/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "AHAL_Stream" #include #include #include #include #include "core-impl/Module.h" #include "core-impl/Stream.h" using aidl::android::hardware::audio::common::AudioOffloadMetadata; using aidl::android::hardware::audio::common::getChannelCount; using aidl::android::hardware::audio::common::getFrameSizeInBytes; using aidl::android::hardware::audio::common::SinkMetadata; using aidl::android::hardware::audio::common::SourceMetadata; using aidl::android::media::audio::common::AudioDevice; using aidl::android::media::audio::common::AudioDualMonoMode; using aidl::android::media::audio::common::AudioLatencyMode; using aidl::android::media::audio::common::AudioOffloadInfo; using aidl::android::media::audio::common::AudioPlaybackRate; using aidl::android::media::audio::common::MicrophoneDynamicInfo; using aidl::android::media::audio::common::MicrophoneInfo; namespace aidl::android::hardware::audio::core { void StreamContext::fillDescriptor(StreamDescriptor* desc) { if (mCommandMQ) { desc->command = mCommandMQ->dupeDesc(); } if (mReplyMQ) { desc->reply = mReplyMQ->dupeDesc(); } if (mDataMQ) { const size_t frameSize = getFrameSize(); desc->frameSizeBytes = frameSize; desc->bufferSizeFrames = mDataMQ->getQuantumCount() * mDataMQ->getQuantumSize() / frameSize; desc->audio.set(mDataMQ->dupeDesc()); } } size_t StreamContext::getFrameSize() const { return getFrameSizeInBytes(mFormat, mChannelLayout); } bool StreamContext::isValid() const { if (mCommandMQ && !mCommandMQ->isValid()) { LOG(ERROR) << "command FMQ is invalid"; return false; } if (mReplyMQ && !mReplyMQ->isValid()) { LOG(ERROR) << "reply FMQ is invalid"; return false; } if (getFrameSize() == 0) { LOG(ERROR) << "frame size is invalid"; return false; } if (mDataMQ && !mDataMQ->isValid()) { LOG(ERROR) << "data FMQ is invalid"; return false; } return true; } void StreamContext::reset() { mCommandMQ.reset(); mReplyMQ.reset(); mDataMQ.reset(); } std::string StreamWorkerCommonLogic::init() { if (mCommandMQ == nullptr) return "Command MQ is null"; if (mReplyMQ == nullptr) return "Reply MQ is null"; if (mDataMQ == nullptr) return "Data MQ is null"; if (sizeof(DataBufferElement) != mDataMQ->getQuantumSize()) { return "Unexpected Data MQ quantum size: " + std::to_string(mDataMQ->getQuantumSize()); } mDataBufferSize = mDataMQ->getQuantumCount() * mDataMQ->getQuantumSize(); mDataBuffer.reset(new (std::nothrow) DataBufferElement[mDataBufferSize]); if (mDataBuffer == nullptr) { return "Failed to allocate data buffer for element count " + std::to_string(mDataMQ->getQuantumCount()) + ", size in bytes: " + std::to_string(mDataBufferSize); } if (::android::status_t status = mDriver->init(); status != STATUS_OK) { return "Failed to initialize the driver: " + std::to_string(status); } return ""; } void StreamWorkerCommonLogic::populateReply(StreamDescriptor::Reply* reply, bool isConnected) const { reply->status = STATUS_OK; if (isConnected) { reply->observable.frames = mFrameCount; reply->observable.timeNs = ::android::elapsedRealtimeNano(); } else { reply->observable.frames = StreamDescriptor::Position::UNKNOWN; reply->observable.timeNs = StreamDescriptor::Position::UNKNOWN; } } void StreamWorkerCommonLogic::populateReplyWrongState( StreamDescriptor::Reply* reply, const StreamDescriptor::Command& command) const { LOG(WARNING) << "command '" << toString(command.getTag()) << "' can not be handled in the state " << toString(mState); reply->status = STATUS_INVALID_OPERATION; } const std::string StreamInWorkerLogic::kThreadName = "reader"; StreamInWorkerLogic::Status StreamInWorkerLogic::cycle() { // Note: for input streams, draining is driven by the client, thus // "empty buffer" condition can only happen while handling the 'burst' // command. Thus, unlike for output streams, it does not make sense to // delay the 'DRAINING' state here by 'mTransientStateDelayMs'. // TODO: Add a delay for transitions of async operations when/if they added. StreamDescriptor::Command command{}; if (!mCommandMQ->readBlocking(&command, 1)) { LOG(ERROR) << __func__ << ": reading of command from MQ failed"; mState = StreamDescriptor::State::ERROR; return Status::ABORT; } using Tag = StreamDescriptor::Command::Tag; using LogSeverity = ::android::base::LogSeverity; const LogSeverity severity = command.getTag() == Tag::burst || command.getTag() == Tag::getStatus ? LogSeverity::VERBOSE : LogSeverity::DEBUG; LOG(severity) << __func__ << ": received command " << command.toString() << " in " << kThreadName; StreamDescriptor::Reply reply{}; reply.status = STATUS_BAD_VALUE; switch (command.getTag()) { case Tag::halReservedExit: if (const int32_t cookie = command.get(); cookie == mInternalCommandCookie) { setClosed(); // This is an internal command, no need to reply. return Status::EXIT; } else { LOG(WARNING) << __func__ << ": EXIT command has a bad cookie: " << cookie; } break; case Tag::getStatus: populateReply(&reply, mIsConnected); break; case Tag::start: if (mState == StreamDescriptor::State::STANDBY || mState == StreamDescriptor::State::DRAINING) { populateReply(&reply, mIsConnected); mState = mState == StreamDescriptor::State::STANDBY ? StreamDescriptor::State::IDLE : StreamDescriptor::State::ACTIVE; } else { populateReplyWrongState(&reply, command); } break; case Tag::burst: if (const int32_t fmqByteCount = command.get(); fmqByteCount >= 0) { LOG(VERBOSE) << __func__ << ": '" << toString(command.getTag()) << "' command for " << fmqByteCount << " bytes"; if (mState == StreamDescriptor::State::IDLE || mState == StreamDescriptor::State::ACTIVE || mState == StreamDescriptor::State::PAUSED || mState == StreamDescriptor::State::DRAINING) { if (!read(fmqByteCount, &reply)) { mState = StreamDescriptor::State::ERROR; } if (mState == StreamDescriptor::State::IDLE || mState == StreamDescriptor::State::PAUSED) { mState = StreamDescriptor::State::ACTIVE; } else if (mState == StreamDescriptor::State::DRAINING) { // To simplify the reference code, we assume that the read operation // has consumed all the data remaining in the hardware buffer. // In a real implementation, here we would either remain in // the 'DRAINING' state, or transfer to 'STANDBY' depending on the // buffer state. mState = StreamDescriptor::State::STANDBY; } } else { populateReplyWrongState(&reply, command); } } else { LOG(WARNING) << __func__ << ": invalid burst byte count: " << fmqByteCount; } break; case Tag::drain: if (const auto mode = command.get(); mode == StreamDescriptor::DrainMode::DRAIN_UNSPECIFIED) { if (mState == StreamDescriptor::State::ACTIVE) { if (::android::status_t status = mDriver->drain(mode); status == ::android::OK) { populateReply(&reply, mIsConnected); mState = StreamDescriptor::State::DRAINING; } else { LOG(ERROR) << __func__ << ": drain failed: " << status; mState = StreamDescriptor::State::ERROR; } } else { populateReplyWrongState(&reply, command); } } else { LOG(WARNING) << __func__ << ": invalid drain mode: " << toString(mode); } break; case Tag::standby: if (mState == StreamDescriptor::State::IDLE) { if (::android::status_t status = mDriver->standby(); status == ::android::OK) { populateReply(&reply, mIsConnected); mState = StreamDescriptor::State::STANDBY; } else { LOG(ERROR) << __func__ << ": standby failed: " << status; mState = StreamDescriptor::State::ERROR; } } else { populateReplyWrongState(&reply, command); } break; case Tag::pause: if (mState == StreamDescriptor::State::ACTIVE) { if (::android::status_t status = mDriver->pause(); status == ::android::OK) { populateReply(&reply, mIsConnected); mState = StreamDescriptor::State::PAUSED; } else { LOG(ERROR) << __func__ << ": pause failed: " << status; mState = StreamDescriptor::State::ERROR; } } else { populateReplyWrongState(&reply, command); } break; case Tag::flush: if (mState == StreamDescriptor::State::PAUSED) { if (::android::status_t status = mDriver->flush(); status == ::android::OK) { populateReply(&reply, mIsConnected); mState = StreamDescriptor::State::STANDBY; } else { LOG(ERROR) << __func__ << ": flush failed: " << status; mState = StreamDescriptor::State::ERROR; } } else { populateReplyWrongState(&reply, command); } break; } reply.state = mState; LOG(severity) << __func__ << ": writing reply " << reply.toString(); if (!mReplyMQ->writeBlocking(&reply, 1)) { LOG(ERROR) << __func__ << ": writing of reply " << reply.toString() << " to MQ failed"; mState = StreamDescriptor::State::ERROR; return Status::ABORT; } return Status::CONTINUE; } bool StreamInWorkerLogic::read(size_t clientSize, StreamDescriptor::Reply* reply) { const size_t byteCount = std::min({clientSize, mDataMQ->availableToWrite(), mDataBufferSize}); const bool isConnected = mIsConnected; size_t actualFrameCount = 0; bool fatal = false; int32_t latency = Module::kLatencyMs; if (isConnected) { if (::android::status_t status = mDriver->transfer( mDataBuffer.get(), byteCount / mFrameSize, &actualFrameCount, &latency); status != ::android::OK) { fatal = true; LOG(ERROR) << __func__ << ": read failed: " << status; } } else { usleep(3000); // Simulate blocking transfer delay. for (size_t i = 0; i < byteCount; ++i) mDataBuffer[i] = 0; actualFrameCount = byteCount / mFrameSize; } const size_t actualByteCount = actualFrameCount * mFrameSize; if (bool success = actualByteCount > 0 ? mDataMQ->write(&mDataBuffer[0], actualByteCount) : true; success) { LOG(VERBOSE) << __func__ << ": writing of " << actualByteCount << " bytes into data MQ" << " succeeded; connected? " << isConnected; // Frames are provided and counted regardless of connection status. reply->fmqByteCount += actualByteCount; mFrameCount += actualFrameCount; populateReply(reply, isConnected); } else { LOG(WARNING) << __func__ << ": writing of " << actualByteCount << " bytes of data to MQ failed"; reply->status = STATUS_NOT_ENOUGH_DATA; } reply->latencyMs = latency; return !fatal; } const std::string StreamOutWorkerLogic::kThreadName = "writer"; StreamOutWorkerLogic::Status StreamOutWorkerLogic::cycle() { if (mState == StreamDescriptor::State::DRAINING || mState == StreamDescriptor::State::TRANSFERRING) { if (auto stateDurationMs = std::chrono::duration_cast( std::chrono::steady_clock::now() - mTransientStateStart); stateDurationMs >= mTransientStateDelayMs) { if (mAsyncCallback == nullptr) { // In blocking mode, mState can only be DRAINING. mState = StreamDescriptor::State::IDLE; } else { // In a real implementation, the driver should notify the HAL about // drain or transfer completion. In the stub, we switch unconditionally. if (mState == StreamDescriptor::State::DRAINING) { mState = StreamDescriptor::State::IDLE; ndk::ScopedAStatus status = mAsyncCallback->onDrainReady(); if (!status.isOk()) { LOG(ERROR) << __func__ << ": error from onDrainReady: " << status; } } else { mState = StreamDescriptor::State::ACTIVE; ndk::ScopedAStatus status = mAsyncCallback->onTransferReady(); if (!status.isOk()) { LOG(ERROR) << __func__ << ": error from onTransferReady: " << status; } } } if (mTransientStateDelayMs.count() != 0) { LOG(DEBUG) << __func__ << ": switched to state " << toString(mState) << " after a timeout"; } } } StreamDescriptor::Command command{}; if (!mCommandMQ->readBlocking(&command, 1)) { LOG(ERROR) << __func__ << ": reading of command from MQ failed"; mState = StreamDescriptor::State::ERROR; return Status::ABORT; } using Tag = StreamDescriptor::Command::Tag; using LogSeverity = ::android::base::LogSeverity; const LogSeverity severity = command.getTag() == Tag::burst || command.getTag() == Tag::getStatus ? LogSeverity::VERBOSE : LogSeverity::DEBUG; LOG(severity) << __func__ << ": received command " << command.toString() << " in " << kThreadName; StreamDescriptor::Reply reply{}; reply.status = STATUS_BAD_VALUE; using Tag = StreamDescriptor::Command::Tag; switch (command.getTag()) { case Tag::halReservedExit: if (const int32_t cookie = command.get(); cookie == mInternalCommandCookie) { setClosed(); // This is an internal command, no need to reply. return Status::EXIT; } else { LOG(WARNING) << __func__ << ": EXIT command has a bad cookie: " << cookie; } break; case Tag::getStatus: populateReply(&reply, mIsConnected); break; case Tag::start: { bool commandAccepted = true; switch (mState) { case StreamDescriptor::State::STANDBY: mState = StreamDescriptor::State::IDLE; break; case StreamDescriptor::State::PAUSED: mState = StreamDescriptor::State::ACTIVE; break; case