# `toranj-ncp` test framework `toranj-ncp` is a test framework for OpenThread enabling testing of the combined behavior of OpenThread (in NCP mode), spinel interface, and `wpantund` driver on linux. `toranj` features: - It is developed in Python. - It can be used to simulate multiple nodes forming complex network topologies. - It allows testing of network interactions between many nodes (IPv6 traffic exchanges). - `toranj` in NCP mode runs `wpantund` natively with OpenThread in NCP mode on simulation platform (real-time). ## Setup `toranj-ncp` requires `wpantund` to be installed. - Please follow [`wpantund` installation guide](https://github.com/openthread/wpantund/blob/master/INSTALL.md#wpantund-installation-guide). Note that `toranj` expects `wpantund` installed from latest master branch. - Alternative way to install `wpantund` is to use the same commands from git workflow [Simulation](https://github.com/openthread/openthread/blob/4b55284bd20f99a88e8e2c617ba358a0a5547f5d/.github/workflows/simulation.yml#L336-L341) for build target `toranj-test-framework`. To run all tests, `start` script can be used. This script will build OpenThread with proper configuration options and starts running all test. ```bash cd tests/toranj/ # from OpenThread repo root TORANJ_CLI=0 ./start.sh ``` The `toranj-ncp` tests are included in `tests/toranj/ncp` folder. Each test-case has its own script following naming model `test-nnn-name.py` (e.g., `test-001-get-set.py`). To run a specific test ```bash sudo python ncp/test-001-get-set.py ``` ## `toranj` Components `wpan` python module defines the `toranj` test components. ### `wpan.Node()` Class `wpan.Node()` class creates a Thread node instance. It creates a sub-process to run `wpantund` and OpenThread, and provides methods to control the node. ```python >>> import wpan >>> node1 = wpan.Node() >>> node1 Node (index=1, interface_name=wpan1) >>> node2 = wpan.Node() >>> node2 Node (index=2, interface_name=wpan2) ``` Note: You may need to run as `sudo` to allow `wpantund` to create tunnel interface (i.e., use `sudo python`). ### `wpan.Node` methods providing `wpanctl` commands `wpan.Node()` provides methods matching all `wpanctl` commands. - Get the value of a `wpantund` property, set the value, or add/remove value to/from a list based property: ```python node.get(prop_name) node.set(prop_name, value, binary_data=False) node.add(prop_name, value, binary_data=False) node.remove(prop_name, value, binary_data=False) ``` Example: ```python >>> node.get(wpan.WPAN_NAME) '"test-network"' >>> node.set(wpan.WPAN_NAME, 'my-network') >>> node.get(wpan.WPAN_NAME) '"my-network"' >>> node.set(wpan.WPAN_KEY, '65F2C35C7B543BAC1F3E26BB9F866C1D', binary_data=True) >>> node.get(wpan.WPAN_KEY) '[65F2C35C7B543BAC1F3E26BB9F866C1D]' ``` - Common network operations: ```python node.reset() # Reset the NCP node.status() # Get current status node.leave() # Leave the current network, clear all persistent data # Form a network in given channel (if none given use a random one) node.form(name, channel=None) # Join a network with given info. # node_type can be JOIN_TYPE_ROUTER, JOIN_TYPE_END_DEVICE, JOIN_TYPE_SLEEPY_END_DEVICE node.join(name, channel=None, node_type=None, panid=None, xpanid=None) ``` Example: ```python >>> result = node.status() >>> print result wpan1 => [ "NCP:State" => "offline" "Daemon:Enabled" => true "NCP:Version" => "OPENTHREAD/20170716-00460-ga438cef0c-dirty; NONE; Feb 12 2018 11:47:01" "Daemon:Version" => "0.08.00d (0.07.01-191-g63265f7; Feb 2 2018 18:05:47)" "Config:NCP:DriverName" => "spinel" "NCP:HardwareAddress" => [18B4300000000001] ] >>> >>> node.form("test-network", channel=12) 'Forming WPAN "test-network" as node type "router"\nSuccessfully formed!' >>> >>> print node.status() wpan1 => [ "NCP:State" => "associated" "Daemon:Enabled" => true "NCP:Version" => "OPENTHREAD/20170716-00460-ga438cef0c-dirty; NONE; Feb 12 2018 11:47:01" "Daemon:Version" => "0.08.00d (0.07.01-191-g63265f7; Feb 2 2018 18:05:47)" "Config:NCP:DriverName" => "spinel" "NCP:HardwareAddress" => [18B4300000000001] "NCP:Channel" => 12 "Network:NodeType" => "leader" "Network:Name" => "test-network" "Network:XPANID" => 0xA438CF5973FD86B2 "Network:PANID" => 0x9D81 "IPv6:MeshLocalAddress" => "fda4:38cf:5973:0:b899:3436:15c6:941d" "IPv6:MeshLocalPrefix" => "fda4:38cf:5973::/64" ] ``` - Scan: ```python node.active_scan(channel=None) node.energy_scan(channel=None) node.discover_scan(channel=None, joiner_only=False, enable_filtering=False, panid_filter=None) node.permit_join(duration_sec=None, port=None, udp=True, tcp=True) ``` - On-mesh prefixes and off-mesh routes: ```python node.config_gateway(prefix, default_route=False) node.add_route(route_prefix, prefix_len_in_bytes=None, priority=None) node.remove_route(route_prefix, prefix_len_in_bytes=None, priority=None) ``` A direct `wpanctl` command can be issued using `node.wpanctl(command)` with a given `command` string. `wpan` module provides variables for different `wpantund` properties. Some commonly used are: - Network/NCP properties: WPAN_STATE, WPAN_NAME, WPAN_PANID, WPAN_XPANID, WPAN_KEY, WPAN_CHANNEL, WPAN_HW_ADDRESS, WPAN_EXT_ADDRESS, WPAN_POLL_INTERVAL, WPAN_NODE_TYPE, WPAN_ROLE, WPAN_PARTITION_ID - IPv6 Addresses: WPAN_IP6_LINK_LOCAL_ADDRESS, WPAN_IP6_MESH_LOCAL_ADDRESS, WPAN_IP6_MESH_LOCAL_PREFIX, WPAN_IP6_ALL_ADDRESSES, WPAN_IP6_MULTICAST_ADDRESSES - Thread Properties: WPAN_THREAD_RLOC16, WPAN_THREAD_ROUTER_ID, WPAN_THREAD_LEADER_ADDRESS, WPAN_THREAD_LEADER_ROUTER_ID, WPAN_THREAD_LEADER_WEIGHT, WPAN_THREAD_LEADER_NETWORK_DATA, WPAN_THREAD_CHILD_TABLE, WPAN_THREAD_CHILD_TABLE_ADDRESSES, WPAN_THREAD_NEIGHBOR_TABLE, WPAN_THREAD_ROUTER_TABLE Method `join_node()` can be used by a node to join another node: ```python # `node1` joining `node2`'s network as a router node1.join_node(node2, node_type=JOIN_TYPE_ROUTER) ``` Method `allowlist_node()` can be used to add a given node to the allowlist of the device and enables allowlisting: ```python # `node2` is added to the allowlist of `node1` and allowlisting is enabled on `node1` node1.allowlist_node(node2) ``` #### Example (simple 3-node topology) Script below shows how to create a 3-node network topology with `node1` and `node2` being routers, and `node3` an end-device connected to `node2`: ```python >>> import wpan >>> node1 = wpan.Node() >>> node2 = wpan.Node() >>> node3 = wpan.Node() >>> wpan.Node.init_all_nodes() >>> node1.form("test-PAN") 'Forming WPAN "test-PAN" as node type "router"\nSuccessfully formed!' >>> node1.allowlist_node(node2) >>> node2.allowlist_node(node1) >>> node2.join_node(node1, wpan.JOIN_TYPE_ROUTER) 'Joining "test-PAN" C474513CB487778D as node type "router"\nSuccessfully Joined!' >>> node3.allowlist_node(node2) >>> node2.allowlist_node(node3) >>> node3.join_node(node2, wpan.JOIN_TYPE_END_DEVICE) 'Joining "test-PAN" C474513CB487778D as node type "end-device"\nSuccessfully Joined!' >>> print node2.get(wpan.WPAN_THREAD_NEIGHBOR_TABLE) [ "EAC1672C3EAB30A4, RLOC16:9401, LQIn:3, AveRssi:-20, LastRssi:-20, Age:30, LinkFC:6, MleFC:0, IsChild:yes, RxOnIdle:yes, FTD:yes, SecDataReq:yes, FullNetData:yes" "A2042C8762576FD5, RLOC16:dc00, LQIn:3, AveRssi:-20, LastRssi:-20, Age:5, LinkFC:21, MleFC:18, IsChild:no, RxOnIdle:yes, FTD:yes, SecDataReq:no, FullNetData:yes" ] >>> print node1.get(wpan.WPAN_THREAD_NEIGHBOR_TABLE) [ "960947C53415DAA1, RLOC16:9400, LQIn:3, AveRssi:-20, LastRssi:-20, Age:18, LinkFC:15, MleFC:11, IsChild:no, RxOnIdle:yes, FTD:yes, SecDataReq:no, FullNetData:yes" ] ``` ### IPv6 Message Exchange `toranj` allows a test-case to define traffic patterns (IPv6 message exchange) between different nodes. Message exchanges (tx/rx) are prepared and then an async rx/tx operation starts. The success and failure of tx/rx operations can then be verified by the test case. `wpan.Node` method `prepare_tx()` prepares a UDP6 transmission from a node. ```python node1.prepare_tx(src, dst, data, count) ``` - `src` and `dst` can be - either a string containing an IPv6 address - or a tuple (ipv6 address as string, port). if no port is given, a random port number is used. - `data` can be - either a string containing the message to be sent, - or an int indicating size of the message (a random message with the given length will be generated). - `count` gives number of times the message will be sent (default is 1). `prepare_tx` returns a `wpan.AsyncSender` object. The sender object can be used to check success/failure of tx operation. `wpan.Node` method `prepare_rx()` prepares a node to listen for UDP messages from a sender. ```python node2.prepare_rx(sender) ``` - `sender` should be an `wpan.AsyncSender` object returned from previous `prepare_tx`. - `prepare_rx()` returns a `wpan.AsyncReceiver` object to help test to check success/failure of rx operation. After all exchanges are prepared, static method `perform_async_tx_rx()` should be used to start all previously prepared rx and tx operations. ```python wpan.Node.perform_async_tx_rx(timeout) ``` - `timeout` gives amount of time (in seconds) to wait for all operations to finish. (default is 20 seconds) After `perform_async_tx_rx()` is done, the `AsyncSender` and `AsyncReceiver` objects can check if operations were successful (using property `was_successful`) #### Example Sending 10 messages containing `"Hello there!"` from `node1` to `node2` using their mesh-local addresses: ```python # `node1` and `node2` are already joined and are part of the same Thread network. # Get the mesh local addresses >>> mladdr1 = node1.get(wpan.WPAN_IP6_MESH_LOCAL_ADDRESS)[1:-1] # remove `"` from start/end of string >>> mladdr2 = node2.get(wpan.WPAN_IP6_MESH_LOCAL_ADDRESS)[1:-1] >>> print (mladdr1, mladdr2) ('fda4:38cf:5973:0:b899:3436:15c6:941d', 'fda4:38cf:5973:0:5836:fa55:7394:6d4b') # prepare a `sender` and corresponding `recver` >>> sender = node1.prepare_tx((mladdr1, 1234), (mladdr2, 2345), "Hello there!", 10) >>> recver = node2.prepare_rx(sender) # perform async message transfer >>> wpan.Node.perform_async_tx_rx() # check status of `sender` and `recver` >>> sender.was_successful True >>> recver.was_successful True # `sender` or `recver` can provide info about the exchange >>> sender.src_addr 'fda4:38cf:5973:0:b899:3436:15c6:941d' >>> sender.src_port 1234 >>> sender.dst_addr 'fda4:38cf:5973:0:5836:fa55:7394:6d4b' >>> sender.dst_port 2345 >>> sender.msg 'Hello there!' >>> sender.count 10 # get all received msg by `recver` as list of