// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include // For std::generate, std::min. #include // For std::array. #include // For std::lrintf. #include // For size_t. #include // For uint32_t. #include // For std::numeric_limits. #include // For std::unique_ptr. #include // For std::accumulate. #include // For std::random_device, std::mt19937, std::uniform_real_distribution. #include // For std::vector. #include #include #include #include #include template class FullyConnectedTestBase : public ::testing::Test { protected: FullyConnectedTestBase() { random_device = std::unique_ptr(new std::random_device()); rng = std::mt19937((*random_device)()); input_size_dist = std::uniform_int_distribution(10, 15); kernel_size_dist = std::uniform_int_distribution(1, 5); stride_dist = std::uniform_int_distribution(1, 2); f32dist = std::uniform_real_distribution(0.1f, 1.0f); scale_dist = std::uniform_real_distribution(1.0f, 5.0f); i32dist = std::uniform_int_distribution(-10000, 10000); auto shape_dist = std::uniform_int_distribution(2, XNN_MAX_TENSOR_DIMS); dim_dist = std::uniform_int_distribution(5, 15); i8dist = std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()); w8dist = std::uniform_int_distribution(-std::numeric_limits::max(), std::numeric_limits::max()); output_min = -std::numeric_limits::infinity(); output_max = std::numeric_limits::infinity(); size_t num_input_dims = shape_dist(rng); input_dims = RandomShape(num_input_dims); assert(input_dims.size() >= 2); output_channels = dim_dist(rng); input_channels = input_dims.back(); kernel_dims = {output_channels, input_channels}; output_dims = input_dims; output_dims[output_dims.size() - 1] = output_channels; batch_size = NumElements(input_dims) / input_channels; input = std::vector(XNN_EXTRA_BYTES / sizeof(T) + NumElements(input_dims)); kernel = std::vector(input_channels * output_channels); bias = std::vector(output_channels); operator_output = std::vector(NumElements(output_dims)); subgraph_output = std::vector(operator_output.size()); accumulators = std::vector(batch_size * output_channels); } std::vector RandomShape(size_t num_dims) { std::vector dims(num_dims); std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); }); return dims; } size_t NumElements(std::vector& dims) { return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies()); } std::unique_ptr random_device; std::mt19937 rng; std::uniform_int_distribution input_size_dist; std::uniform_int_distribution kernel_size_dist; std::uniform_int_distribution stride_dist; std::uniform_int_distribution i32dist; std::uniform_real_distribution f32dist; std::uniform_real_distribution scale_dist; std::uniform_int_distribution dim_dist; std::uniform_int_distribution i8dist; std::uniform_int_distribution u8dist; std::uniform_int_distribution w8dist; uint32_t batch_size; size_t input_channels; size_t output_channels; float output_min; float output_max; std::vector input_dims; std::vector kernel_dims; std::vector bias_dims; std::vector output_dims; std::vector input; std::vector kernel; std::vector bias; std::vector operator_output; std::vector subgraph_output; std::vector accumulators; }; template class QuantizedFullyConnectedTestBase : public FullyConnectedTestBase { protected: void initialize_accumulators_from_bias() { for (size_t i = 0; i < this->batch_size; i++) { for (size_t oc = 0; oc < this->output_channels; oc++) { this->accumulators[i * this->output_channels + oc] = this->bias[oc]; } } } }; using FullyConnectedTestQS8 = QuantizedFullyConnectedTestBase; using FullyConnectedTestQU8 = QuantizedFullyConnectedTestBase; using FullyConnectedTestF32 = FullyConnectedTestBase; TEST_F(FullyConnectedTestQS8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_fully_connected); ASSERT_EQ(node->compute_type, xnn_compute_type_qs8); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], kernel_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(FullyConnectedTestQU8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_fully_connected( subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_fully_connected); ASSERT_EQ(node->compute_type, xnn_compute_type_qu8); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], kernel_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(FullyConnectedTestF32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_fully_connected); ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], kernel_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(FullyConnectedTestQS8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::generate(kernel.begin(), kernel.end(), [&]() { return w8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5)); std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5)); const int8_t input_zero_point = -1; const float input_scale = scale_dist(rng); const float kernel_scale = scale_dist(rng); // Compute reference results, without renormalization. initialize_accumulators_from_bias(); for (size_t i = 0; i < batch_size; i++) { for (size_t oc = 0; oc < output_channels; oc++) { for (size_t ic = 0; ic < input_channels; ic++) { accumulators[i * output_channels + oc] += (int32_t(input[i * input_channels + ic]) - int32_t(input_zero_point)) * int32_t(kernel[oc * input_channels + ic]); } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); float output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; int8_t output_zero_point = int8_t(std::max( std::min( lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); // Call operator API. const xnn_status status = xnn_create_fully_connected_nc_qs8( input_channels, output_channels, input_channels, output_channels, input_zero_point, input_scale, kernel_scale, kernel.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/0, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_fully_connected_nc_qs8( op, batch_size, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, kernel_scale, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(FullyConnectedTestQU8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::generate(kernel.begin(), kernel.end(), [&]() { return u8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), UINT8_C(0xA5)); std::fill(subgraph_output.begin(), subgraph_output.end(), UINT8_C(0xA5)); const uint8_t input_zero_point = u8dist(rng); const uint8_t kernel_zero_point = 0; const float input_scale = scale_dist(rng); const float kernel_scale = scale_dist(rng); // Compute reference results, without renormalization. initialize_accumulators_from_bias(); for (size_t i = 0; i < batch_size; i++) { for (size_t oc = 0; oc < output_channels; oc++) { for (size_t ic = 0; ic < input_channels; ic++) { accumulators[i * output_channels + oc] += (int32_t(input[i * input_channels + ic]) - int32_t(input_zero_point)) * (int32_t(kernel[oc * input_channels + ic]) - int32_t(kernel_zero_point)); } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const uint8_t output_zero_point = uint8_t(std::max( std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const uint8_t quantized_output_min = xnn_qu8_quantize(output_min, output_scale, output_zero_point); const uint8_t quantized_output_max = xnn_qu8_quantize(output_max, output_scale, output_zero_point); // Call operator API. const xnn_status status = xnn_create_fully_connected_nc_qu8( input_channels, output_channels, input_channels, output_channels, input_zero_point, input_scale, kernel_zero_point, kernel_scale, kernel.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/0, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_fully_connected_nc_qu8( op, batch_size, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, kernel_scale, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(FullyConnectedTestF32, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), nanf("")); std::fill(subgraph_output.begin(), subgraph_output.end(), nanf("")); // Call operator API. const xnn_status status = xnn_create_fully_connected_nc_f32( input_channels, output_channels, input_channels, output_channels, kernel.data(), bias.data(), output_min, output_max, /*flags=*/0, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_fully_connected_nc_f32( op, batch_size, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } }