// Copyright 2013 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/simple/simple_entry_impl.h" #include #include #include #include #include #include #include "base/check_op.h" #include "base/cxx17_backports.h" #include "base/functional/bind.h" #include "base/functional/callback.h" #include "base/functional/callback_helpers.h" #include "base/location.h" #include "base/memory/raw_ptr.h" #include "base/notreached.h" #include "base/task/sequenced_task_runner.h" #include "base/task/task_runner.h" #include "base/time/time.h" #include "base/trace_event/memory_usage_estimator.h" #include "net/base/io_buffer.h" #include "net/base/net_errors.h" #include "net/base/prioritized_task_runner.h" #include "net/disk_cache/backend_cleanup_tracker.h" #include "net/disk_cache/net_log_parameters.h" #include "net/disk_cache/simple/simple_backend_impl.h" #include "net/disk_cache/simple/simple_histogram_enums.h" #include "net/disk_cache/simple/simple_histogram_macros.h" #include "net/disk_cache/simple/simple_index.h" #include "net/disk_cache/simple/simple_net_log_parameters.h" #include "net/disk_cache/simple/simple_synchronous_entry.h" #include "net/disk_cache/simple/simple_util.h" #include "net/log/net_log.h" #include "net/log/net_log_source_type.h" namespace disk_cache { namespace { // An entry can store sparse data taking up to 1 / kMaxSparseDataSizeDivisor of // the cache. const int64_t kMaxSparseDataSizeDivisor = 10; OpenEntryIndexEnum ComputeIndexState(SimpleBackendImpl* backend, uint64_t entry_hash) { if (!backend->index()->initialized()) return INDEX_NOEXIST; if (backend->index()->Has(entry_hash)) return INDEX_HIT; return INDEX_MISS; } void RecordOpenEntryIndexState(net::CacheType cache_type, OpenEntryIndexEnum state) { SIMPLE_CACHE_UMA(ENUMERATION, "OpenEntryIndexState", cache_type, state, INDEX_MAX); } void RecordHeaderSize(net::CacheType cache_type, int size) { SIMPLE_CACHE_UMA(COUNTS_10000, "HeaderSize", cache_type, size); } void InvokeCallbackIfBackendIsAlive( const base::WeakPtr& backend, net::CompletionOnceCallback completion_callback, int result) { DCHECK(!completion_callback.is_null()); if (!backend.get()) return; std::move(completion_callback).Run(result); } void InvokeEntryResultCallbackIfBackendIsAlive( const base::WeakPtr& backend, EntryResultCallback completion_callback, EntryResult result) { DCHECK(!completion_callback.is_null()); if (!backend.get()) return; std::move(completion_callback).Run(std::move(result)); } // If |sync_possible| is false, and callback is available, posts rv to it and // return net::ERR_IO_PENDING; otherwise just passes through rv. int PostToCallbackIfNeeded(bool sync_possible, net::CompletionOnceCallback callback, int rv) { if (!sync_possible && !callback.is_null()) { base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(std::move(callback), rv)); return net::ERR_IO_PENDING; } else { return rv; } } } // namespace using base::OnceClosure; using base::FilePath; using base::Time; using base::TaskRunner; // A helper class to insure that RunNextOperationIfNeeded() is called when // exiting the current stack frame. class SimpleEntryImpl::ScopedOperationRunner { public: explicit ScopedOperationRunner(SimpleEntryImpl* entry) : entry_(entry) { } ~ScopedOperationRunner() { entry_->RunNextOperationIfNeeded(); } private: const raw_ptr entry_; }; SimpleEntryImpl::ActiveEntryProxy::~ActiveEntryProxy() = default; SimpleEntryImpl::SimpleEntryImpl( net::CacheType cache_type, const FilePath& path, scoped_refptr cleanup_tracker, const uint64_t entry_hash, OperationsMode operations_mode, SimpleBackendImpl* backend, SimpleFileTracker* file_tracker, scoped_refptr file_operations_factory, net::NetLog* net_log, uint32_t entry_priority) : cleanup_tracker_(std::move(cleanup_tracker)), backend_(backend->AsWeakPtr()), file_tracker_(file_tracker), file_operations_factory_(std::move(file_operations_factory)), cache_type_(cache_type), path_(path), entry_hash_(entry_hash), use_optimistic_operations_(operations_mode == OPTIMISTIC_OPERATIONS), last_used_(Time::Now()), last_modified_(last_used_), prioritized_task_runner_(backend_->prioritized_task_runner()), net_log_( net::NetLogWithSource::Make(net_log, net::NetLogSourceType::DISK_CACHE_ENTRY)), stream_0_data_(base::MakeRefCounted()), entry_priority_(entry_priority) { static_assert(std::extent() == std::extent(), "arrays should be the same size"); static_assert( std::extent() == std::extent(), "arrays should be the same size"); static_assert(std::extent() == std::extent(), "arrays should be the same size"); ResetEntry(); NetLogSimpleEntryConstruction(net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY, net::NetLogEventPhase::BEGIN, this); } void SimpleEntryImpl::SetActiveEntryProxy( std::unique_ptr active_entry_proxy) { DCHECK(!active_entry_proxy_); active_entry_proxy_ = std::move(active_entry_proxy); } EntryResult SimpleEntryImpl::OpenEntry(EntryResultCallback callback) { DCHECK(backend_.get()); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_CALL); OpenEntryIndexEnum index_state = ComputeIndexState(backend_.get(), entry_hash_); RecordOpenEntryIndexState(cache_type_, index_state); // If entry is not known to the index, initiate fast failover to the network. if (index_state == INDEX_MISS) { net_log_.AddEventWithNetErrorCode( net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_END, net::ERR_FAILED); return EntryResult::MakeError(net::ERR_FAILED); } pending_operations_.push(SimpleEntryOperation::OpenOperation( this, SimpleEntryOperation::ENTRY_NEEDS_CALLBACK, std::move(callback))); RunNextOperationIfNeeded(); return EntryResult::MakeError(net::ERR_IO_PENDING); } EntryResult SimpleEntryImpl::CreateEntry(EntryResultCallback callback) { DCHECK(backend_.get()); DCHECK_EQ(entry_hash_, simple_util::GetEntryHashKey(key_)); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_CALL); EntryResult result = EntryResult::MakeError(net::ERR_IO_PENDING); if (use_optimistic_operations_ && state_ == STATE_UNINITIALIZED && pending_operations_.size() == 0) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_OPTIMISTIC); ReturnEntryToCaller(); result = EntryResult::MakeCreated(this); pending_operations_.push(SimpleEntryOperation::CreateOperation( this, SimpleEntryOperation::ENTRY_ALREADY_RETURNED, EntryResultCallback())); // If we are optimistically returning before a preceeding doom, we need to // wait for that IO, about which we will be notified externally. if (optimistic_create_pending_doom_state_ != CREATE_NORMAL) { DCHECK_EQ(CREATE_OPTIMISTIC_PENDING_DOOM, optimistic_create_pending_doom_state_); state_ = STATE_IO_PENDING; } } else { pending_operations_.push(SimpleEntryOperation::CreateOperation( this, SimpleEntryOperation::ENTRY_NEEDS_CALLBACK, std::move(callback))); } // We insert the entry in the index before creating the entry files in the // SimpleSynchronousEntry, because this way the worst scenario is when we // have the entry in the index but we don't have the created files yet, this // way we never leak files. CreationOperationComplete will remove the entry // from the