/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include // AVX2 #include "aom_dsp/x86/mem_sse2.h" #include "aom_dsp/x86/synonyms.h" #include "aom_dsp/x86/synonyms_avx2.h" #include "aom_dsp/x86/transpose_sse2.h" #include "config/av1_rtcd.h" #include "av1/common/restoration.h" #include "av1/encoder/pickrst.h" static INLINE void acc_stat_avx2(int32_t *dst, const uint8_t *src, const __m128i *shuffle, const __m256i *kl) { const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle); const __m256i d0 = _mm256_madd_epi16(*kl, _mm256_cvtepu8_epi16(s)); const __m256i dst0 = yy_load_256(dst); const __m256i r0 = _mm256_add_epi32(dst0, d0); yy_store_256(dst, r0); } static INLINE void acc_stat_win7_one_line_avx2( const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int dgd_stride, const __m128i *shuffle, int32_t *sumX, int32_t sumY[WIENER_WIN][WIENER_WIN], int32_t M_int[WIENER_WIN][WIENER_WIN], int32_t H_int[WIENER_WIN2][WIENER_WIN * 8]) { int j, k, l; const int wiener_win = WIENER_WIN; // Main loop handles two pixels at a time // We can assume that h_start is even, since it will always be aligned to // a tile edge + some number of restoration units, and both of those will // be 64-pixel aligned. // However, at the edge of the image, h_end may be odd, so we need to handle // that case correctly. assert(h_start % 2 == 0); const int h_end_even = h_end & ~1; const int has_odd_pixel = h_end & 1; for (j = h_start; j < h_end_even; j += 2) { const uint8_t X1 = src[j]; const uint8_t X2 = src[j + 1]; *sumX += X1 + X2; const uint8_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int32_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint8_t D1 = dgd_ijk[l]; const uint8_t D2 = dgd_ijk[l + 1]; sumY[k][l] += D1 + D2; M_int[k][l] += D1 * X1 + D2 * X2; const __m256i kl = _mm256_cvtepu8_epi16(_mm_set1_epi16(loadu_int16(dgd_ijk + l))); acc_stat_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl); } } } // If the width is odd, add in the final pixel if (has_odd_pixel) { const uint8_t X1 = src[j]; *sumX += X1; const uint8_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int32_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint8_t D1 = dgd_ijk[l]; sumY[k][l] += D1; M_int[k][l] += D1 * X1; // The `acc_stat_avx2` function wants its input to have interleaved // copies of two pixels, but we only have one. However, the pixels // are (effectively) used as inputs to a multiply-accumulate. // So if we set the extra pixel slot to 0, then it is effectively // ignored. const __m256i kl = _mm256_cvtepu8_epi16(_mm_set1_epi16((int16_t)D1)); acc_stat_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl); } } } } static INLINE void compute_stats_win7_opt_avx2( const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, int use_downsampled_wiener_stats) { int i, j, k, l, m, n; const int wiener_win = WIENER_WIN; const int pixel_count = (h_end - h_start) * (v_end - v_start); const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } }; int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } }; int32_t M_int32_row[WIENER_WIN][WIENER_WIN] = { { 0 } }; DECLARE_ALIGNED(32, int32_t, H_int32[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } }; DECLARE_ALIGNED(32, int32_t, H_int32_row[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } }; int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } }; int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } }; int32_t sumX = 0; const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; int downsample_factor = use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; int32_t sumX_row = 0; int32_t sumY_row[WIENER_WIN][WIENER_WIN] = { { 0 } }; const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data); for (j = v_start; j < v_end; j += 64) { const int vert_end = AOMMIN(64, v_end - j) + j; for (i = j; i < vert_end; i = i + downsample_factor) { if (use_downsampled_wiener_stats && (vert_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) { downsample_factor = vert_end - i; } sumX_row = 0; memset(sumY_row, 0, sizeof(int32_t) * WIENER_WIN * WIENER_WIN); memset(M_int32_row, 0, sizeof(int32_t) * WIENER_WIN * WIENER_WIN); memset(H_int32_row, 0, sizeof(int32_t) * WIENER_WIN2 * (WIENER_WIN * 8)); acc_stat_win7_one_line_avx2( dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, dgd_stride, &shuffle, &sumX_row, sumY_row, M_int32_row, H_int32_row); sumX += sumX_row * downsample_factor; // Scale M matrix based on the downsampling factor for (k = 0; k < wiener_win; ++k) { for (l = 0; l < wiener_win; ++l) { sumY[k][l] += (sumY_row[k][l] * downsample_factor); M_int32[k][l] += (M_int32_row[k][l] * downsample_factor); } } // Scale H matrix based on the downsampling factor for (k = 0; k < WIENER_WIN2; ++k) { for (l = 0; l < WIENER_WIN * 8; ++l) { H_int32[k][l] += (H_int32_row[k][l] * downsample_factor); } } } for (k = 0; k < wiener_win; ++k) { for (l = 0; l < wiener_win; ++l) { M_int64[k][l] += M_int32[k][l]; M_int32[k][l] = 0; } } for (k = 0; k < WIENER_WIN2; ++k) { for (l = 0; l < WIENER_WIN * 8; ++l) { H_int64[k][l] += H_int32[k][l]; H_int32[k][l] = 0; } } } const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { const int32_t idx0 = l * wiener_win + k; M[idx0] = M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l])); int64_t *H_ = H + idx0 * wiener_win2; int64_t *H_int_ = &H_int64[idx0][0]; for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]); } } } } } #if