StreamDescriptor::State::DRAIN_PAUSED: switchToTransientState(StreamDescriptor::State::DRAINING); break; case StreamDescriptor::State::TRANSFER_PAUSED: switchToTransientState(StreamDescriptor::State::TRANSFERRING); break; default: populateReplyWrongState(&reply, command); commandAccepted = false; } if (commandAccepted) { populateReply(&reply, mIsConnected); } } break; case Tag::burst: if (const int32_t fmqByteCount = command.get(); fmqByteCount >= 0) { LOG(VERBOSE) << __func__ << ": '" << toString(command.getTag()) << "' command for " << fmqByteCount << " bytes"; if (mState != StreamDescriptor::State::ERROR && mState != StreamDescriptor::State::TRANSFERRING && mState != StreamDescriptor::State::TRANSFER_PAUSED) { if (!write(fmqByteCount, &reply)) { mState = StreamDescriptor::State::ERROR; } if (mState == StreamDescriptor::State::STANDBY || mState == StreamDescriptor::State::DRAIN_PAUSED || mState == StreamDescriptor::State::PAUSED) { if (mAsyncCallback == nullptr || mState != StreamDescriptor::State::DRAIN_PAUSED) { mState = StreamDescriptor::State::PAUSED; } else { mState = StreamDescriptor::State::TRANSFER_PAUSED; } } else if (mState == StreamDescriptor::State::IDLE || mState == StreamDescriptor::State::DRAINING || mState == StreamDescriptor::State::ACTIVE) { if (mAsyncCallback == nullptr || reply.fmqByteCount == fmqByteCount) { mState = StreamDescriptor::State::ACTIVE; } else { switchToTransientState(StreamDescriptor::State::TRANSFERRING); } } } else { populateReplyWrongState(&reply, command); } } else { LOG(WARNING) << __func__ << ": invalid burst byte count: " << fmqByteCount; } break; case Tag::drain: if (const auto mode = command.get(); mode == StreamDescriptor::DrainMode::DRAIN_ALL || mode == StreamDescriptor::DrainMode::DRAIN_EARLY_NOTIFY) { if (mState == StreamDescriptor::State::ACTIVE || mState == StreamDescriptor::State::TRANSFERRING) { if (::android::status_t status = mDriver->drain(mode); status == ::android::OK) { populateReply(&reply, mIsConnected); if (mState == StreamDescriptor::State::ACTIVE && mForceSynchronousDrain) { mState = StreamDescriptor::State::IDLE; } else { switchToTransientState(StreamDescriptor::State::DRAINING); } } else { LOG(ERROR) << __func__ << ": drain failed: " << status; mState = StreamDescriptor::State::ERROR; } } else if (mState == StreamDescriptor::State::TRANSFER_PAUSED) { mState = StreamDescriptor::State::DRAIN_PAUSED; populateReply(&reply, mIsConnected); } else { populateReplyWrongState(&reply, command); } } else { LOG(WARNING) << __func__ << ": invalid drain mode: " << toString(mode); } break; case Tag::standby: if (mState == StreamDescriptor::State::IDLE) { if (::android::status_t status = mDriver->standby(); status == ::android::OK) { populateReply(&reply, mIsConnected); mState = StreamDescriptor::State::STANDBY; } else { LOG(ERROR) << __func__ << ": standby failed: " << status; mState = StreamDescriptor::State::ERROR; } } else { populateReplyWrongState(&reply, command); } break; case Tag::pause: { std::optional nextState; switch (mState) { case StreamDescriptor::State::ACTIVE: nextState = StreamDescriptor::State::PAUSED; break; case StreamDescriptor::State::DRAINING: nextState = StreamDescriptor::State::DRAIN_PAUSED; break; case StreamDescriptor::State::TRANSFERRING: nextState = StreamDescriptor::State::TRANSFER_PAUSED; break; default: populateReplyWrongState(&reply, command); } if (nextState.has_value()) { if (::android::status_t status = mDriver->pause(); status == ::android::OK) { populateReply(&reply, mIsConnected); mState = nextState.value(); } else { LOG(ERROR) << __func__ << ": pause failed: " << status; mState = StreamDescriptor::State::ERROR; } } } break; case Tag::flush: if (mState == StreamDescriptor::State::PAUSED || mState == StreamDescriptor::State::DRAIN_PAUSED || mState == StreamDescriptor::State::TRANSFER_PAUSED) { if (::android::status_t status = mDriver->flush(); status == ::android::OK) { populateReply(&reply, mIsConnected); mState = StreamDescriptor::State::IDLE; } else { LOG(ERROR) << __func__ << ": flush failed: " << status; mState = StreamDescriptor::State::ERROR; } } else { populateReplyWrongState(&reply, command); } break; } reply.state = mState; LOG(severity) << __func__ << ": writing reply " << reply.toString(); if (!mReplyMQ->writeBlocking(&reply, 1)) { LOG(ERROR) << __func__ << ": writing of reply " << reply.toString() << " to MQ failed"; mState = StreamDescriptor::State::ERROR; return Status::ABORT; } return Status::CONTINUE; } bool StreamOutWorkerLogic::write(size_t clientSize, StreamDescriptor::Reply* reply) { const size_t readByteCount = mDataMQ->availableToRead(); bool fatal = false; int32_t latency = Module::kLatencyMs; if (bool success = readByteCount > 0 ? mDataMQ->read(&mDataBuffer[0], readByteCount) : true) { const bool isConnected = mIsConnected; LOG(VERBOSE) << __func__ << ": reading of " << readByteCount << " bytes from data MQ" << " succeeded; connected? " << isConnected; // Amount of data that the HAL module is going to actually use. size_t byteCount = std::min({clientSize, readByteCount, mDataBufferSize}); if (byteCount >= mFrameSize && mForceTransientBurst) { // In order to prevent the state machine from going to ACTIVE state, // simulate partial write. byteCount -= mFrameSize; } size_t actualFrameCount = 0; if (isConnected) { if (::android::status_t status = mDriver->transfer( mDataBuffer.get(), byteCount / mFrameSize, &actualFrameCount, &latency); status != ::android::OK) { fatal = true; LOG(ERROR) << __func__ << ": write failed: " << status; } } else { if (mAsyncCallback == nullptr) { usleep(3000); // Simulate blocking transfer delay. } actualFrameCount = byteCount / mFrameSize; } const size_t actualByteCount = actualFrameCount * mFrameSize; // Frames are consumed and counted regardless of the connection status. reply->fmqByteCount += actualByteCount; mFrameCount += actualFrameCount; populateReply(reply, isConnected); } else { LOG(WARNING) << __func__ << ": reading of " << readByteCount << " bytes of data from MQ failed"; reply->status = STATUS_NOT_ENOUGH_DATA; } reply->latencyMs = latency; return !fatal; } template StreamCommonImpl::~StreamCommonImpl() { if (!isClosed()) { LOG(ERROR) << __func__ << ": stream was not closed prior to destruction, resource leak"; stopWorker(); // The worker and the context should clean up by themselves via destructors. } } template void StreamCommonImpl::createStreamCommon( const std::shared_ptr& delegate) { if (mCommon != nullptr) { LOG(FATAL) << __func__ << ": attempting to create the common interface twice"; } mCommon = ndk::SharedRefBase::make(delegate); mCommonBinder = mCommon->asBinder(); AIBinder_setMinSchedulerPolicy(mCommonBinder.get(), SCHED_NORMAL, ANDROID_PRIORITY_AUDIO); } template ndk::ScopedAStatus StreamCommonImpl::getStreamCommon( std::shared_ptr* _aidl_return) { if (mCommon == nullptr) { LOG(FATAL) << __func__ << ": the common interface was not created"; } *_aidl_return = mCommon; LOG(DEBUG) << __func__ << ": returning " << _aidl_return->get()->asBinder().get(); return ndk::ScopedAStatus::ok(); } template ndk::ScopedAStatus StreamCommonImpl::updateHwAvSyncId(int32_t in_hwAvSyncId) { LOG(DEBUG) << __func__ << ": id " << in_hwAvSyncId; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } template ndk::ScopedAStatus StreamCommonImpl::getVendorParameters( const std::vector& in_ids, std::vector* _aidl_return) { LOG(DEBUG) << __func__ << ": id count: " << in_ids.size(); (void)_aidl_return; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } template ndk::ScopedAStatus StreamCommonImpl::setVendorParameters( const std::vector& in_parameters, bool in_async) { LOG(DEBUG) << __func__ << ": parameters count " << in_parameters.size() << ", async: " << in_async; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } template ndk::ScopedAStatus StreamCommonImpl::addEffect( const std::shared_ptr<::aidl::android::hardware::audio::effect::IEffect>& in_effect) { if (in_effect == nullptr) { LOG(DEBUG) << __func__ << ": null effect"; } else { LOG(DEBUG) << __func__ << ": effect Binder" << in_effect->asBinder().get(); } return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } template ndk::ScopedAStatus StreamCommonImpl::removeEffect( const std::shared_ptr<::aidl::android::hardware::audio::effect::IEffect>& in_effect) { if (in_effect == nullptr) { LOG(DEBUG) << __func__ << ": null effect"; } else { LOG(DEBUG) << __func__ << ": effect Binder" << in_effect->asBinder().get(); } return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } template ndk::ScopedAStatus StreamCommonImpl::close() { LOG(DEBUG) << __func__; if (!isClosed()) { stopWorker(); LOG(DEBUG) << __func__ << ": joining the worker thread..."; mWorker->stop(); LOG(DEBUG) << __func__ << ": worker thread joined"; mContext.reset(); mWorker->setClosed(); return ndk::ScopedAStatus::ok(); } else { LOG(ERROR) << __func__ << ": stream was already closed"; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } } template ndk::ScopedAStatus StreamCommonImpl::prepareToClose() { LOG(DEBUG) << __func__; if (!isClosed()) { return ndk::ScopedAStatus::ok(); } LOG(ERROR) << __func__ << ": stream was closed"; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } template void StreamCommonImpl::stopWorker() { if (auto commandMQ = mContext.getCommandMQ(); commandMQ != nullptr) { LOG(DEBUG) << __func__ << ": asking the worker to exit..."; auto cmd = StreamDescriptor::Command::make( mContext.getInternalCommandCookie()); // Note: never call 'pause' and 'resume' methods of StreamWorker // in the HAL implementation. These methods are to be used by // the client side only. Preventing the worker loop from running // on the HAL side can cause a deadlock. if (!commandMQ->writeBlocking(&cmd, 1)) { LOG(ERROR) << __func__ << ": failed to write exit command to the MQ"; } LOG(DEBUG) << __func__ << ": done"; } } template ndk::ScopedAStatus StreamCommonImpl::updateMetadata(const Metadata& metadata) { LOG(DEBUG) << __func__; if (!isClosed()) { mMetadata = metadata; return ndk::ScopedAStatus::ok(); } LOG(ERROR) << __func__ << ": stream was closed"; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } // static ndk::ScopedAStatus StreamIn::initInstance(const std::shared_ptr& stream) { if (auto status = stream->init(); !status.isOk()) { return status; } stream->createStreamCommon(stream); return ndk::ScopedAStatus::ok(); } namespace { static std::map transformMicrophones( const std::vector& microphones) { std::map result; std::transform(microphones.begin(), microphones.end(), std::inserter(result, result.begin()), [](const auto& mic) { return std::make_pair(mic.device, mic.id); }); return result; } } // namespace StreamIn::StreamIn(const SinkMetadata& sinkMetadata, StreamContext&& context, const DriverInterface::CreateInstance& createDriver, const StreamWorkerInterface::CreateInstance& createWorker, const std::vector& microphones) : StreamCommonImpl(sinkMetadata, std::move(context), createDriver, createWorker), mMicrophones(transformMicrophones(microphones)) { LOG(DEBUG) << __func__; } ndk::ScopedAStatus StreamIn::getActiveMicrophones( std::vector* _aidl_return) { std::vector result; std::vector channelMapping{ getChannelCount(mContext.getChannelLayout()), MicrophoneDynamicInfo::ChannelMapping::DIRECT}; for (auto it = mConnectedDevices.begin(); it != mConnectedDevices.end(); ++it) { if (auto micIt = mMicrophones.find(*it); micIt != mMicrophones.end()) { MicrophoneDynamicInfo dynMic; dynMic.id = micIt->second; dynMic.channelMapping = channelMapping; result.push_back(std::move(dynMic)); } } *_aidl_return = std::move(result); LOG(DEBUG) << __func__ << ": returning " << ::android::internal::ToString(*_aidl_return); return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus StreamIn::getMicrophoneDirection(MicrophoneDirection* _aidl_return) { LOG(DEBUG) << __func__; (void)_aidl_return; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamIn::setMicrophoneDirection(MicrophoneDirection in_direction) { LOG(DEBUG) << __func__ << ": direction " << toString(in_direction); return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamIn::getMicrophoneFieldDimension(float* _aidl_return) { LOG(DEBUG) << __func__; (void)_aidl_return; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamIn::setMicrophoneFieldDimension(float in_zoom) { LOG(DEBUG) << __func__ << ": zoom " << in_zoom; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamIn::getHwGain(std::vector* _aidl_return) { LOG(DEBUG) << __func__; (void)_aidl_return; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamIn::setHwGain(const std::vector& in_channelGains) { LOG(DEBUG) << __func__ << ": gains " << ::android::internal::ToString(in_channelGains); return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } // static ndk::ScopedAStatus StreamOut::initInstance(const std::shared_ptr& stream) { if (auto status = stream->init(); !status.isOk()) { return status; } stream->createStreamCommon(stream); return ndk::ScopedAStatus::ok(); } StreamOut::StreamOut(const SourceMetadata& sourceMetadata, StreamContext&& context, const DriverInterface::CreateInstance& createDriver, const StreamWorkerInterface::CreateInstance& createWorker, const std::optional& offloadInfo) : StreamCommonImpl(sourceMetadata, std::move(context), createDriver, createWorker), mOffloadInfo(offloadInfo) { LOG(DEBUG) << __func__; } ndk::ScopedAStatus StreamOut::updateOffloadMetadata( const AudioOffloadMetadata& in_offloadMetadata) { LOG(DEBUG) << __func__; if (isClosed()) { LOG(ERROR) << __func__ << ": stream was closed"; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } if (!mOffloadInfo.has_value()) { LOG(ERROR) << __func__ << ": not a compressed offload stream"; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } if (in_offloadMetadata.sampleRate < 0) { LOG(ERROR) << __func__ << ": invalid sample rate value: " << in_offloadMetadata.sampleRate; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (in_offloadMetadata.averageBitRatePerSecond < 0) { LOG(ERROR) << __func__ << ": invalid average BPS value: " << in_offloadMetadata.averageBitRatePerSecond; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (in_offloadMetadata.delayFrames < 0) { LOG(ERROR) << __func__ << ": invalid delay frames value: " << in_offloadMetadata.delayFrames; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (in_offloadMetadata.paddingFrames < 0) { LOG(ERROR) << __func__ << ": invalid padding frames value: " << in_offloadMetadata.paddingFrames; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } mOffloadMetadata = in_offloadMetadata; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus StreamOut::getHwVolume(std::vector* _aidl_return) { LOG(DEBUG) << __func__; (void)_aidl_return; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::setHwVolume(const std::vector& in_channelVolumes) { LOG(DEBUG) << __func__ << ": gains " << ::android::internal::ToString(in_channelVolumes); return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::getAudioDescriptionMixLevel(float* _aidl_return) { LOG(DEBUG) << __func__; (void)_aidl_return; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::setAudioDescriptionMixLevel(float in_leveldB) { LOG(DEBUG) << __func__ << ": description mix level " << in_leveldB; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::getDualMonoMode(AudioDualMonoMode* _aidl_return) { LOG(DEBUG) << __func__; (void)_aidl_return; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::setDualMonoMode(AudioDualMonoMode in_mode) { LOG(DEBUG) << __func__ << ": dual mono mode " << toString(in_mode); return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::getRecommendedLatencyModes( std::vector* _aidl_return) { LOG(DEBUG) << __func__; (void)_aidl_return; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::setLatencyMode(AudioLatencyMode in_mode) { LOG(DEBUG) << __func__ << ": latency mode " << toString(in_mode); return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::getPlaybackRateParameters(AudioPlaybackRate* _aidl_return) { LOG(DEBUG) << __func__; (void)_aidl_return; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::setPlaybackRateParameters(const AudioPlaybackRate& in_playbackRate) { LOG(DEBUG) << __func__ << ": " << in_playbackRate.toString(); return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus StreamOut::selectPresentation(int32_t in_presentationId, int32_t in_programId) { LOG(DEBUG) << __func__ << ": presentationId " << in_presentationId << ", programId " << in_programId; return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } // namespace aidl::android::hardware::audio::core