index if the creation fails. backend_->index()->Insert(entry_hash_); RunNextOperationIfNeeded(); return result; } EntryResult SimpleEntryImpl::OpenOrCreateEntry(EntryResultCallback callback) { DCHECK(backend_.get()); DCHECK_EQ(entry_hash_, simple_util::GetEntryHashKey(key_)); net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_OR_CREATE_CALL); OpenEntryIndexEnum index_state = ComputeIndexState(backend_.get(), entry_hash_); RecordOpenEntryIndexState(cache_type_, index_state); EntryResult result = EntryResult::MakeError(net::ERR_IO_PENDING); if (index_state == INDEX_MISS && use_optimistic_operations_ && state_ == STATE_UNINITIALIZED && pending_operations_.size() == 0) { net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_OPTIMISTIC); ReturnEntryToCaller(); result = EntryResult::MakeCreated(this); pending_operations_.push(SimpleEntryOperation::OpenOrCreateOperation( this, index_state, SimpleEntryOperation::ENTRY_ALREADY_RETURNED, EntryResultCallback())); // The post-doom stuff should go through CreateEntry, not here. DCHECK_EQ(CREATE_NORMAL, optimistic_create_pending_doom_state_); } else { pending_operations_.push(SimpleEntryOperation::OpenOrCreateOperation( this, index_state, SimpleEntryOperation::ENTRY_NEEDS_CALLBACK, std::move(callback))); } // We insert the entry in the index before creating the entry files in the // SimpleSynchronousEntry, because this way the worst scenario is when we // have the entry in the index but we don't have the created files yet, this // way we never leak files. CreationOperationComplete will remove the entry // from the index if the creation fails. backend_->index()->Insert(entry_hash_); RunNextOperationIfNeeded(); return result; } net::Error SimpleEntryImpl::DoomEntry(net::CompletionOnceCallback callback) { if (doom_state_ != DOOM_NONE) return net::OK; net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_DOOM_CALL); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_DOOM_BEGIN); MarkAsDoomed(DOOM_QUEUED); if (backend_.get()) { if (optimistic_create_pending_doom_state_ == CREATE_NORMAL) { post_doom_waiting_ = backend_->OnDoomStart(entry_hash_); } else { DCHECK_EQ(STATE_IO_PENDING, state_); DCHECK_EQ(CREATE_OPTIMISTIC_PENDING_DOOM, optimistic_create_pending_doom_state_); // If we are in this state, we went ahead with making the entry even // though the backend was already keeping track of a doom, so it can't // keep track of ours. So we delay notifying it until // NotifyDoomBeforeCreateComplete is called. Since this path is invoked // only when the queue of post-doom callbacks was previously empty, while // the CompletionOnceCallback for the op is posted, // NotifyDoomBeforeCreateComplete() will be the first thing running after // the previous doom completes, so at that point we can immediately grab // a spot in entries_pending_doom_. optimistic_create_pending_doom_state_ = CREATE_OPTIMISTIC_PENDING_DOOM_FOLLOWED_BY_DOOM; } } pending_operations_.push( SimpleEntryOperation::DoomOperation(this, std::move(callback))); RunNextOperationIfNeeded(); return net::ERR_IO_PENDING; } void SimpleEntryImpl::SetCreatePendingDoom() { DCHECK_EQ(CREATE_NORMAL, optimistic_create_pending_doom_state_); optimistic_create_pending_doom_state_ = CREATE_OPTIMISTIC_PENDING_DOOM; } void SimpleEntryImpl::NotifyDoomBeforeCreateComplete() { DCHECK_EQ(STATE_IO_PENDING, state_); DCHECK_NE(CREATE_NORMAL, optimistic_create_pending_doom_state_); if (backend_.get() && optimistic_create_pending_doom_state_ == CREATE_OPTIMISTIC_PENDING_DOOM_FOLLOWED_BY_DOOM) post_doom_waiting_ = backend_->OnDoomStart(entry_hash_); state_ = STATE_UNINITIALIZED; optimistic_create_pending_doom_state_ = CREATE_NORMAL; RunNextOperationIfNeeded(); } void SimpleEntryImpl::SetKey(const std::string& key) { key_ = key; net_log_.AddEventWithStringParams( net::NetLogEventType::SIMPLE_CACHE_ENTRY_SET_KEY, "key", key); } void SimpleEntryImpl::Doom() { DoomEntry(CompletionOnceCallback()); } void SimpleEntryImpl::Close() { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); CHECK_LT(0, open_count_); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CLOSE_CALL); if (--open_count_ > 0) { DCHECK(!HasOneRef()); Release(); // Balanced in ReturnEntryToCaller(). return; } pending_operations_.push(SimpleEntryOperation::CloseOperation(this)); DCHECK(!HasOneRef()); Release(); // Balanced in ReturnEntryToCaller(). RunNextOperationIfNeeded(); } std::string SimpleEntryImpl::GetKey() const { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); return key_; } Time SimpleEntryImpl::GetLastUsed() const { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK(cache_type_ != net::APP_CACHE); return last_used_; } Time SimpleEntryImpl::GetLastModified() const { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); return last_modified_; } int32_t SimpleEntryImpl::GetDataSize(int stream_index) const { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK_LE(0, data_size_[stream_index]); return data_size_[stream_index]; } int SimpleEntryImpl::ReadData(int stream_index, int offset, net::IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); if (net_log_.IsCapturing()) { NetLogReadWriteData( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_CALL, net::NetLogEventPhase::NONE, stream_index, offset, buf_len, false); } if (stream_index < 0 || stream_index >= kSimpleEntryStreamCount || buf_len < 0) { if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_END, net::NetLogEventPhase::NONE, net::ERR_INVALID_ARGUMENT); } return net::ERR_INVALID_ARGUMENT; } // If this is the only operation, bypass the queue, and also see if there is // in-memory data to handle it synchronously. In principle, multiple reads can // be parallelized, but past studies have shown that parallelizable ones // happen <1% of the time, so it's probably not worth the effort. bool alone_in_queue = pending_operations_.size() == 0 && state_ == STATE_READY; if (alone_in_queue) { return ReadDataInternal(/*sync_possible = */ true, stream_index, offset, buf, buf_len, std::move(callback)); } pending_operations_.push(SimpleEntryOperation::ReadOperation( this, stream_index, offset, buf_len, buf, std::move(callback))); RunNextOperationIfNeeded(); return net::ERR_IO_PENDING; } int SimpleEntryImpl::WriteData(int stream_index, int offset, net::IOBuffer* buf, int buf_len, CompletionOnceCallback callback, bool truncate) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); if (net_log_.IsCapturing()) { NetLogReadWriteData( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_CALL, net::NetLogEventPhase::NONE, stream_index, offset, buf_len, truncate); } if (stream_index < 0 || stream_index >= kSimpleEntryStreamCount || offset < 0 || buf_len < 0) { if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_END, net::NetLogEventPhase::NONE, net::ERR_INVALID_ARGUMENT); } return net::ERR_INVALID_ARGUMENT; } int end_offset; if (!base::CheckAdd(offset, buf_len).AssignIfValid(&end_offset) || (backend_.get() && end_offset > backend_->MaxFileSize())) { if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_END, net::NetLogEventPhase::NONE, net::ERR_FAILED); } return