/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "chre/core/event_loop_manager.h" #include "chre/core/settings.h" #include "chre/platform/linux/pal_wifi.h" #include "chre/platform/log.h" #include "chre/util/system/napp_permissions.h" #include "chre_api/chre/event.h" #include "chre_api/chre/wifi.h" #include "gtest/gtest.h" #include "test_base.h" #include "test_event.h" #include "test_event_queue.h" #include "test_util.h" namespace chre { namespace { // WifiTimeoutTestBase needs to set timeout more than max wifi async timeout // time. If not, waitForEvent will timeout before actual timeout happens in // CHRE, making us unable to observe how system handles timeout. class WifiTimeoutTestBase : public TestBase { protected: uint64_t getTimeoutNs() const override { return 2 * CHRE_TEST_WIFI_SCAN_RESULT_TIMEOUT_NS; } }; TEST_F(WifiTimeoutTestBase, WifiScanRequestTimeoutTest) { CREATE_CHRE_TEST_EVENT(SCAN_REQUEST, 1); struct App : public TestNanoapp { uint32_t perms = NanoappPermissions::CHRE_PERMS_WIFI; decltype(nanoappHandleEvent) *handleEvent = [](uint32_t, uint16_t eventType, const void *eventData) { static uint32_t cookie; switch (eventType) { case CHRE_EVENT_WIFI_ASYNC_RESULT: { auto *event = static_cast(eventData); if (event->success) { TestEventQueueSingleton::get()->pushEvent( CHRE_EVENT_WIFI_ASYNC_RESULT, *(static_cast(event->cookie))); } break; } case CHRE_EVENT_WIFI_SCAN_RESULT: { TestEventQueueSingleton::get()->pushEvent( CHRE_EVENT_WIFI_SCAN_RESULT); break; } case CHRE_EVENT_TEST_EVENT: { auto event = static_cast(eventData); switch (event->type) { case SCAN_REQUEST: cookie = *static_cast(event->data); bool success = chreWifiRequestScanAsyncDefault(&cookie); TestEventQueueSingleton::get()->pushEvent(SCAN_REQUEST, success); } } } }; }; auto app = loadNanoapp(); constexpr uint32_t timeOutCookie = 0xdead; chrePalWifiEnableResponse(PalWifiAsyncRequestTypes::SCAN, false); sendEventToNanoapp(app, SCAN_REQUEST, timeOutCookie); bool success; waitForEvent(SCAN_REQUEST, &success); EXPECT_TRUE(success); // Add 1 second to prevent race condition. constexpr uint8_t kWifiScanRequestTimeoutSec = (CHRE_TEST_WIFI_SCAN_RESULT_TIMEOUT_NS / CHRE_NSEC_PER_SEC) + 1; std::this_thread::sleep_for(std::chrono::seconds(kWifiScanRequestTimeoutSec)); // Make sure that we can still request scan after a timedout // request. constexpr uint32_t successCookie = 0x0101; chrePalWifiEnableResponse(PalWifiAsyncRequestTypes::SCAN, true); sendEventToNanoapp(app, SCAN_REQUEST, successCookie); waitForEvent(SCAN_REQUEST, &success); EXPECT_TRUE(success); waitForEvent(CHRE_EVENT_WIFI_SCAN_RESULT); unloadNanoapp(app); } TEST_F(WifiTimeoutTestBase, WifiScanMonitorTimeoutTest) { CREATE_CHRE_TEST_EVENT(SCAN_MONITOR_REQUEST, 1); struct MonitoringRequest { bool enable; uint32_t cookie; }; struct App : public TestNanoapp { uint32_t perms = NanoappPermissions::CHRE_PERMS_WIFI; decltype(nanoappHandleEvent) *handleEvent = [](uint32_t, uint16_t eventType, const void *eventData) { static uint32_t cookie; switch (eventType) { case CHRE_EVENT_WIFI_ASYNC_RESULT: { auto *event = static_cast(eventData); if (event->success) { TestEventQueueSingleton::get()->pushEvent( CHRE_EVENT_WIFI_ASYNC_RESULT, *(static_cast(event->cookie))); } break; } case CHRE_EVENT_TEST_EVENT: { auto event = static_cast(eventData); switch (event->type) { case SCAN_MONITOR_REQUEST: auto request = static_cast(event->data); cookie = request->cookie; bool success = chreWifiConfigureScanMonitorAsync( request->enable, &cookie); TestEventQueueSingleton::get()->pushEvent( SCAN_MONITOR_REQUEST, success); } } } }; }; auto app = loadNanoapp(); MonitoringRequest timeoutRequest{.enable = true, .cookie = 0xdead}; chrePalWifiEnableResponse(PalWifiAsyncRequestTypes::SCAN_MONITORING, false); sendEventToNanoapp(app, SCAN_MONITOR_REQUEST, timeoutRequest); bool