/* * Single-precision polynomial evaluation function for scalar and vector * atan(x) and atan2(y,x). * * Copyright (c) 2021-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #ifndef PL_MATH_ATANF_COMMON_H #define PL_MATH_ATANF_COMMON_H #include "math_config.h" #include "estrinf.h" #if V_SUPPORTED #include "v_math.h" #define FLT_T v_f32_t #define P(i) v_f32 (__atanf_poly_data.poly[i]) #else #define FLT_T float #define P(i) __atanf_poly_data.poly[i] #endif /* Polynomial used in fast atanf(x) and atan2f(y,x) implementations The order 7 polynomial P approximates (atan(sqrt(x))-sqrt(x))/x^(3/2). */ static inline FLT_T eval_poly (FLT_T z, FLT_T az, FLT_T shift) { /* Use 2-level Estrin scheme for P(z^2) with deg(P)=7. However, a standard implementation using z8 creates spurious underflow in the very last fma (when z^8 is small enough). Therefore, we split the last fma into a mul and and an fma. Horner and single-level Estrin have higher errors that exceed threshold. */ FLT_T z2 = z * z; FLT_T z4 = z2 * z2; /* Then assemble polynomial. */ FLT_T y = FMA (z4, z4 * ESTRIN_3_ (z2, z4, P, 4), ESTRIN_3 (z2, z4, P)); /* Finalize: y = shift + z * P(z^2). */ return FMA (y, z2 * az, az) + shift; } #endif // PL_MATH_ATANF_COMMON_H