net::ERR_FAILED; } ScopedOperationRunner operation_runner(this); // Stream 0 data is kept in memory, so can be written immediatly if there are // no IO operations pending. if (stream_index == 0 && state_ == STATE_READY && pending_operations_.size() == 0) return SetStream0Data(buf, offset, buf_len, truncate); // We can only do optimistic Write if there is no pending operations, so // that we are sure that the next call to RunNextOperationIfNeeded will // actually run the write operation that sets the stream size. It also // prevents from previous possibly-conflicting writes that could be stacked // in the |pending_operations_|. We could optimize this for when we have // only read operations enqueued, but past studies have shown that that such // parallelizable cases are very rare. const bool optimistic = (use_optimistic_operations_ && state_ == STATE_READY && pending_operations_.size() == 0); CompletionOnceCallback op_callback; scoped_refptr op_buf; int ret_value = net::ERR_FAILED; if (!optimistic) { op_buf = buf; op_callback = std::move(callback); ret_value = net::ERR_IO_PENDING; } else { // TODO(morlovich,pasko): For performance, don't use a copy of an IOBuffer // here to avoid paying the price of the RefCountedThreadSafe atomic // operations. if (buf) { op_buf = base::MakeRefCounted(buf_len); memcpy(op_buf->data(), buf->data(), buf_len); } op_callback = CompletionOnceCallback(); ret_value = buf_len; if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_OPTIMISTIC, net::NetLogEventPhase::NONE, buf_len); } } pending_operations_.push(SimpleEntryOperation::WriteOperation( this, stream_index, offset, buf_len, op_buf.get(), truncate, optimistic, std::move(op_callback))); return ret_value; } int SimpleEntryImpl::ReadSparseData(int64_t offset, net::IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); if (net_log_.IsCapturing()) { NetLogSparseOperation( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_SPARSE_CALL, net::NetLogEventPhase::NONE, offset, buf_len); } if (offset < 0 || buf_len < 0) { if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_SPARSE_END, net::NetLogEventPhase::NONE, net::ERR_INVALID_ARGUMENT); } return net::ERR_INVALID_ARGUMENT; } // Truncate |buf_len| to make sure that |offset + buf_len| does not overflow. // This is OK since one can't write that far anyway. // The result of std::min is guaranteed to fit into int since |buf_len| did. buf_len = std::min(static_cast(buf_len), std::numeric_limits::max() - offset); ScopedOperationRunner operation_runner(this); pending_operations_.push(SimpleEntryOperation::ReadSparseOperation( this, offset, buf_len, buf, std::move(callback))); return net::ERR_IO_PENDING; } int SimpleEntryImpl::WriteSparseData(int64_t offset, net::IOBuffer* buf, int buf_len, CompletionOnceCallback callback) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); if (net_log_.IsCapturing()) { NetLogSparseOperation( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_SPARSE_CALL, net::NetLogEventPhase::NONE, offset, buf_len); } if (offset < 0 || buf_len < 0 || !base::CheckAdd(offset, buf_len).IsValid()) { if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_SPARSE_END, net::NetLogEventPhase::NONE, net::ERR_INVALID_ARGUMENT); } return net::ERR_INVALID_ARGUMENT; } ScopedOperationRunner operation_runner(this); pending_operations_.push(SimpleEntryOperation::WriteSparseOperation( this, offset, buf_len, buf, std::move(callback))); return net::ERR_IO_PENDING; } RangeResult SimpleEntryImpl::GetAvailableRange(int64_t offset, int len, RangeResultCallback callback) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); if (offset < 0 || len < 0) return RangeResult(net::ERR_INVALID_ARGUMENT); // Truncate |len| to make sure that |offset + len| does not overflow. // This is OK since one can't write that far anyway. // The result of std::min is guaranteed to fit into int since |len| did. len = std::min(static_cast(len), std::numeric_limits::max() - offset); ScopedOperationRunner operation_runner(this); pending_operations_.push(SimpleEntryOperation::GetAvailableRangeOperation( this, offset, len, std::move(callback))); return RangeResult(net::ERR_IO_PENDING); } bool SimpleEntryImpl::CouldBeSparse() const { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); // TODO(morlovich): Actually check. return true; } void SimpleEntryImpl::CancelSparseIO() { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); // The Simple Cache does not return distinct objects for the same non-doomed // entry, so there's no need to coordinate which object is performing sparse // I/O. Therefore, CancelSparseIO and ReadyForSparseIO succeed instantly. } net::Error SimpleEntryImpl::ReadyForSparseIO(CompletionOnceCallback callback) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); // The simple Cache does not return distinct objects for the same non-doomed // entry, so there's no need to coordinate which object is performing sparse // I/O. Therefore, CancelSparseIO and ReadyForSparseIO succeed instantly. return net::OK; } void SimpleEntryImpl::SetLastUsedTimeForTest(base::Time time) { last_used_ = time; backend_->index()->SetLastUsedTimeForTest(entry_hash_, time); } void SimpleEntryImpl::SetPriority(uint32_t entry_priority) { entry_priority_ = entry_priority; } SimpleEntryImpl::~SimpleEntryImpl() { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK_EQ(0U, pending_operations_.size()); // This used to DCHECK on `state_`, but it turns out that destruction // happening on thread shutdown, when closures holding `this` get deleted // can happen in circumstances not possible during normal use, such as when // I/O for Close operation is keeping the entry alive in STATE_IO_PENDING, or // an entry that's STATE_READY has callbacks pending to hand it over to the // user right as the thread is shutdown (this would also have a non-null // `synchronous_entry_`). net_log_.EndEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY); } void SimpleEntryImpl::PostClientCallback(net::CompletionOnceCallback callback, int result) { if (callback.is_null()) return; // Note that the callback is posted rather than directly invoked to avoid // reentrancy issues. base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(&InvokeCallbackIfBackendIsAlive, backend_, std::move(callback), result)); } void SimpleEntryImpl::PostClientCallback(EntryResultCallback callback, EntryResult result) { if (callback.is_null()) return; // Note that the callback is posted rather than directly invoked to avoid // reentrancy issues. base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(&InvokeEntryResultCallbackIfBackendIsAlive, backend_, std::move(callback), std::move(result))); } void SimpleEntryImpl::ResetEntry() { // If we're doomed, we can't really do anything else with the entry, since // we no longer own the name and are disconnected from the active entry table. // We preserve doom_state_ accross this entry for this same reason. state_ = doom_state_ == DOOM_COMPLETED ? STATE_FAILURE : STATE_UNINITIALIZED; std::memset(crc32s_end_offset_, 