/* * Single-precision vector cbrt(x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "mathlib.h" #include "pl_sig.h" #include "pl_test.h" #if V_SUPPORTED #define AbsMask 0x7fffffff #define SignMask v_u32 (0x80000000) #define TwoThirds v_f32 (0x1.555556p-1f) #define SmallestNormal 0x00800000 #define MantissaMask 0x007fffff #define HalfExp 0x3f000000 #define C(i) v_f32 (__cbrtf_data.poly[i]) #define T(i) v_lookup_f32 (__cbrtf_data.table, i) static NOINLINE v_f32_t specialcase (v_f32_t x, v_f32_t y, v_u32_t special) { return v_call_f32 (cbrtf, x, y, special); } /* Approximation for vector single-precision cbrt(x) using Newton iteration with initial guess obtained by a low-order polynomial. Greatest error is 1.5 ULP. This is observed for every value where the mantissa is 0x1.81410e and the exponent is a multiple of 3, for example: __v_cbrtf(0x1.81410ep+30) got 0x1.255d96p+10 want 0x1.255d92p+10. */ VPCS_ATTR v_f32_t V_NAME (cbrtf) (v_f32_t x) { v_u32_t ix = v_as_u32_f32 (x); v_u32_t iax = ix & AbsMask; /* Subnormal, +/-0 and special values. */ v_u32_t special = v_cond_u32 ((iax < SmallestNormal) | (iax >= 0x7f800000)); /* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector version of frexpf, which gets subnormal values wrong - these have to be special-cased as a result. */ v_f32_t m = v_as_f32_u32 ((iax & MantissaMask) | HalfExp); v_s32_t e = v_as_s32_u32 (iax >> 23) - 126; /* p is a rough approximation for cbrt(m) in [0.5, 1.0]. The better this is, the less accurate the next stage of the algorithm needs to be. An order-4 polynomial is enough for one Newton iteration. */ v_f32_t p_01 = v_fma_f32 (C (1), m, C (0)); v_f32_t p_23 = v_fma_f32 (C (3), m, C (2)); v_f32_t p = v_fma_f32 (m * m, p_23, p_01); /* One iteration of Newton's method for iteratively approximating cbrt. */ v_f32_t m_by_3 = m / 3; v_f32_t a = v_fma_f32 (TwoThirds, p, m_by_3 / (p * p)); /* Assemble the result by the following: cbrt(x) = cbrt(m) * 2 ^ (e / 3). We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is not necessarily a multiple of 3 we lose some information. Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q. Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which is an integer in [-2, 2], and can be looked up in the table T. Hence the result is assembled as: cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */ v_s32_t ey = e / 3; v_f32_t my = a * T (v_as_u32_s32 (e % 3 + 2)); /* Vector version of ldexpf. */ v_f32_t y = v_as_f32_u32 ((v_as_u32_s32 (ey + 127) << 23)) * my; /* Copy sign. */ y = v_as_f32_u32 (v_bsl_u32 (SignMask, ix, v_as_u32_f32 (y))); if (unlikely (v_any_u32 (special))) return specialcase (x, y, special); return y; } VPCS_ALIAS PL_SIG (V, F, 1, cbrt, -10.0, 10.0) PL_TEST_ULP (V_NAME (cbrtf), 1.03) PL_TEST_EXPECT_FENV_ALWAYS (V_NAME (cbrtf)) PL_TEST_INTERVAL (V_NAME (cbrtf), 0, inf, 1000000) PL_TEST_INTERVAL (V_NAME (cbrtf), -0, -inf, 1000000) #endif