success; waitForEvent(SCAN_MONITOR_REQUEST, &success); EXPECT_TRUE(success); // Add 1 second to prevent race condition. constexpr uint8_t kWifiConfigureScanMonitorTimeoutSec = (CHRE_TEST_ASYNC_RESULT_TIMEOUT_NS / CHRE_NSEC_PER_SEC) + 1; std::this_thread::sleep_for( std::chrono::seconds(kWifiConfigureScanMonitorTimeoutSec)); // Make sure that we can still request to change scan monitor after a timedout // request. MonitoringRequest enableRequest{.enable = true, .cookie = 0x1010}; chrePalWifiEnableResponse(PalWifiAsyncRequestTypes::SCAN_MONITORING, true); sendEventToNanoapp(app, SCAN_MONITOR_REQUEST, enableRequest); waitForEvent(SCAN_MONITOR_REQUEST, &success); EXPECT_TRUE(success); uint32_t cookie; waitForEvent(CHRE_EVENT_WIFI_ASYNC_RESULT, &cookie); EXPECT_EQ(cookie, enableRequest.cookie); EXPECT_TRUE(chrePalWifiIsScanMonitoringActive()); MonitoringRequest disableRequest{.enable = false, .cookie = 0x0101}; sendEventToNanoapp(app, SCAN_MONITOR_REQUEST, disableRequest); waitForEvent(SCAN_MONITOR_REQUEST, &success); EXPECT_TRUE(success); waitForEvent(CHRE_EVENT_WIFI_ASYNC_RESULT, &cookie); EXPECT_EQ(cookie, disableRequest.cookie); EXPECT_FALSE(chrePalWifiIsScanMonitoringActive()); unloadNanoapp(app); } TEST_F(WifiTimeoutTestBase, WifiRequestRangingTimeoutTest) { CREATE_CHRE_TEST_EVENT(RANGING_REQUEST, 0); CREATE_CHRE_TEST_EVENT(RANGING_RESULT_TIMEOUT, 1); struct App : public TestNanoapp { uint32_t perms = NanoappPermissions::CHRE_PERMS_WIFI; decltype(nanoappHandleEvent) *handleEvent = [](uint32_t, uint16_t eventType, const void *eventData) { static uint32_t cookie; switch (eventType) { case CHRE_EVENT_WIFI_ASYNC_RESULT: { auto *event = static_cast(eventData); if (event->success) { if (event->errorCode == 0) { TestEventQueueSingleton::get()->pushEvent( CHRE_EVENT_WIFI_ASYNC_RESULT, *(static_cast(event->cookie))); } } else if (event->errorCode == CHRE_ERROR_TIMEOUT) { TestEventQueueSingleton::get()->pushEvent( RANGING_RESULT_TIMEOUT, *(static_cast(event->cookie))); } break; } case CHRE_EVENT_TEST_EVENT: { auto event = static_cast(eventData); switch (event->type) { case RANGING_REQUEST: cookie = *static_cast(event->data); // Placeholder parameters since linux PAL does not use this to // generate response struct chreWifiRangingTarget dummyRangingTarget = { .macAddress = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc}, .primaryChannel = 0xdef02468, .centerFreqPrimary = 0xace13579, .centerFreqSecondary = 0xbdf369cf, .channelWidth = 0x48, }; struct chreWifiRangingParams dummyRangingParams = { .targetListLen = 1, .targetList = &dummyRangingTarget, }; bool success = chreWifiRequestRangingAsync(&dummyRangingParams, &cookie); TestEventQueueSingleton::get()->pushEvent(RANGING_REQUEST, success); } } } }; }; auto app = loadNanoapp(); uint32_t timeOutCookie = 0xdead; chrePalWifiEnableResponse(PalWifiAsyncRequestTypes::RANGING, false); sendEventToNanoapp(app, RANGING_REQUEST, timeOutCookie); bool success; waitForEvent(RANGING_REQUEST, &success); EXPECT_TRUE(success); // Add 1 second to prevent race condition constexpr uint8_t kWifiRequestRangingTimeoutSec = (CHRE_TEST_WIFI_RANGING_RESULT_TIMEOUT_NS / CHRE_NSEC_PER_SEC) + 1; std::this_thread::sleep_for( std::chrono::seconds(kWifiRequestRangingTimeoutSec)); // Make sure that we can still request ranging after a timedout request uint32_t successCookie = 0x0101; chrePalWifiEnableResponse(PalWifiAsyncRequestTypes::RANGING, true); sendEventToNanoapp(app, RANGING_REQUEST, successCookie); waitForEvent(RANGING_REQUEST, &success); EXPECT_TRUE(success); uint32_t cookie; waitForEvent(CHRE_EVENT_WIFI_ASYNC_RESULT, &cookie); EXPECT_EQ(cookie, successCookie); unloadNanoapp(app); } } // namespace } // namespace chre