CONFIG_AV1_HIGHBITDEPTH static INLINE void acc_stat_highbd_avx2(int64_t *dst, const uint16_t *dgd, const __m256i *shuffle, const __m256i *dgd_ijkl) { // Load two 128-bit chunks from dgd const __m256i s0 = _mm256_inserti128_si256( _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)dgd)), _mm_loadu_si128((__m128i *)(dgd + 4)), 1); // s0 = [11 10 9 8 7 6 5 4] [7 6 5 4 3 2 1 0] as u16 (values are dgd indices) // The weird order is so the shuffle stays within 128-bit lanes // Shuffle 16x u16 values within lanes according to the mask: // [0 1 1 2 2 3 3 4] [0 1 1 2 2 3 3 4] // (Actually we shuffle u8 values as there's no 16-bit shuffle) const __m256i s1 = _mm256_shuffle_epi8(s0, *shuffle); // s1 = [8 7 7 6 6 5 5 4] [4 3 3 2 2 1 1 0] as u16 (values are dgd indices) // Multiply 16x 16-bit integers in dgd_ijkl and s1, resulting in 16x 32-bit // integers then horizontally add pairs of these integers resulting in 8x // 32-bit integers const __m256i d0 = _mm256_madd_epi16(*dgd_ijkl, s1); // d0 = [a b c d] [e f g h] as u32 // Take the lower-half of d0, extend to u64, add it on to dst (H) const __m256i d0l = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 0)); // d0l = [a b] [c d] as u64 const __m256i dst0 = yy_load_256(dst); yy_store_256(dst, _mm256_add_epi64(d0l, dst0)); // Take the upper-half of d0, extend to u64, add it on to dst (H) const __m256i d0h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 1)); // d0h = [e f] [g h] as u64 const __m256i dst1 = yy_load_256(dst + 4); yy_store_256(dst + 4, _mm256_add_epi64(d0h, dst1)); } static INLINE void acc_stat_highbd_win7_one_line_avx2( const uint16_t *dgd, const uint16_t *src, int h_start, int h_end, int dgd_stride, const __m256i *shuffle, int32_t *sumX, int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN], int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) { int j, k, l; const int wiener_win = WIENER_WIN; // Main loop handles two pixels at a time // We can assume that h_start is even, since it will always be aligned to // a tile edge + some number of restoration units, and both of those will // be 64-pixel aligned. // However, at the edge of the image, h_end may be odd, so we need to handle // that case correctly. assert(h_start % 2 == 0); const int h_end_even = h_end & ~1; const int has_odd_pixel = h_end & 1; for (j = h_start; j < h_end_even; j += 2) { const uint16_t X1 = src[j]; const uint16_t X2 = src[j + 1]; *sumX += X1 + X2; const uint16_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int64_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint16_t D1 = dgd_ijk[l]; const uint16_t D2 = dgd_ijk[l + 1]; sumY[k][l] += D1 + D2; M_int[k][l] += D1 * X1 + D2 * X2; // Load two u16 values from dgd_ijkl combined as a u32, // then broadcast to 8x u32 slots of a 256 const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l)); // dgd_ijkl = [y x y x y x y x] [y x y x y x y x] where each is a u16 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &dgd_ijkl); } } } // If the width is odd, add in the final pixel if (has_odd_pixel) { const uint16_t X1 = src[j]; *sumX += X1; const uint16_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int64_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint16_t D1 = dgd_ijk[l]; sumY[k][l] += D1; M_int[k][l] += D1 * X1; // The `acc_stat_highbd_avx2` function wants its input to have // interleaved copies of two pixels, but we only have one. However, the // pixels are (effectively) used as inputs to a multiply-accumulate. So // if we set the extra pixel slot to 0, then it is effectively ignored. const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1); acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &dgd_ijkl); } } } } static INLINE void compute_stats_highbd_win7_opt_avx2( const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, aom_bit_depth_t bit_depth) { int i, j, k, l, m, n; const int wiener_win = WIENER_WIN; const int pixel_count = (h_end - h_start) * (v_end - v_start); const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); const uint16_t avg = find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } }; DECLARE_ALIGNED(32, int64_t, H_int[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } }; int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } }; int32_t sumX = 0; const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data); for (j = v_start; j < v_end; j += 64) { const int vert_end = AOMMIN(64, v_end - j) + j; for (i = j; i < vert_end; i++) { acc_stat_highbd_win7_one_line_avx2( dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, dgd_stride, &shuffle, &sumX, sumY, M_int, H_int); } } uint8_t bit_depth_divider = 1; if (bit_depth == AOM_BITS_12) bit_depth_divider = 16; else if (bit_depth == AOM_BITS_10) bit_depth_divider = 4; const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { const int32_t idx0 = l * wiener_win + k; M[idx0] = (M_int[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) / bit_depth_divider; int64_t *H_ = H + idx0 * wiener_win2; int64_t *H_int_ = &H_int[idx0][0]; for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H_[m * wiener_win + n] = (H_int_[n * 8 + m] + (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) / bit_depth_divider; } } } } } static INLINE void acc_stat_highbd_win5_one_line_avx2( const uint16_t *dgd, const uint16_t *src, int h_start, int h_end, int dgd_stride, const __m256i *shuffle, int32_t *sumX, int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) { int j, k, l; const int wiener_win = WIENER_WIN_CHROMA; // Main loop handles two pixels at a time // We can assume that h_start is even, since it will always be aligned to // a tile edge + some number of restoration units, and both of those will // be 64-pixel aligned. // However, at the edge of the image, h_end may be odd, so we need to handle // that case correctly. assert(h_start % 2 == 0); const int h_end_even = h_end & ~1; const int has_odd_pixel = h_end & 1; for (j = h_start; j < h_end_even; j += 2) { const uint16_t X1 = src[j]; const uint16_t X2 = src[j + 1]; *sumX += X1 + X2; const uint16_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int64_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint16_t D1 = dgd_ijk[l]; const uint16_t D2 = dgd_ijk[l + 1]; sumY[k][l] += D1 + D2; M_int[k][l] += D1 * X1 + D2 * X2; // Load two u16 values from dgd_ijkl combined as a u32, // then broadcast to 8x u32 slots of a 256 const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l)); // dgd_ijkl = [x y x y x y x y] [x y x y x y x y] where each is a u16 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &dgd_ijkl); } } } // If the width is odd, add in the final pixel if (has_odd_pixel) { const uint16_t X1 = src[j]; *sumX += X1; const uint16_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int64_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint16_t D1 = dgd_ijk[l]; sumY[k][l] += D1; M_int[k][l] += D1 * X1; // The `acc_stat_highbd_avx2` function wants its input to have // interleaved copies of two pixels, but we only have one. However, the // pixels are (effectively) used as inputs to a multiply-accumulate. So // if we set the extra pixel slot to 0, then it is effectively ignored. const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1); acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &dgd_ijkl); } } } } static INLINE void compute_stats_highbd_win5_opt_avx2( const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, aom_bit_depth_t bit_depth) { int i, j, k, l, m, n; const int wiener_win = WIENER_WIN_CHROMA; const int pixel_count = (h_end - h_start) * (v_end - v_start); const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); const uint16_t avg = find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; DECLARE_ALIGNED( 32, int64_t, H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } }; int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; int32_t sumX = 0; const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data); for (j = v_start; j < v_end; j += 64) { const int vert_end = AOMMIN(64, v_end - j) + j; for (i = j; i < vert_end; i++) { acc_stat_highbd_win5_one_line_avx2( dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, dgd_stride, &shuffle, &sumX, sumY, M_int64, H_int64); } } uint8_t bit_depth_divider = 1; if (bit_depth == AOM_BITS_12) bit_depth_divider = 16; else if (bit_depth == AOM_BITS_10) bit_depth_divider = 4; const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { const int32_t idx0 = l * wiener_win + k; M[idx0] = (M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) / bit_depth_divider; int64_t *H_ = H + idx0 * wiener_win2; int64_t *H_int_ = &H_int64[idx0][0]; for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H_[m * wiener_win + n] = (H_int_[n * 8 + m] + (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) / bit_depth_divider; } } } } } void av1_compute_stats_highbd_avx2(int wiener_win, const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, aom_bit_depth_t bit_depth) { if (wiener_win == WIENER_WIN) { compute_stats_highbd_win7_opt_avx2(dgd8, src8, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, bit_depth); } else if (wiener_win == WIENER_WIN_CHROMA) { compute_stats_highbd_win5_opt_avx2(dgd8, src8, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, bit_depth); } else { av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, bit_depth); } } #endif // CONFIG_AV1_HIGHBITDEPTH static INLINE void acc_stat_win5_one_line_avx2( const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int dgd_stride, const __m128i *shuffle, int32_t *sumX, int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) { int j, k, l; const int wiener_win = WIENER_WIN_CHROMA; // Main loop handles two pixels at a time // We can assume that h_start is even, since it will always be aligned to // a tile edge + some number of restoration units, and both of those will // be 64-pixel aligned. // However, at the edge of the image, h_end may be odd, so we need to handle // that case correctly. assert(h_start % 2 == 0); const int h_end_even = h_end & ~1; const int has_odd_pixel = h_end & 1; for (j = h_start; j < h_end_even; j += 2) { const uint8_t X1 = src[j]; const uint8_t X2 = src[j + 1]; *sumX += X1 + X2; const uint8_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int32_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint8_t D1 = dgd_ijk[l]; const uint8_t D2 = dgd_ijk[l + 1]; sumY[k][l] += D1 + D2; M_int[k][l] += D1 * X1 + D2 * X2; const __m256i kl = _mm256_cvtepu8_epi16(_mm_set1_epi16(loadu_int16(dgd_ijk + l))); acc_stat_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl); } } } // If the width is odd, add in the final pixel if (has_odd_pixel) { const uint8_t X1 = src[j]; *sumX += X1; const uint8_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int32_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint8_t