0, sizeof(crc32s_end_offset_)); std::memset(crc32s_, 0, sizeof(crc32s_)); std::memset(have_written_, 0, sizeof(have_written_)); std::memset(data_size_, 0, sizeof(data_size_)); } void SimpleEntryImpl::ReturnEntryToCaller() { DCHECK(backend_); ++open_count_; AddRef(); // Balanced in Close() } void SimpleEntryImpl::ReturnEntryToCallerAsync(bool is_open, EntryResultCallback callback) { DCHECK(!callback.is_null()); // |open_count_| must be incremented immediately, so that a Close on an alias // doesn't try to wrap things up. ++open_count_; // Note that the callback is posted rather than directly invoked to avoid // reentrancy issues. base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(&SimpleEntryImpl::FinishReturnEntryToCallerAsync, this, is_open, std::move(callback))); } void SimpleEntryImpl::FinishReturnEntryToCallerAsync( bool is_open, EntryResultCallback callback) { AddRef(); // Balanced in Close() if (!backend_.get()) { // With backend dead, Open/Create operations are responsible for cleaning up // the entry --- the ownership is never transferred to the caller, and their // callback isn't invoked. Close(); return; } std::move(callback).Run(is_open ? EntryResult::MakeOpened(this) : EntryResult::MakeCreated(this)); } void SimpleEntryImpl::MarkAsDoomed(DoomState new_state) { DCHECK_NE(DOOM_NONE, new_state); doom_state_ = new_state; if (!backend_.get()) return; backend_->index()->Remove(entry_hash_); active_entry_proxy_.reset(); } void SimpleEntryImpl::RunNextOperationIfNeeded() { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); if (!pending_operations_.empty() && state_ != STATE_IO_PENDING) { SimpleEntryOperation operation = std::move(pending_operations_.front()); pending_operations_.pop(); switch (operation.type()) { case SimpleEntryOperation::TYPE_OPEN: OpenEntryInternal(operation.entry_result_state(), operation.ReleaseEntryResultCallback()); break; case SimpleEntryOperation::TYPE_CREATE: CreateEntryInternal(operation.entry_result_state(), operation.ReleaseEntryResultCallback()); break; case SimpleEntryOperation::TYPE_OPEN_OR_CREATE: OpenOrCreateEntryInternal(operation.index_state(), operation.entry_result_state(), operation.ReleaseEntryResultCallback()); break; case SimpleEntryOperation::TYPE_CLOSE: CloseInternal(); break; case SimpleEntryOperation::TYPE_READ: ReadDataInternal(/* sync_possible= */ false, operation.index(), operation.offset(), operation.buf(), operation.length(), operation.ReleaseCallback()); break; case SimpleEntryOperation::TYPE_WRITE: WriteDataInternal(operation.index(), operation.offset(), operation.buf(), operation.length(), operation.ReleaseCallback(), operation.truncate()); break; case SimpleEntryOperation::TYPE_READ_SPARSE: ReadSparseDataInternal(operation.sparse_offset(), operation.buf(), operation.length(), operation.ReleaseCallback()); break; case SimpleEntryOperation::TYPE_WRITE_SPARSE: WriteSparseDataInternal(operation.sparse_offset(), operation.buf(), operation.length(), operation.ReleaseCallback()); break; case SimpleEntryOperation::TYPE_GET_AVAILABLE_RANGE: GetAvailableRangeInternal(operation.sparse_offset(), operation.length(), operation.ReleaseRangeResultCalback()); break; case SimpleEntryOperation::TYPE_DOOM: DoomEntryInternal(operation.ReleaseCallback()); break; default: NOTREACHED(); } // |this| may have been deleted. } } void SimpleEntryImpl::OpenEntryInternal( SimpleEntryOperation::EntryResultState result_state, EntryResultCallback callback) { ScopedOperationRunner operation_runner(this); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_BEGIN); // No optimistic sync return possible on open. DCHECK_EQ(SimpleEntryOperation::ENTRY_NEEDS_CALLBACK, result_state); if (state_ == STATE_READY) { ReturnEntryToCallerAsync(/* is_open = */ true, std::move(callback)); NetLogSimpleEntryCreation(net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_END, net::NetLogEventPhase::NONE, this, net::OK); return; } if (state_ == STATE_FAILURE) { PostClientCallback(std::move(callback), EntryResult::MakeError(net::ERR_FAILED)); NetLogSimpleEntryCreation( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_END, net::NetLogEventPhase::NONE, this, net::ERR_FAILED); return; } DCHECK_EQ(STATE_UNINITIALIZED, state_); DCHECK(!synchronous_entry_); state_ = STATE_IO_PENDING; const base::TimeTicks start_time = base::TimeTicks::Now(); auto results = std::make_unique(SimpleEntryStat( last_used_, last_modified_, data_size_, sparse_data_size_)); int32_t trailer_prefetch_size = -1; base::Time last_used_time; if (SimpleBackendImpl* backend = backend_.get()) { if (cache_type_ == net::APP_CACHE) { trailer_prefetch_size = backend->index()->GetTrailerPrefetchSize(entry_hash_); } else { last_used_time = backend->index()->GetLastUsedTime(entry_hash_); } } base::OnceClosure task = base::BindOnce( &SimpleSynchronousEntry::OpenEntry, cache_type_, path_, key_, entry_hash_, file_tracker_, file_operations_factory_->CreateUnbound(), trailer_prefetch_size, results.get()); base::OnceClosure reply = base::BindOnce( &SimpleEntryImpl::CreationOperationComplete, this, result_state, std::move(callback), start_time, last_used_time, std::move(results), net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_END); prioritized_task_runner_->PostTaskAndReply(FROM_HERE, std::move(task), std::move(reply), entry_priority_); } void SimpleEntryImpl::CreateEntryInternal( SimpleEntryOperation::EntryResultState result_state, EntryResultCallback callback) { ScopedOperationRunner operation_runner(this); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_BEGIN); if (state_ != STATE_UNINITIALIZED) { // There is already an active normal entry. NetLogSimpleEntryCreation( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_END, net::NetLogEventPhase::NONE, this, net::ERR_FAILED); // If we have optimistically returned an entry, we would be the first entry // in queue with state_ == STATE_UNINITIALIZED. DCHECK_EQ(SimpleEntryOperation::ENTRY_NEEDS_CALLBACK, result_state); PostClientCallback(std::move(callback), EntryResult::MakeError(net::ERR_FAILED)); return; } DCHECK_EQ(STATE_UNINITIALIZED, state_); DCHECK(!synchronous_entry_); state_ = STATE_IO_PENDING; // Since we don't know the correct values for |last_used_| and // |last_modified_| yet, we make this approximation. last_used_ = last_modified_ = base::Time::Now(); const base::TimeTicks start_time = base::TimeTicks::Now(); auto results = std::make_unique(SimpleEntryStat( last_used_, last_modified_, data_size_, sparse_data_size_)); OnceClosure task = base::BindOnce(&SimpleSynchronousEntry::CreateEntry, cache_type_, path_, key_, entry_hash_, file_tracker_, file_operations_factory_->CreateUnbound(), results.get()); OnceClosure reply = base::BindOnce( &SimpleEntryImpl::CreationOperationComplete, this, result_state, std::move(callback), start_time, base::Time(), std::move(results), net::NetLogEventType::SIMPLE_CACHE_ENTRY_CREATE_END); prioritized_task_runner_->PostTaskAndReply(FROM_HERE, std::move(task), std::move(reply), entry_priority_); } void SimpleEntryImpl::OpenOrCreateEntryInternal( OpenEntryIndexEnum