// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/time/time.h" #import #include #include #include #include #include #include #include #include #include "base/logging.h" #include "base/mac/mach_logging.h" #include "base/mac/scoped_cftyperef.h" #include "base/mac/scoped_mach_port.h" #include "base/numerics/safe_conversions.h" #include "base/time/time_override.h" #include "build/build_config.h" #if !BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) #include #include #include "base/ios/ios_util.h" #endif // !BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) namespace { #if BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) // Returns a pointer to the initialized Mach timebase info struct. mach_timebase_info_data_t* MachTimebaseInfo() { static mach_timebase_info_data_t timebase_info = []() { mach_timebase_info_data_t info; kern_return_t kr = mach_timebase_info(&info); MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info"; DCHECK(info.numer); DCHECK(info.denom); return info; }(); return &timebase_info; } int64_t MachTimeToMicroseconds(uint64_t mach_time) { // timebase_info gives us the conversion factor between absolute time tick // units and nanoseconds. mach_timebase_info_data_t* timebase_info = MachTimebaseInfo(); // Take the fast path when the conversion is 1:1. The result will for sure fit // into an int_64 because we're going from nanoseconds to microseconds. if (timebase_info->numer == timebase_info->denom) { return static_cast(mach_time / base::Time::kNanosecondsPerMicrosecond); } uint64_t microseconds = 0; const uint64_t divisor = timebase_info->denom * base::Time::kNanosecondsPerMicrosecond; // Microseconds is mach_time * timebase.numer / // (timebase.denom * kNanosecondsPerMicrosecond). Divide first to reduce // the chance of overflow. Also stash the remainder right now, a likely // byproduct of the division. microseconds = mach_time / divisor; const uint64_t mach_time_remainder = mach_time % divisor; // Now multiply, keeping an eye out for overflow. CHECK(!__builtin_umulll_overflow(microseconds, timebase_info->numer, µseconds)); // By dividing first we lose precision. Regain it by adding back the // microseconds from the remainder, with an eye out for overflow. uint64_t least_significant_microseconds = (mach_time_remainder * timebase_info->numer) / divisor; CHECK(!__builtin_uaddll_overflow(microseconds, least_significant_microseconds, µseconds)); // Don't bother with the rollover handling that the Windows version does. // The returned time in microseconds is enough for 292,277 years (starting // from 2^63 because the returned int64_t is signed, // 9223372036854775807 / (1e6 * 60 * 60 * 24 * 365.2425) = 292,277). return base::checked_cast(microseconds); } #endif // BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) // Returns monotonically growing number of ticks in microseconds since some // unspecified starting point. int64_t ComputeCurrentTicks() { #if !BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) struct timespec tp; // clock_gettime() returns 0 on success and -1 on failure. Failure can only // happen because of bad arguments (unsupported clock type or timespec pointer // out of accessible address space). Here it is known that neither can happen // since the timespec parameter is stack allocated right above and // `CLOCK_MONOTONIC` is supported on all versions of iOS that Chrome is // supported on. int res = clock_gettime(CLOCK_MONOTONIC, &tp); DCHECK_EQ(res, 0) << "Failed clock_gettime, errno: " << errno; return (int64_t)tp.tv_sec * 1000000 + tp.tv_nsec / 1000; #else // mach_absolute_time is it when it comes to ticks on the Mac. Other calls // with less precision (such as TickCount) just call through to // mach_absolute_time. return MachTimeToMicroseconds(mach_absolute_time()); #endif // !BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) } int64_t ComputeThreadTicks() { // The pthreads library keeps a cached reference to the thread port, which // does not have to be released like mach_thread_self() does. mach_port_t thread_port = pthread_mach_thread_np(pthread_self()); if (thread_port == MACH_PORT_NULL) { DLOG(ERROR) << "Failed to get pthread_mach_thread_np()"; return 0; } mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; thread_basic_info_data_t thread_info_data; kern_return_t kr = thread_info( thread_port, THREAD_BASIC_INFO, reinterpret_cast(&thread_info_data), &thread_info_count); MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info"; base::CheckedNumeric absolute_micros( thread_info_data.user_time.seconds + thread_info_data.system_time.seconds); absolute_micros *= base::Time::kMicrosecondsPerSecond; absolute_micros += (thread_info_data.user_time.microseconds + thread_info_data.system_time.microseconds); return absolute_micros.ValueOrDie(); } } // namespace namespace base { // The Time routines in this file use Mach and CoreFoundation APIs, since the // POSIX definition of time_t in Mac OS X wraps around after 2038--and // there are already cookie expiration dates, etc., past that time out in // the field. Using CFDate prevents that problem, and using mach_absolute_time // for TimeTicks gives us nice high-resolution interval timing. // Time ----------------------------------------------------------------------- namespace subtle { Time TimeNowIgnoringOverride() { return Time::FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent()); } Time TimeNowFromSystemTimeIgnoringOverride() { // Just use TimeNowIgnoringOverride() because it returns the system time. return TimeNowIgnoringOverride(); } } // namespace subtle // static Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) { static_assert(std::numeric_limits::has_infinity, "CFAbsoluteTime must have an infinity value"); if (t == 0) return Time(); // Consider 0 as a null Time. return (t == std::numeric_limits::infinity()) ? Max() : (UnixEpoch() + Seconds(double{t + kCFAbsoluteTimeIntervalSince1970})); } CFAbsoluteTime Time::ToCFAbsoluteTime() const { static_assert(std::numeric_limits::has_infinity, "CFAbsoluteTime must have an infinity value"); if (is_null()) return 0; // Consider 0 as a null Time. return is_max() ? std::numeric_limits::infinity() : (CFAbsoluteTime{(*this - UnixEpoch()).InSecondsF()} - kCFAbsoluteTimeIntervalSince1970); } // static Time Time::FromNSDate(NSDate* date) { DCHECK(date); return FromCFAbsoluteTime(date.timeIntervalSinceReferenceDate); } NSDate* Time::ToNSDate() const { return [NSDate dateWithTimeIntervalSinceReferenceDate:ToCFAbsoluteTime()]; } // TimeDelta ------------------------------------------------------------------ #if BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) // static TimeDelta TimeDelta::FromMachTime(uint64_t mach_time) { return Microseconds(MachTimeToMicroseconds(mach_time)); } #endif // BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) // TimeTicks ------------------------------------------------------------------ namespace subtle { TimeTicks TimeTicksNowIgnoringOverride() { return TimeTicks() + Microseconds(ComputeCurrentTicks()); } } // namespace subtle // static bool TimeTicks::IsHighResolution() { return true; } // static bool TimeTicks::IsConsistentAcrossProcesses() { return true; } #if BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) // static TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) { return TimeTicks(MachTimeToMicroseconds(mach_absolute_time)); } // static mach_timebase_info_data_t TimeTicks::SetMachTimebaseInfoForTesting( mach_timebase_info_data_t timebase) { mach_timebase_info_data_t orig_timebase = *MachTimebaseInfo(); *MachTimebaseInfo() = timebase; return orig_timebase; } #endif // BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) // static TimeTicks::Clock TimeTicks::GetClock() { #if !BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) return Clock::IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME; #else return Clock::MAC_MACH_ABSOLUTE_TIME; #endif // !BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS) } // ThreadTicks ---------------------------------------------------------------- namespace subtle { ThreadTicks ThreadTicksNowIgnoringOverride() { return ThreadTicks() + Microseconds(ComputeThreadTicks()); } } // namespace subtle } // namespace base