride; diff[0] = vsubl_u8(s[0], r[0]); diff[1] = vsubl_u8(s[1], r[1]); diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0])); diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1])); sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]); sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]); diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0])); diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1])); sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]); sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]); i += 2; } while (i < h); sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]); *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); } static INLINE unsigned int mse16xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse, int h) { uint8x16_t s[2], r[2]; int16x4_t diff_lo[4], diff_hi[4]; uint16x8_t diff[4]; int32x4_t sse_s32[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0) }; int i = 0; do { s[0] = vld1q_u8(src); src += src_stride; s[1] = vld1q_u8(src); src += src_stride; r[0] = vld1q_u8(ref); ref += ref_stride; r[1] = vld1q_u8(ref); ref += ref_stride; diff[0] = vsubl_u8(vget_low_u8(s[0]), vget_low_u8(r[0])); diff[1] = vsubl_u8(vget_high_u8(s[0]), vget_high_u8(r[0])); diff[2] = vsubl_u8(vget_low_u8(s[1]), vget_low_u8(r[1])); diff[3] = vsubl_u8(vget_high_u8(s[1]), vget_high_u8(r[1])); diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0])); diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1])); sse_s32[0] = vmlal_s16(sse_s32[0], diff_lo[0], diff_lo[0]); sse_s32[1] = vmlal_s16(sse_s32[1], diff_lo[1], diff_lo[1]); diff_lo[2] = vreinterpret_s16_u16(vget_low_u16(diff[2])); diff_lo[3] = vreinterpret_s16_u16(vget_low_u16(diff[3])); sse_s32[2] = vmlal_s16(sse_s32[2], diff_lo[2], diff_lo[2]); sse_s32[3] = vmlal_s16(sse_s32[3], diff_lo[3], diff_lo[3]); diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0])); diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1])); sse_s32[0] = vmlal_s16(sse_s32[0], diff_hi[0], diff_hi[0]); sse_s32[1] = vmlal_s16(sse_s32[1], diff_hi[1], diff_hi[1]); diff_hi[2] = vreinterpret_s16_u16(vget_high_u16(diff[2])); diff_hi[3] = vreinterpret_s16_u16(vget_high_u16(diff[3])); sse_s32[2] = vmlal_s16(sse_s32[2], diff_hi[2], diff_hi[2]); sse_s32[3] = vmlal_s16(sse_s32[3], diff_hi[3], diff_hi[3]); i += 2; } while (i < h); sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[1]); sse_s32[2] = vaddq_s32(sse_s32[2], sse_s32[3]); sse_s32[0] = vaddq_s32(sse_s32[0], sse_s32[2]); *sse = horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); return horizontal_add_u32x4(vreinterpretq_u32_s32(sse_s32[0])); } unsigned int aom_get4x4sse_cs_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride) { uint8x8_t s[4], r[4]; int16x4_t diff[4]; int32x4_t sse; s[0] = vld1_u8(src); src += src_stride; r[0] = vld1_u8(ref); ref += ref_stride; s[1] = vld1_u8(src); src += src_stride; r[1] = vld1_u8(ref); ref += ref_stride; s[2] = vld1_u8(src); src += src_stride; r[2] = vld1_u8(ref); ref += ref_stride; s[3] = vld1_u8(src); r[3] = vld1_u8(ref); diff[0] = vget_low_s16(vreinterpretq_s16_u16(vsubl_u8(s[0], r[0]))); diff[1] = vget_low_s16(vreinterpretq_s16_u16(vsubl_u8(s[1], r[1]))); diff[2] = vget_low_s16(vreinterpretq_s16_u16(vsubl_u8(s[2], r[2]))); diff[3] = vget_low_s16(vreinterpretq_s16_u16(vsubl_u8(s[3], r[3]))); sse = vmull_s16(diff[0], diff[0]); sse = vmlal_s16(sse, diff[1], diff[1]); sse = vmlal_s16(sse, diff[2], diff[2]); sse = vmlal_s16(sse, diff[3], diff[3]); return horizontal_add_u32x4(vreinterpretq_u32_s32(sse)); } #endif // defined(__ARM_FEATURE_DOTPROD) #define MSE_WXH_NEON(w, h) \ unsigned int aom_mse##w##x##h##_neon(const uint8_t *src, int src_stride, \ const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ return mse##w##xh_neon(src, src_stride, ref, ref_stride, sse, h); \ } MSE_WXH_NEON(8, 8) MSE_WXH_NEON(8, 16) MSE_WXH_NEON(16, 8) MSE_WXH_NEON(16, 16) #undef MSE_WXH_NEON #define COMPUTE_MSE_16BIT(src_16x8, dst_16x8) \ /* r7 r6 r5 r4 r3 r2 r1 r0 - 16 bit */ \ const uint16x8_t diff = vabdq_u16(src_16x8, dst_16x8); \ /*r3 r2 r1 r0 - 16 bit */ \ const uint16x4_t res0_low_16x4 = vget_low_u16(diff); \ /*r7 r6 r5 r4 - 16 bit */ \ const uint16x4_t res0_high_16x4 = vget_high_u16(diff); \ /* (r3*r3)= b3 (r2*r2)= b2 (r1*r1)= b1 (r0*r0)= b0 - 32 bit */ \ const uint32x4_t res0_32x4 = vmull_u16(res0_low_16x4, res0_low_16x4); \ /* (r7*r7)= b7 (r6*r6)= b6 (r5*r5)= b5 (r4*r4)= b4 - 32 bit*/ \ /* b3+b7 b2+b6 b1+b5 b0+b4 - 32 bit*/ \ const uint32x4_t res_32x4 = \ vmlal_u16(res0_32x4, res0_high_16x4, res0_high_16x4); \ \ /*a1 a0 - 64 bit*/ \ const uint64x2_t vl = vpaddlq_u32(res_32x4); \ /*a1+a2= f1 a3+a0= f0*/ \ square_result = vaddq_u64(square_result, vl); static AOM_INLINE uint64_t mse_4xh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src, int sstride, int h) { uint64x2_t square_result = vdupq_n_u64(0); uint32_t d0, d1; int i = 0; uint8_t *dst_ptr = dst; uint16_t *src_ptr = src; do { // d03 d02 d01 d00 - 8 bit memcpy(&d0, dst_ptr, 4); dst_ptr += dstride; // d13 d12 d11 d10 - 8 bit memcpy(&d1, dst_ptr, 4); dst_ptr += dstride; // duplication uint8x8_t tmp0_8x8 = vreinterpret_u8_u32(vdup_n_u32(d0)); // d03 d02 d01 d00 - 16 bit const uint16x4_t dst0_16x4 = vget_low_u16(vmovl_u8(tmp0_8x8)); // duplication tmp0_8x8 = vreinterpret_u8_u32(vdup_n_u32(d1)); // d13 d12 d11 d10 - 16 bit const uint16x4_t dst1_16x4 = vget_low_u16(vmovl_u8(tmp0_8x8)); // d13 d12 d11 d10 d03 d02 d01 d00 - 16 bit const uint16x8_t dst_16x8 = vcombine_u16(dst0_16x4, dst1_16x4); // b1r0 - s03 s02 s01 s00 - 16 bit const uint16x4_t src0_16x4 = vld1_u16(src_ptr); src_ptr += sstride; // b1r1 - s13 s12 s11 s10 - 16 bit const uint16x4_t src1_16x4 = vld1_u16(src_ptr); src_ptr += sstride; // s13 s12 s11 s10 s03 s02 s01 s00 - 16 bit const uint16x8_t src_16x8 = vcombine_u16(src0_16x4, src1_16x4); COMPUTE_MSE_16BIT(src_16x8, dst_16x8) i += 2; } while (i < h); uint64x1_t sum = vadd_u64(vget_high_u64(square_result), vget_low_u64(square_result)); return vget_lane_u64(sum, 0); } static AOM_INLINE uint64_t mse_8xh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src, int sstride, int h) { uint64x2_t square_result = vdupq_n_u64(0); int i = 0; do { // d7 d6 d5 d4 d3 d2 d1 d0 - 8 bit const uint16x8_t dst_16x8 = vmovl_u8(vld1_u8(&dst[i * dstride])); // s7 s6 s5 s4 s3 s2 s1 s0 - 16 bit const uint16x8_t src_16x8 = vld1q_u16(&src[i * sstride]); COMPUTE_MSE_16BIT(src_16x8, dst_16x8) i++; } while (i < h); uint64x1_t sum = vadd_u64(vget_high_u64(square_result), vget_low_u64(square_result)); return vget_lane_u64(sum, 0); } // Computes mse for a given block size. This function gets called for specific // block sizes, which are 8x8, 8x4, 4x8 and 4x4. uint64_t aom_mse_wxh_16bit_neon(uint8_t *dst, int dstride, uint16_t *src, int sstride, int w, int h) { assert((w == 8 || w == 4) && (h == 8 || h == 4) && "w=8/4 and h=8/4 must satisfy"); switch (w) { case 4: return mse_4xh_16bit_neon(dst, dstride, src, sstride, h); case 8: return mse_8xh_16bit_neon(dst, dstride, src, sstride, h); default: assert(0 && "unsupported width"); return -1; } }