index_state, SimpleEntryOperation::EntryResultState result_state, EntryResultCallback callback) { ScopedOperationRunner operation_runner(this); net_log_.AddEvent( net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_OR_CREATE_BEGIN); // result_state may be ENTRY_ALREADY_RETURNED only if an optimistic create is // being performed, which must be in STATE_UNINITIALIZED. bool optimistic_create = (result_state == SimpleEntryOperation::ENTRY_ALREADY_RETURNED); DCHECK(!optimistic_create || state_ == STATE_UNINITIALIZED); if (state_ == STATE_READY) { ReturnEntryToCallerAsync(/* is_open = */ true, std::move(callback)); NetLogSimpleEntryCreation( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_OR_CREATE_END, net::NetLogEventPhase::NONE, this, net::OK); return; } if (state_ == STATE_FAILURE) { PostClientCallback(std::move(callback), EntryResult::MakeError(net::ERR_FAILED)); NetLogSimpleEntryCreation( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_OR_CREATE_END, net::NetLogEventPhase::NONE, this, net::ERR_FAILED); return; } DCHECK_EQ(STATE_UNINITIALIZED, state_); DCHECK(!synchronous_entry_); state_ = STATE_IO_PENDING; const base::TimeTicks start_time = base::TimeTicks::Now(); auto results = std::make_unique(SimpleEntryStat( last_used_, last_modified_, data_size_, sparse_data_size_)); int32_t trailer_prefetch_size = -1; base::Time last_used_time; if (SimpleBackendImpl* backend = backend_.get()) { if (cache_type_ == net::APP_CACHE) { trailer_prefetch_size = backend->index()->GetTrailerPrefetchSize(entry_hash_); } else { last_used_time = backend->index()->GetLastUsedTime(entry_hash_); } } base::OnceClosure task = base::BindOnce(&SimpleSynchronousEntry::OpenOrCreateEntry, cache_type_, path_, key_, entry_hash_, index_state, optimistic_create, file_tracker_, file_operations_factory_->CreateUnbound(), trailer_prefetch_size, results.get()); base::OnceClosure reply = base::BindOnce( &SimpleEntryImpl::CreationOperationComplete, this, result_state, std::move(callback), start_time, last_used_time, std::move(results), net::NetLogEventType::SIMPLE_CACHE_ENTRY_OPEN_OR_CREATE_END); prioritized_task_runner_->PostTaskAndReply(FROM_HERE, std::move(task), std::move(reply), entry_priority_); } void SimpleEntryImpl::CloseInternal() { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); if (open_count_ != 0) { // Entry got resurrected in between Close and CloseInternal, nothing to do // for now. return; } typedef SimpleSynchronousEntry::CRCRecord CRCRecord; auto crc32s_to_write = std::make_unique>(); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CLOSE_BEGIN); if (state_ == STATE_READY) { DCHECK(synchronous_entry_); state_ = STATE_IO_PENDING; for (int i = 0; i < kSimpleEntryStreamCount; ++i) { if (have_written_[i]) { if (GetDataSize(i) == crc32s_end_offset_[i]) { int32_t crc = GetDataSize(i) == 0 ? crc32(0, Z_NULL, 0) : crc32s_[i]; crc32s_to_write->push_back(CRCRecord(i, true, crc)); } else { crc32s_to_write->push_back(CRCRecord(i, false, 0)); } } } } else { DCHECK(STATE_UNINITIALIZED == state_ || STATE_FAILURE == state_); } auto results = std::make_unique(); if (synchronous_entry_) { OnceClosure task = base::BindOnce( &SimpleSynchronousEntry::Close, base::Unretained(synchronous_entry_), SimpleEntryStat(last_used_, last_modified_, data_size_, sparse_data_size_), std::move(crc32s_to_write), base::RetainedRef(stream_0_data_), results.get()); OnceClosure reply = base::BindOnce(&SimpleEntryImpl::CloseOperationComplete, this, std::move(results)); synchronous_entry_ = nullptr; prioritized_task_runner_->PostTaskAndReply( FROM_HERE, std::move(task), std::move(reply), entry_priority_); } else { CloseOperationComplete(std::move(results)); } } int SimpleEntryImpl::ReadDataInternal(bool sync_possible, int stream_index, int offset, net::IOBuffer* buf, int buf_len, net::CompletionOnceCallback callback) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); ScopedOperationRunner operation_runner(this); if (net_log_.IsCapturing()) { NetLogReadWriteData( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_BEGIN, net::NetLogEventPhase::NONE, stream_index, offset, buf_len, false); } if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { if (net_log_.IsCapturing()) { NetLogReadWriteComplete(net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_END, net::NetLogEventPhase::NONE, net::ERR_FAILED); } // Note that the API states that client-provided callbacks for entry-level // (i.e. non-backend) operations (e.g. read, write) are invoked even if // the backend was already destroyed. return PostToCallbackIfNeeded(sync_possible, std::move(callback), net::ERR_FAILED); } DCHECK_EQ(STATE_READY, state_); if (offset >= GetDataSize(stream_index) || offset < 0 || !buf_len) { // If there is nothing to read, we bail out before setting state_ to // STATE_IO_PENDING (so ScopedOperationRunner might start us on next op // here). return PostToCallbackIfNeeded(sync_possible, std::move(callback), 0); } // Truncate read to not go past end of stream. buf_len = std::min(buf_len, GetDataSize(stream_index) - offset); // Since stream 0 data is kept in memory, it is read immediately. if (stream_index == 0) { int rv = ReadFromBuffer(stream_0_data_.get(), offset, buf_len, buf); return PostToCallbackIfNeeded(sync_possible, std::move(callback), rv); } // Sometimes we can read in-ram prefetched stream 1 data immediately, too. if (stream_index == 1) { if (stream_1_prefetch_data_) { int rv = ReadFromBuffer(stream_1_prefetch_data_.get(), offset, buf_len, buf); return PostToCallbackIfNeeded(sync_possible, std::move(callback), rv); } } state_ = STATE_IO_PENDING; if (doom_state_ == DOOM_NONE && backend_.get()) backend_->index()->UseIfExists(entry_hash_); SimpleSynchronousEntry::ReadRequest read_req(stream_index, offset, buf_len); // Figure out if we should be computing the checksum for this read, // and whether we should be verifying it, too. if (crc32s_end_offset_[stream_index] == offset) { read_req.request_update_crc = true; read_req.previous_crc32 = offset == 0 ? crc32(0, Z_NULL, 0) : crc32s_[stream_index]; // We can't verify the checksum if we already overwrote part of the file. // (It may still make sense to compute it if the overwritten area and the // about-to-read-in area are adjoint). read_req.request_verify_crc = !have_written_[stream_index]; } auto result = std::make_unique(); auto entry_stat = std::make_unique( last_used_, last_modified_, data_size_, sparse_data_size_); OnceClosure task = base::BindOnce( &SimpleSynchronousEntry::ReadData, base::Unretained(synchronous_entry_), read_req, entry_stat.get(), base::RetainedRef(buf), result.get()); OnceClosure reply = base::BindOnce( &SimpleEntryImpl::ReadOperationComplete, this, stream_index, offset, std::move(callback), std::move(entry_stat), std::move(result)); prioritized_task_runner_->PostTaskAndReply(FROM_HERE, std::move(task), std::move(reply), entry_priority_); return net::ERR_IO_PENDING; } void SimpleEntryImpl::WriteDataInternal(int stream_index, int offset, net::IOBuffer* buf, int buf_len, net::CompletionOnceCallback