D1 = dgd_ijk[l]; sumY[k][l] += D1; M_int[k][l] += D1 * X1; // The `acc_stat_avx2` function wants its input to have interleaved // copies of two pixels, but we only have one. However, the pixels // are (effectively) used as inputs to a multiply-accumulate. // So if we set the extra pixel slot to 0, then it is effectively // ignored. const __m256i kl = _mm256_cvtepu8_epi16(_mm_set1_epi16((int16_t)D1)); acc_stat_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl); acc_stat_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl); } } } } static INLINE void compute_stats_win5_opt_avx2( const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, int use_downsampled_wiener_stats) { int i, j, k, l, m, n; const int wiener_win = WIENER_WIN_CHROMA; const int pixel_count = (h_end - h_start) * (v_end - v_start); const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; int32_t M_int32_row[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; DECLARE_ALIGNED( 32, int32_t, H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } }; DECLARE_ALIGNED( 32, int32_t, H_int32_row[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } }; int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } }; int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; int32_t sumX = 0; const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; int downsample_factor = use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; int32_t sumX_row = 0; int32_t sumY_row[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data); for (j = v_start; j < v_end; j += 64) { const int vert_end = AOMMIN(64, v_end - j) + j; for (i = j; i < vert_end; i = i + downsample_factor) { if (use_downsampled_wiener_stats && (vert_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) { downsample_factor = vert_end - i; } sumX_row = 0; memset(sumY_row, 0, sizeof(int32_t) * WIENER_WIN_CHROMA * WIENER_WIN_CHROMA); memset(M_int32_row, 0, sizeof(int32_t) * WIENER_WIN_CHROMA * WIENER_WIN_CHROMA); memset(H_int32_row, 0, sizeof(int32_t) * WIENER_WIN2_CHROMA * (WIENER_WIN_CHROMA * 8)); acc_stat_win5_one_line_avx2( dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, dgd_stride, &shuffle, &sumX_row, sumY_row, M_int32_row, H_int32_row); sumX += sumX_row * downsample_factor; // Scale M matrix based on the downsampling factor for (k = 0; k < wiener_win; ++k) { for (l = 0; l < wiener_win; ++l) { sumY[k][l] += (sumY_row[k][l] * downsample_factor); M_int32[k][l] += (M_int32_row[k][l] * downsample_factor); } } // Scale H matrix based on the downsampling factor for (k = 0; k < WIENER_WIN2_CHROMA; ++k) { for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) { H_int32[k][l] += (H_int32_row[k][l] * downsample_factor); } } } for (k = 0; k < wiener_win; ++k) { for (l = 0; l < wiener_win; ++l) { M_int64[k][l] += M_int32[k][l]; M_int32[k][l] = 0; } } for (k = 0; k < WIENER_WIN2_CHROMA; ++k) { for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) { H_int64[k][l] += H_int32[k][l]; H_int32[k][l] = 0; } } } const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { const int32_t idx0 = l * wiener_win + k; M[idx0] = M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l])); int64_t *H_ = H + idx0 * wiener_win2; int64_t *H_int_ = &H_int64[idx0][0]; for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]); } } } } } void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, int use_downsampled_wiener_stats) { if (wiener_win == WIENER_WIN) { compute_stats_win7_opt_avx2(dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, use_downsampled_wiener_stats); } else if (wiener_win == WIENER_WIN_CHROMA) { compute_stats_win5_opt_avx2(dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, use_downsampled_wiener_stats); } else { av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, use_downsampled_wiener_stats); } } static INLINE __m256i pair_set_epi16(int a, int b) { return _mm256_set1_epi32( (int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16))); } int64_t av1_lowbd_pixel_proj_error_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) { int i, j, k; const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS; const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1)); __m256i sum64 = _mm256_setzero_si256(); const uint8_t *src = src8; const uint8_t *dat = dat8; int64_t err = 0; if (params->r[0] > 0 && params->r[1] > 0) { __m256i xq_coeff = pair_set_epi16(xq[0], xq[1]); for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); const __m256i flt0_16b = _mm256_permute4x64_epi64( _mm256_packs_epi32(yy_loadu_256(flt0 + j), yy_loadu_256(flt0 + j + 8)), 0xd8); const __m256i flt1_16b = _mm256_permute4x64_epi64( _mm256_packs_epi32(yy_loadu_256(flt1 + j), yy_loadu_256(flt1 + j + 8)), 0xd8); const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS); const __m256i flt0_0_sub_u = _mm256_sub_epi16(flt0_16b, u0); const __m256i flt1_0_sub_u = _mm256_sub_epi16(flt1_16b, u0); const __m256i v0 = _mm256_madd_epi16( xq_coeff, _mm256_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u)); const __m256i v1 = _mm256_madd_epi16( xq_coeff, _mm256_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u)); const __m256i vr0 = _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift); const __m256i vr1 = _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift); const __m256i e0 = _mm256_sub_epi16( _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0); const __m256i err0 = _mm256_madd_epi16(e0, e0); sum32 = _mm256_add_epi32(sum32, err0); } for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt0 += flt0_stride; flt1 += flt1_stride; const __m256i sum64_0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); const __m256i sum64_1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum64_0); sum64 = _mm256_add_epi64(sum64, sum64_1); } } else if (params->r[0] > 0 || params->r[1] > 0) { const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1]; const __m256i xq_coeff = pair_set_epi16(xq_active, (-xq_active * (1 << SGRPROJ_RST_BITS))); const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1; const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride; for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); const __m256i flt_16b = _mm256_permute4x64_epi64( _mm256_packs_epi32(yy_loadu_256(flt + j), yy_loadu_256(flt + j + 8)), 0xd8); const __m256i v0 = _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt_16b, d0)); const __m256i v1 = _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt_16b, d0)); const __m256i vr0 = _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift); const __m256i vr1 = _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift); const __m256i e0 = _mm256_sub_epi16( _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0); const __m256i err0 = _mm256_madd_epi16(e0, e0); sum32 = _mm256_add_epi32(sum32, err0); } for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); int32_t v = xq_active * (flt[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt += flt_stride; const __m256i sum64_0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); const __m256i sum64_1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum64_0); sum64 = _mm256_add_epi64(sum64, sum64_1); } } else { __m256i sum32 = _mm256_setzero_si256(); for (i = 0; i < height; ++i) { for (j = 0; j <= width - 16; j += 16) { const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); const __m256i diff0 = _mm256_sub_epi16(d0, s0); const __m256i err0 = _mm256_madd_epi16(diff0, diff0); sum32 = _mm256_add_epi32(sum32, err0); } for (k = j; k < width; ++k) { const int32_t e = (int32_t)(dat[k]) - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; } const __m256i sum64_0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); const __m256i sum64_1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64_0, sum64_1); } int64_t sum[4]; yy_storeu_256(sum, sum64); err += sum[0] + sum[1] + sum[2] + sum[3]; return err; } // When params->r[0] > 0 and params->r[1] > 0. In this case all elements of // C and H need to be computed. static AOM_INLINE void calc_proj_params_r0_r1_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint8_t *src = src8; const uint8_t *dat = dat8; __m256i h00, h01, h11, c0, c1; const __m256i zero = _mm256_setzero_si256(); h01 = h11 = c0 = c1 = h00 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(src + i * src_stride + j))); __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f1 = _mm256_sub_epi32(f1, d); f2 = _mm256_sub_epi32(f2, d); const __m256i h00_even = _mm256_mul_epi32(f1, f1); const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f1, 32)); h00 = _mm256_add_epi64(h00, h00_even); h00 = _mm256_add_epi64(h00, h00_odd); const __m256i h01_even = _mm256_mul_epi32(f1, f2); const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f2, 32)); h01 = _mm256_add_epi64(h01, h01_even); h01 = _mm256_add_epi64(h01, h01_odd); const __m256i h11_even = _mm256_mul_epi32(f2, f2); const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(f2, 32)); h11 = _mm256_add_epi64(h11, h11_even); h11 = _mm256_add_epi64(h11, h11_odd); const __m256i c0_even = _mm256_mul_epi32(f1, s); const __m256i c0_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); c0 = _mm256_add_epi64(c0, c0_even); c0 = _mm256_add_epi64(c0, c0_odd); const __m256i c1_even = _mm256_mul_epi32(f2, s); const __m256i c1_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); c1 = _mm256_add_epi64(c1, c1_even); c1 = _mm256_add_epi64(c1, c1_odd); } } __m256i c_low = _mm256_unpacklo_epi64(c0, c1); const __m256i c_high = _mm256_unpackhi_epi64(c0, c1); c_low = _mm256_add_epi64(c_low, c_high); const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1), _mm256_castsi256_si128(c_low)); __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01); const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01); h0x_low = _mm256_add_epi64(h0x_low, h0x_high); const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1), _mm256_castsi256_si128(h0x_low)); // Using the symmetric properties of H, calculations of H[1][0] are not // needed. __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11); const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11); h1x_low = _mm256_add_epi64(h1x_low, h1x_high); const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1), _mm256_castsi256_si128(h1x_low)); xx_storeu_128(C, c_128bit); xx_storeu_128(H[0], h0x_128bit); xx_storeu_128(H[1], h1x_128bit); H[0][0] /= size; H[0][1] /= size; H[1][1] /= size; // Since H is a symmetric matrix H[1][0] = H[0][1]; C[0] /= size; C[1] /= size; } // When only params->r[0] > 0. In this case only H[0][0] and C[0] are // non-zero and need to be computed. static AOM_INLINE void calc_proj_params_r0_avx2(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint8_t *src = src8; const uint8_t *dat = dat8; __m256i h00, c0; const __m256i zero = _mm256_setzero_si256(); c0 = h00 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(src + i * src_stride + j))); __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f1 = _mm256_sub_epi32(f1, d); const __m256i h00_even = _mm256_mul_epi32(f1, f1); const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f1, 32)); h00 = _mm256_add_epi64(h00, h00_even); h00 = _mm256_add_epi64(h00, h00_odd); const __m256i c0_even = _mm256_mul_epi32(f1, s); const __m256i c0_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); c0 = _mm256_add_epi64(c0, c0_even); c0 = _mm256_add_epi64(c0, c0_odd); } } const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1), _mm256_castsi256_si128(h00)); const __m128i h00_val = _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8)); const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1), _mm256_castsi256_si128(c0)); const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8)); const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero)); const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero)); xx_storeu_128(C, c); xx_storeu_128(H[0], h0x); H[0][0] /= size; C[0] /= size; } // When only params->r[1] > 0. In this case only H[1][1] and C[1] are // non-zero and need to be computed. static AOM_INLINE void calc_proj_params_r1_avx2(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint8_t *src = src8; const uint8_t *dat = dat8; __m256i h11, c1; const __m256i zero = _mm256_setzero_si256(); c1 = h11 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(src + i * src_stride + j))); __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f2 = _mm256_sub_epi32(f2, d); const __m256i h11_even = _mm256_mul_epi32(f2, f2); const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(f2, 32)); h11 = _mm256_add_epi64(h11, h11_even); h11 = _mm256_add_epi64(h11, h11_odd); const __m256i c1_even = _mm256_mul_epi32(f2, s); const __m256i c1_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); c1 = _mm256_add_epi64(c1, c1_even); c1 = _mm256_add_epi64(c1, c1_odd); } } const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1), _mm256_castsi256_si128(h11)); const __m128i h11_val = _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8)); const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1), _mm256_castsi256_si128(c1)); const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8)); const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val); const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val); xx_storeu_128(C, c); xx_storeu_128(H[1], h1x); H[1][1] /= size; C[1] /= size; } // AVX2 variant of av1_calc_proj_params_c. void av1_calc_proj_params_avx2(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2], const sgr_params_type *params) { if ((params->r[0] > 0) && (params->r[1] > 0)) { calc_proj_params_r0_r1_avx2(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C); } else if (params->r[0] > 0) { calc_proj_params_r0_avx2(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, H, C); } else if (params->r[1] > 0) { calc_proj_params_r1_avx2(src8, width, height, src_stride, dat8, dat_stride, flt1, flt1_stride, H, C); } } static AOM_INLINE void calc_proj_params_r0_r1_high_bd_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); __m256i h00, h01, h11, c0, c1; const __m256i zero = _mm256_setzero_si256(); h01 = h11 = c0 = c1 = h00 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(src + i * src_stride + j))); __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f1 = _mm256_sub_epi32(f1, d); f2 = _mm256_sub_epi32(f2, d); const __m256i h00_even = _mm256_mul_epi32(f1, f1); const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f1, 32)); h00 = _mm256_add_epi64(h00, h00_even); h00 = _mm256_add_epi64(h00, h00_odd); const __m256i h01_even = _mm256_mul_epi32(f1, f2); const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f2, 32)); h01 = _mm256_add_epi64(h01, h01_even); h01 = _mm256_add_epi64(h01, h01_odd); const __m256i h11_even = _mm256_mul_epi32(f2, f2); const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(f2, 32)); h11 = _mm256_add_epi64(h11, h11_even); h11 = _mm256_add_epi64(h11, h11_odd); const __m256i c0_even = _mm256_mul_epi32(f1, s); const __m256i c0_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); c0 = _mm256_add_epi64(c0, c0_even); c0 = _mm256_add_epi64(c0, c0_odd); const __m256i c1_even = _mm256_mul_epi32(f2, s); const __m256i c1_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); c1 = _mm256_add_epi64(c1, c1_even); c1 = _mm256_add_epi64(c1, c1_odd); } } __m256i c_low = _mm256_unpacklo_epi64(c0, c1); const __m256i c_high = _mm256_unpackhi_epi64(c0, c1); c_low = _mm256_add_epi64(c_low, c_high); const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1), _mm256_castsi256_si128(c_low)); __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01); const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01); h0x_low = _mm256_add_epi64(h0x_low, h0x_high); const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1), _mm256_castsi256_si128(h0x_low)); // Using the symmetric properties of H, calculations of H[1][0] are not // needed. __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11); const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11); h1x_low = _mm256_add_epi64(h1x_low, h1x_high); const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1), _mm256_castsi256_si128(h1x_low)); xx_storeu_128(C, c_128bit); xx_storeu_128(H[0], h0x_128bit); xx_storeu_128(H[1], h1x_128bit); H[0][0] /= size; H[0][1] /= size; H[1][1] /= size; // Since