callback, bool truncate) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); ScopedOperationRunner operation_runner(this); if (net_log_.IsCapturing()) { NetLogReadWriteData( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_BEGIN, net::NetLogEventPhase::NONE, stream_index, offset, buf_len, truncate); } if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_END, net::NetLogEventPhase::NONE, net::ERR_FAILED); } if (!callback.is_null()) { base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(std::move(callback), net::ERR_FAILED)); } // |this| may be destroyed after return here. return; } DCHECK_EQ(STATE_READY, state_); // Since stream 0 data is kept in memory, it will be written immediatly. if (stream_index == 0) { int ret_value = SetStream0Data(buf, offset, buf_len, truncate); if (!callback.is_null()) { base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(std::move(callback), ret_value)); } return; } // Ignore zero-length writes that do not change the file size. if (buf_len == 0) { int32_t data_size = data_size_[stream_index]; if (truncate ? (offset == data_size) : (offset <= data_size)) { if (!callback.is_null()) { base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(std::move(callback), 0)); } return; } } state_ = STATE_IO_PENDING; if (doom_state_ == DOOM_NONE && backend_.get()) backend_->index()->UseIfExists(entry_hash_); // Any stream 1 write invalidates the prefetched data. if (stream_index == 1) stream_1_prefetch_data_ = nullptr; bool request_update_crc = false; uint32_t initial_crc = 0; if (offset < crc32s_end_offset_[stream_index]) { // If a range for which the crc32 was already computed is rewritten, the // computation of the crc32 need to start from 0 again. crc32s_end_offset_[stream_index] = 0; } if (crc32s_end_offset_[stream_index] == offset) { request_update_crc = true; initial_crc = (offset != 0) ? crc32s_[stream_index] : crc32(0, Z_NULL, 0); } // |entry_stat| needs to be initialized before modifying |data_size_|. auto entry_stat = std::make_unique( last_used_, last_modified_, data_size_, sparse_data_size_); if (truncate) { data_size_[stream_index] = offset + buf_len; } else { data_size_[stream_index] = std::max(offset + buf_len, GetDataSize(stream_index)); } auto write_result = std::make_unique(); // Since we don't know the correct values for |last_used_| and // |last_modified_| yet, we make this approximation. last_used_ = last_modified_ = base::Time::Now(); have_written_[stream_index] = true; // Writing on stream 1 affects the placement of stream 0 in the file, the EOF // record will have to be rewritten. if (stream_index == 1) have_written_[0] = true; // Retain a reference to |buf| in |reply| instead of |task|, so that we can // reduce cross thread malloc/free pairs. The cross thread malloc/free pair // increases the apparent memory usage due to the thread cached free list. // TODO(morlovich): Remove the doom_state_ argument to WriteData, since with // renaming rather than delete, creating a new stream 2 of doomed entry will // just work. OnceClosure task = base::BindOnce( &SimpleSynchronousEntry::WriteData, base::Unretained(synchronous_entry_), SimpleSynchronousEntry::WriteRequest( stream_index, offset, buf_len, initial_crc, truncate, doom_state_ != DOOM_NONE, request_update_crc), base::Unretained(buf), entry_stat.get(), write_result.get()); OnceClosure reply = base::BindOnce(&SimpleEntryImpl::WriteOperationComplete, this, stream_index, std::move(callback), std::move(entry_stat), std::move(write_result), base::RetainedRef(buf)); prioritized_task_runner_->PostTaskAndReply(FROM_HERE, std::move(task), std::move(reply), entry_priority_); } void SimpleEntryImpl::ReadSparseDataInternal( int64_t sparse_offset, net::IOBuffer* buf, int buf_len, net::CompletionOnceCallback callback) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); ScopedOperationRunner operation_runner(this); if (net_log_.IsCapturing()) { NetLogSparseOperation( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_SPARSE_BEGIN, net::NetLogEventPhase::NONE, sparse_offset, buf_len); } if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_SPARSE_END, net::NetLogEventPhase::NONE, net::ERR_FAILED); } if (!callback.is_null()) { base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(std::move(callback), net::ERR_FAILED)); } // |this| may be destroyed after return here. return; } DCHECK_EQ(STATE_READY, state_); state_ = STATE_IO_PENDING; auto result = std::make_unique(); auto last_used = std::make_unique(); OnceClosure task = base::BindOnce( &SimpleSynchronousEntry::ReadSparseData, base::Unretained(synchronous_entry_), SimpleSynchronousEntry::SparseRequest(sparse_offset, buf_len), base::RetainedRef(buf), last_used.get(), result.get()); OnceClosure reply = base::BindOnce( &SimpleEntryImpl::ReadSparseOperationComplete, this, std::move(callback), std::move(last_used), std::move(result)); prioritized_task_runner_->PostTaskAndReply(FROM_HERE, std::move(task), std::move(reply), entry_priority_); } void SimpleEntryImpl::WriteSparseDataInternal( int64_t sparse_offset, net::IOBuffer* buf, int buf_len, net::CompletionOnceCallback callback) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); ScopedOperationRunner operation_runner(this); if (net_log_.IsCapturing()) { NetLogSparseOperation( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_SPARSE_BEGIN, net::NetLogEventPhase::NONE, sparse_offset, buf_len); } if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_SPARSE_END, net::NetLogEventPhase::NONE, net::ERR_FAILED); } if (!callback.is_null()) { base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(std::move(callback), net::ERR_FAILED)); } // |this| may be destroyed after return here. return; } DCHECK_EQ(STATE_READY, state_); state_ = STATE_IO_PENDING; uint64_t max_sparse_data_size = std::numeric_limits::max(); if (backend_.get()) { uint64_t max_cache_size = backend_->index()->max_size(); max_sparse_data_size = max_cache_size / kMaxSparseDataSizeDivisor; } auto entry_stat = std::make_unique( last_used_, last_modified_, data_size_, sparse_data_size_); last_used_ = last_modified_ = base::Time::Now(); auto result = std::make_unique(); OnceClosure task = base::BindOnce( &SimpleSynchronousEntry::WriteSparseData, base::Unretained(synchronous_entry_), SimpleSynchronousEntry::SparseRequest(sparse_offset, buf_len), base::RetainedRef(buf), max_sparse_data_size, entry_stat.get(), result.get()); OnceClosure reply = base::BindOnce( &SimpleEntryImpl::WriteSparseOperationComplete, this, std::move(callback), std::move(entry_stat), std::move(result)); prioritized_task_runner_->PostTaskAndReply(FROM_HERE, std::move(task), std::move(reply), entry_priority_); } void SimpleEntryImpl::GetAvailableRangeInternal(int64_t sparse_offset, int len, RangeResultCallback callback) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); ScopedOperationRunner operation_runner(this); if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) { if (!callback.is_null()) { base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(std::move(callback), RangeResult(net::ERR_FAILED))); } // |this| may be destroyed after return here. return; } DCHECK_EQ(STATE_READY, state_); state_ = STATE_IO_PENDING; auto result = std::make_unique(); OnceClosure task = base::BindOnce( &SimpleSynchronousEntry::GetAvailableRange, base::Unretained(synchronous_entry_), SimpleSynchronousEntry::SparseRequest(sparse_offset, len), result.get()); OnceClosure reply = base::BindOnce(&SimpleEntryImpl::GetAvailableRangeOperationComplete, this, std::move(callback), std::move(result)); prioritized_task_runner_->PostTaskAndReply(FROM_HERE, std::move(task), std::move(reply), entry_priority_); } void SimpleEntryImpl::DoomEntryInternal(net::CompletionOnceCallback callback) { if (doom_state_ == DOOM_COMPLETED) { // During the time we were sitting on a queue, some operation failed // and cleaned our files up, so we don't have to do anything. DoomOperationComplete(std::move(callback), state_, net::OK); return; } if (!backend_) { // If there's no backend, we want to truncate the files rather than delete // or rename them. Either op will update the entry directory's mtime, which // will likely force a full index rebuild on the next startup; this is // clearly an undesirable cost. Instead, the lesser evil is to set the entry // files to length zero, leaving the invalid entry in the index. On the next // attempt to open the entry, it will fail asynchronously (since the magic // numbers will not be found), and the files will actually be removed. // Since there is no backend, new entries to conflict with us also can't be // created. prioritized_task_runner_->PostTaskAndReplyWithResult( FROM_HERE, base::BindOnce(&SimpleSynchronousEntry::TruncateEntryFiles, path_, entry_hash_, file_operations_factory_->CreateUnbound()), base::BindOnce(&SimpleEntryImpl::DoomOperationComplete, this, std::move(callback), // Return to STATE_FAILURE after dooming, since no // operation can succeed on the truncated entry files. STATE_FAILURE), entry_priority_); state_ = STATE_IO_PENDING; return; } if (synchronous_entry_) { // If there is a backing object, we have to go through its instance methods, // so that it can rename itself and keep track of the altenative name. prioritized_task_runner_->PostTaskAndReplyWithResult( FROM_HERE, base::BindOnce(&SimpleSynchronousEntry::Doom, base::Unretained(synchronous_entry_)), base::BindOnce(&SimpleEntryImpl::DoomOperationComplete, this, std::move(callback), state_), entry_priority_); } else { DCHECK_EQ(STATE_UNINITIALIZED, state_); // If nothing is open, we can just delete the files. We know they have the // base names, since if we ever renamed them our doom_state_ would be // DOOM_COMPLETED, and we would exit at function entry. prioritized_task_runner_->PostTaskAndReplyWithResult( FROM_HERE, base::BindOnce(&SimpleSynchronousEntry::DeleteEntryFiles, path_, cache_type_, entry_hash_, file_operations_factory_->CreateUnbound()), base::BindOnce(&SimpleEntryImpl::DoomOperationComplete, this, std::move(callback), state_), entry_priority_); } state_ = STATE_IO_PENDING; } void SimpleEntryImpl::CreationOperationComplete( SimpleEntryOperation::EntryResultState result_state, EntryResultCallback completion_callback, const base::TimeTicks& start_time, const base::Time index_last_used_time, std::unique_ptr in_results, net::NetLogEventType end_event_type) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK_EQ(state_, STATE_IO_PENDING); DCHECK(in_results); ScopedOperationRunner operation_runner(this); if (in_results->result != net::OK) { if (in_results->result != net::ERR_FILE_EXISTS) { // Here we keep index up-to-date, but don't remove ourselves from active // entries since we may have queued operations, and it would be // problematic to run further Creates, Opens, or Dooms if we are not // the active entry. We can only do this because OpenEntryInternal // and CreateEntryInternal have to start from STATE_UNINITIALIZED, so // nothing else is going on which may be confused. if (backend_) backend_->index()->Remove(entry_hash_); } net_log_.AddEventWithNetErrorCode(end_event_type, net::ERR_FAILED); PostClientCallback(std::move(completion_callback), EntryResult::MakeError(net::ERR_FAILED)); ResetEntry(); return; } // If this is a successful creation (rather than open), mark all streams to be // saved on close. if (in_results->created) { for (bool& have_written : have_written_) have_written = true; } // Make sure to keep the index up-to-date. We likely already did this when // CreateEntry was called, but it's possible we were sitting on a queue // after an op that removed us. if (backend_ && doom_state_ == DOOM_NONE) backend_->index()->Insert(entry_hash_); state_ = STATE_READY; synchronous_entry_ = in_results->sync_entry; // Copy over any pre-fetched data and its CRCs. for (int stream = 0; stream < 2; ++stream) { const SimpleStreamPrefetchData& prefetched = in_results->stream_prefetch_data[stream]; if (prefetched.data.get()) { if (stream == 0) stream_0_data_ = prefetched.data; else stream_1_prefetch_data_ = prefetched.data; // The crc was read in SimpleSynchronousEntry. crc32s_[stream] = prefetched.stream_crc32; crc32s_end_offset_[stream] = in_results->entry_stat.data_size(stream); } } // If this entry was opened by hash, key_ could still be empty. If so, update // it with the key read from the synchronous entry. if (key_.empty()) { SetKey(synchronous_entry_->key()); } else { // This should only be triggered when creating an entry. In the open case // the key is either copied from the arguments to open, or checked // in the synchronous entry. DCHECK_EQ(key_, synchronous_entry_->key()); } // Prefer index last used time to disk's, since that may be pretty inaccurate. if (!index_last_used_time.is_null()) in_results->entry_stat.set_last_used(index_last_used_time); UpdateDataFromEntryStat(in_results->entry_stat); if (cache_type_ == net::APP_CACHE && backend_.get() && backend_->index()) { backend_->index()->SetTrailerPrefetchSize( entry_hash_, in_results->computed_trailer_prefetch_size); } SIMPLE_CACHE_UMA(TIMES, "EntryCreationTime", cache_type_, (base::TimeTicks::Now() - start_time)); net_log_.AddEvent(end_event_type); const bool created = in_results->created; // We need to release `in_results` before going out of scope, because // `operation_runner` destruction might call a close operation, that will // ultimately release `in_results->sync_entry`, and thus leading to having a // dangling pointer here. in_results = nullptr; if (result_state == SimpleEntryOperation::ENTRY_NEEDS_CALLBACK) { ReturnEntryToCallerAsync(!created, std::move(completion_callback)); } } void SimpleEntryImpl::UpdateStateAfterOperationComplete( const SimpleEntryStat& entry_stat, int result) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK(synchronous_entry_); DCHECK_EQ(STATE_IO_PENDING, state_); if (result < 0) { state_ = STATE_FAILURE; MarkAsDoomed(DOOM_COMPLETED); } else { state_ = STATE_READY; UpdateDataFromEntryStat(entry_stat); } } void SimpleEntryImpl::EntryOperationComplete( net::CompletionOnceCallback completion_callback, const SimpleEntryStat& entry_stat, int