H is a symmetric matrix H[1][0] = H[0][1]; C[0] /= size; C[1] /= size; } static AOM_INLINE void calc_proj_params_r0_high_bd_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); __m256i h00, c0; const __m256i zero = _mm256_setzero_si256(); c0 = h00 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(src + i * src_stride + j))); __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f1 = _mm256_sub_epi32(f1, d); const __m256i h00_even = _mm256_mul_epi32(f1, f1); const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f1, 32)); h00 = _mm256_add_epi64(h00, h00_even); h00 = _mm256_add_epi64(h00, h00_odd); const __m256i c0_even = _mm256_mul_epi32(f1, s); const __m256i c0_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); c0 = _mm256_add_epi64(c0, c0_even); c0 = _mm256_add_epi64(c0, c0_odd); } } const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1), _mm256_castsi256_si128(h00)); const __m128i h00_val = _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8)); const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1), _mm256_castsi256_si128(c0)); const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8)); const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero)); const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero)); xx_storeu_128(C, c); xx_storeu_128(H[0], h0x); H[0][0] /= size; C[0] /= size; } static AOM_INLINE void calc_proj_params_r1_high_bd_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); __m256i h11, c1; const __m256i zero = _mm256_setzero_si256(); c1 = h11 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(src + i * src_stride + j))); __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f2 = _mm256_sub_epi32(f2, d); const __m256i h11_even = _mm256_mul_epi32(f2, f2); const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(f2, 32)); h11 = _mm256_add_epi64(h11, h11_even); h11 = _mm256_add_epi64(h11, h11_odd); const __m256i c1_even = _mm256_mul_epi32(f2, s); const __m256i c1_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); c1 = _mm256_add_epi64(c1, c1_even); c1 = _mm256_add_epi64(c1, c1_odd); } } const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1), _mm256_castsi256_si128(h11)); const __m128i h11_val = _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8)); const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1), _mm256_castsi256_si128(c1)); const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8)); const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val); const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val); xx_storeu_128(C, c); xx_storeu_128(H[1], h1x); H[1][1] /= size; C[1] /= size; } // AVX2 variant of av1_calc_proj_params_high_bd_c. void av1_calc_proj_params_high_bd_avx2(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2], const sgr_params_type *params) { if ((params->r[0] > 0) && (params->r[1] > 0)) { calc_proj_params_r0_r1_high_bd_avx2(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C); } else if (params->r[0] > 0) { calc_proj_params_r0_high_bd_avx2(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, H, C); } else if (params->r[1] > 0) { calc_proj_params_r1_high_bd_avx2(src8, width, height, src_stride, dat8, dat_stride, flt1, flt1_stride, H, C); } } #if CONFIG_AV1_HIGHBITDEPTH int64_t av1_highbd_pixel_proj_error_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) { int i, j, k; const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS; const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1)); __m256i sum64 = _mm256_setzero_si256(); const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); int64_t err = 0; if (params->r[0] > 0 && params->r[1] > 0) { // Both filters are enabled const __m256i xq0 = _mm256_set1_epi32(xq[0]); const __m256i xq1 = _mm256_set1_epi32(xq[1]); for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { // Process 16 pixels at a time // Load 16 pixels each from source image and corrupted image const __m256i s0 = yy_loadu_256(src + j); const __m256i d0 = yy_loadu_256(dat + j); // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 (indices) // Shift-up each pixel to match filtered image scaling const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS); // Split u0 into two halves and pad each from u16 to i32 const __m256i u0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(u0)); const __m256i u0h = _mm256_cvtepu16_epi32(_mm256_extracti128_si256(u0, 1)); // u0h, u0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32 // Load 16 pixels from each filtered image const __m256i flt0l = yy_loadu_256(flt0 + j); const __m256i flt0h = yy_loadu_256(flt0 + j + 8); const __m256i flt1l = yy_loadu_256(flt1 + j); const __m256i flt1h = yy_loadu_256(flt1 + j + 8); // flt?l, flt?h = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32 // Subtract shifted corrupt image from each filtered image const __m256i flt0l_subu = _mm256_sub_epi32(flt0l, u0l); const __m256i flt0h_subu = _mm256_sub_epi32(flt0h, u0h); const __m256i flt1l_subu = _mm256_sub_epi32(flt1l, u0l); const __m256i flt1h_subu = _mm256_sub_epi32(flt1h, u0h); // Multiply basis vectors by appropriate coefficients const __m256i v0l = _mm256_mullo_epi32(flt0l_subu, xq0); const __m256i v0h = _mm256_mullo_epi32(flt0h_subu, xq0); const __m256i v1l = _mm256_mullo_epi32(flt1l_subu, xq1); const __m256i v1h = _mm256_mullo_epi32(flt1h_subu, xq1); // Add together the contributions from the two basis vectors const __m256i vl = _mm256_add_epi32(v0l, v1l); const __m256i vh = _mm256_add_epi32(v0h, v1h); // Right-shift v with appropriate rounding const __m256i vrl = _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift); const __m256i vrh = _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift); // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] // Saturate each i32 to an i16 then combine both halves // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes const __m256i vr = _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8); // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] // Add twin-subspace-sgr-filter to corrupt image then subtract source const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0); // Calculate squared error and add adjacent values const __m256i err0 = _mm256_madd_epi16(e0, e0); sum32 = _mm256_add_epi32(sum32, err0); } const __m256i sum32l = _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32)); sum64 = _mm256_add_epi64(sum64, sum32l); const __m256i sum32h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum32h); // Process remaining pixels in this row (modulo 16) for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt0 += flt0_stride; flt1 += flt1_stride; } } else if (params->r[0] > 0 || params->r[1] > 0) { // Only one filter enabled const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1]; const __m256i xq_active = _mm256_set1_epi32(xq_on); const __m256i xq_inactive = _mm256_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS)); const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1; const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride; for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { // Load 16 pixels from source image const __m256i s0 = yy_loadu_256(src + j); // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 // Load 16 pixels from corrupted image and pad each u16 to i32 const __m256i d0 = yy_loadu_256(dat + j); const __m256i d0h = _mm256_cvtepu16_epi32(_mm256_extracti128_si256(d0, 1)); const __m256i d0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(d0)); // d0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 // d0h, d0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32 // Load 16 pixels from the filtered image const __m256i flth = yy_loadu_256(flt + j + 8); const __m256i fltl = yy_loadu_256(flt + j); // flth, fltl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32 const __m256i flth_xq = _mm256_mullo_epi32(flth, xq_active); const __m256i fltl_xq = _mm256_mullo_epi32(fltl, xq_active); const __m256i d0h_xq = _mm256_mullo_epi32(d0h, xq_inactive); const __m256i d0l_xq = _mm256_mullo_epi32(d0l, xq_inactive); const __m256i vh = _mm256_add_epi32(flth_xq, d0h_xq); const __m256i vl = _mm256_add_epi32(fltl_xq, d0l_xq); // Shift this down with appropriate rounding const __m256i vrh = _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift); const __m256i vrl = _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift); // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32 // Saturate each i32 to an i16 then combine both halves // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes const __m256i vr = _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8); // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] as u16 // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 // Subtract twin-subspace-sgr filtered from source image to get error const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0); // Calculate squared error and add adjacent values const __m256i err0 = _mm256_madd_epi16(e0, e0); sum32 = _mm256_add_epi32(sum32, err0); } const __m256i sum32l = _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32)); sum64 = _mm256_add_epi64(sum64, sum32l); const __m256i sum32h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum32h); // Process remaining pixels in this row (modulo 16) for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); int32_t v = xq_on * (flt[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt += flt_stride; } } else { // Neither filter is enabled for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 32; j += 32) { // Load 2x16 u16 from source image const __m256i s0l = yy_loadu_256(src + j); const __m256i s0h = yy_loadu_256(src + j + 16); // Load 2x16 u16 from corrupted image const __m256i d0l = yy_loadu_256(dat + j); const __m256i d0h = yy_loadu_256(dat + j + 16); // Subtract corrupted image from source image const __m256i diffl = _mm256_sub_epi16(d0l, s0l); const __m256i diffh = _mm256_sub_epi16(d0h, s0h); // Square error and add adjacent values const __m256i err0l = _mm256_madd_epi16(diffl, diffl); const __m256i err0h = _mm256_madd_epi16(diffh, diffh); sum32 = _mm256_add_epi32(sum32, err0l); sum32 = _mm256_add_epi32(sum32, err0h); } const __m256i sum32l = _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32)); sum64 = _mm256_add_epi64(sum64, sum32l); const __m256i sum32h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum32h); // Process remaining pixels (modulu 16) for (k = j; k < width; ++k) { const int32_t e = (int32_t)(dat[k]) - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; } } // Sum 4 values from sum64l and sum64h into err int64_t sum[4]; yy_storeu_256(sum, sum64); err += sum[0] + sum[1] + sum[2] + sum[3]; return err; } #endif // CONFIG_AV1_HIGHBITDEPTH