result) { UpdateStateAfterOperationComplete(entry_stat, result); if (!completion_callback.is_null()) { base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(std::move(completion_callback), result)); } RunNextOperationIfNeeded(); } void SimpleEntryImpl::ReadOperationComplete( int stream_index, int offset, net::CompletionOnceCallback completion_callback, std::unique_ptr entry_stat, std::unique_ptr read_result) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK(synchronous_entry_); DCHECK_EQ(STATE_IO_PENDING, state_); DCHECK(read_result); int result = read_result->result; if (read_result->crc_updated) { if (result > 0) { DCHECK_EQ(crc32s_end_offset_[stream_index], offset); crc32s_end_offset_[stream_index] += result; crc32s_[stream_index] = read_result->updated_crc32; } } if (result < 0) { crc32s_end_offset_[stream_index] = 0; } if (net_log_.IsCapturing()) { NetLogReadWriteComplete(net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_END, net::NetLogEventPhase::NONE, result); } EntryOperationComplete(std::move(completion_callback), *entry_stat, result); } void SimpleEntryImpl::WriteOperationComplete( int stream_index, net::CompletionOnceCallback completion_callback, std::unique_ptr entry_stat, std::unique_ptr write_result, net::IOBuffer* buf) { int result = write_result->result; if (net_log_.IsCapturing()) { NetLogReadWriteComplete(net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_END, net::NetLogEventPhase::NONE, result); } if (result < 0) crc32s_end_offset_[stream_index] = 0; if (result > 0 && write_result->crc_updated) { crc32s_end_offset_[stream_index] += result; crc32s_[stream_index] = write_result->updated_crc32; } EntryOperationComplete(std::move(completion_callback), *entry_stat, result); } void SimpleEntryImpl::ReadSparseOperationComplete( net::CompletionOnceCallback completion_callback, std::unique_ptr last_used, std::unique_ptr result) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK(synchronous_entry_); DCHECK(result); if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_READ_SPARSE_END, net::NetLogEventPhase::NONE, *result); } SimpleEntryStat entry_stat(*last_used, last_modified_, data_size_, sparse_data_size_); EntryOperationComplete(std::move(completion_callback), entry_stat, *result); } void SimpleEntryImpl::WriteSparseOperationComplete( net::CompletionOnceCallback completion_callback, std::unique_ptr entry_stat, std::unique_ptr result) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK(synchronous_entry_); DCHECK(result); if (net_log_.IsCapturing()) { NetLogReadWriteComplete( net_log_, net::NetLogEventType::SIMPLE_CACHE_ENTRY_WRITE_SPARSE_END, net::NetLogEventPhase::NONE, *result); } EntryOperationComplete(std::move(completion_callback), *entry_stat, *result); } void SimpleEntryImpl::GetAvailableRangeOperationComplete( RangeResultCallback completion_callback, std::unique_ptr result) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK(synchronous_entry_); DCHECK(result); SimpleEntryStat entry_stat(last_used_, last_modified_, data_size_, sparse_data_size_); UpdateStateAfterOperationComplete(entry_stat, result->net_error); if (!completion_callback.is_null()) { base::SequencedTaskRunner::GetCurrentDefault()->PostTask( FROM_HERE, base::BindOnce(std::move(completion_callback), *result)); } RunNextOperationIfNeeded(); } void SimpleEntryImpl::DoomOperationComplete( net::CompletionOnceCallback callback, State state_to_restore, int result) { state_ = state_to_restore; doom_state_ = DOOM_COMPLETED; net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_DOOM_END); PostClientCallback(std::move(callback), result); RunNextOperationIfNeeded(); if (post_doom_waiting_) { post_doom_waiting_->OnDoomComplete(entry_hash_); post_doom_waiting_ = nullptr; } } void SimpleEntryImpl::CloseOperationComplete( std::unique_ptr in_results) { DCHECK(!synchronous_entry_); DCHECK_EQ(0, open_count_); DCHECK(STATE_IO_PENDING == state_ || STATE_FAILURE == state_ || STATE_UNINITIALIZED == state_); net_log_.AddEvent(net::NetLogEventType::SIMPLE_CACHE_ENTRY_CLOSE_END); if (cache_type_ == net::APP_CACHE && in_results->estimated_trailer_prefetch_size > 0 && backend_.get() && backend_->index()) { backend_->index()->SetTrailerPrefetchSize( entry_hash_, in_results->estimated_trailer_prefetch_size); } ResetEntry(); RunNextOperationIfNeeded(); } void SimpleEntryImpl::UpdateDataFromEntryStat( const SimpleEntryStat& entry_stat) { DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_); DCHECK(synchronous_entry_); DCHECK_EQ(STATE_READY, state_); last_used_ = entry_stat.last_used(); last_modified_ = entry_stat.last_modified(); for (int i = 0; i < kSimpleEntryStreamCount; ++i) { data_size_[i] = entry_stat.data_size(i); } sparse_data_size_ = entry_stat.sparse_data_size(); SimpleBackendImpl* backend_ptr = backend_.get(); if (doom_state_ == DOOM_NONE && backend_ptr) { backend_ptr->index()->UpdateEntrySize( entry_hash_, base::checked_cast(GetDiskUsage())); } } int64_t SimpleEntryImpl::GetDiskUsage() const { int64_t file_size = 0; for (int data_size : data_size_) { file_size += simple_util::GetFileSizeFromDataSize(key_.size(), data_size); } file_size += sparse_data_size_; return file_size; } int SimpleEntryImpl::ReadFromBuffer(net::GrowableIOBuffer* in_buf, int offset, int buf_len, net::IOBuffer* out_buf) { DCHECK_GE(buf_len, 0); memcpy(out_buf->data(), in_buf->data() + offset, buf_len); UpdateDataFromEntryStat(SimpleEntryStat(base::Time::Now(), last_modified_, data_size_, sparse_data_size_)); return buf_len; } int SimpleEntryImpl::SetStream0Data(net::IOBuffer* buf, int offset, int buf_len, bool truncate) { // Currently, stream 0 is only used for HTTP headers, and always writes them // with a single, truncating write. Detect these writes and record the size // changes of the headers. Also, support writes to stream 0 that have // different access patterns, as required by the API contract. // All other clients of the Simple Cache are encouraged to use stream 1. have_written_[0] = true; int data_size = GetDataSize(0); if (offset == 0 && truncate) { stream_0_data_->SetCapacity(buf_len); memcpy(stream_0_data_->data(), buf->data(), buf_len); data_size_[0] = buf_len; } else { const int buffer_size = truncate ? offset + buf_len : std::max(offset + buf_len, data_size); stream_0_data_->SetCapacity(buffer_size); // If |stream_0_data_| was extended, the extension until offset needs to be // zero-filled. const int fill_size = offset <= data_size ? 0 : offset - data_size; if (fill_size > 0) memset(stream_0_data_->data() + data_size, 0, fill_size); if (buf) memcpy(stream_0_data_->data() + offset, buf->data(), buf_len); data_size_[0] = buffer_size; } RecordHeaderSize(cache_type_, data_size_[0]); base::Time modification_time = base::Time::Now(); // Reset checksum; SimpleSynchronousEntry::Close will compute it for us, // and do it off the source creation sequence. crc32s_end_offset_[0] = 0; UpdateDataFromEntryStat( SimpleEntryStat(modification_time, modification_time, data_size_, sparse_data_size_)); return buf_len; } } // namespace disk_cache