tuples `(msg, (src_address, src_port))` >>> recver.all_rx_msg [('Hello there!', ('fda4:38cf:5973:0:b899:3436:15c6:941d', 1234)), ... ] ``` ### Logs and Verbose mode Every `wpan.Node()` instance will save its corresponding `wpantund` logs. By default the logs are saved in a file `wpantun-log.log`. By setting `wpan.Node__TUND_LOG_TO_FILE` to `False` the logs are written to `stdout` as the test-cases are executed. When `start.sh` script is used to run all test-cases, if any test fails, to help with debugging of the issue, the last 30 lines of `wpantund` logs of every node involved in the test-case is dumped to `stdout`. A `wpan.Node()` instance can also provide additional logs and info as the test-cases are run (verbose mode). It can be enabled for a node instance when it is created: ```python node = wpan.Node(verbose=True) # `node` instance will provide extra logs. ``` Alternatively, `wpan.Node._VERBOSE` settings can be changed to enable verbose logging for all nodes. The default value of `wpan.Node._VERBOSE` is determined from environment variable `TORANJ_VERBOSE` (verbose mode is enabled when env variable is set to any of `1`, `True`, `Yes`, `Y`, `On` (case-insensitive)), otherwise it is disabled. When `TORANJ_VERBOSE` is enabled, the OpenThread logging is also enabled (and collected in `wpantund-log.log`files) on all nodes. Here is example of small test script and its corresponding log output with `verbose` mode enabled: ```python node1 = wpan.Node(verbose=True) node2 = wpan.Node(verbose=True) wpan.Node.init_all_nodes() node1.form("toranj-net") node2.active_scan() node2.join_node(node1) verify(node2.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATED) lladdr1 = node1.get(wpan.WPAN_IP6_LINK_LOCAL_ADDRESS)[1:-1] lladdr2 = node2.get(wpan.WPAN_IP6_LINK_LOCAL_ADDRESS)[1:-1] sender = node1.prepare_tx(lladdr1, lladdr2, 20) recver = node2.prepare_rx(sender) wpan.Node.perform_async_tx_rx() ``` ``` $ Node1.__init__() cmd: /usr/local/sbin/wpantund -o Config:NCP:SocketPath "system:../../examples/apps/ncp/ot-ncp-ftd 1" -o Config:TUN:InterfaceName wpan1 -o Config:NCP:DriverName spinel -o Daemon:SyslogMask "all -debug" $ Node2.__init__() cmd: /usr/local/sbin/wpantund -o Config:NCP:SocketPath "system:../../examples/apps/ncp/ot-ncp-ftd 2" -o Config:TUN:InterfaceName wpan2 -o Config:NCP:DriverName spinel -o Daemon:SyslogMask "all -debug" $ Node1.wpanctl('leave') -> 'Leaving current WPAN. . .' $ Node2.wpanctl('leave') -> 'Leaving current WPAN. . .' $ Node1.wpanctl('form "toranj-net"'): Forming WPAN "toranj-net" as node type "router" Successfully formed! $ Node2.wpanctl('scan'): | PAN ID | Ch | XPanID | HWAddr | RSSI ---+--------+----+------------------+------------------+------ 1 | 0x9DEB | 16 | 8CC6CFC810F23E1B | BEECDAF3439DC931 | -20 $ Node1.wpanctl('get -v NCP:State') -> '"associated"' $ Node1.wpanctl('get -v Network:Name') -> '"toranj-net"' $ Node1.wpanctl('get -v Network:PANID') -> '0x9DEB' $ Node1.wpanctl('get -v Network:XPANID') -> '0x8CC6CFC810F23E1B' $ Node1.wpanctl('get -v Network:Key') -> '[BA2733A5D81EAB8FFB3C9A7383CB6045]' $ Node1.wpanctl('get -v NCP:Channel') -> '16' $ Node2.wpanctl('set Network:Key -d -v BA2733A5D81EAB8FFB3C9A7383CB6045') -> '' $ Node2.wpanctl('join "toranj-net" -c 16 -T r -p 0x9DEB -x 0x8CC6CFC810F23E1B'): Joining "toranj-net" 8CC6CFC810F23E1B as node type "router" Successfully Joined! $ Node2.wpanctl('get -v NCP:State') -> '"associated"' $ Node1.wpanctl('get -v IPv6:LinkLocalAddress') -> '"fe80::bcec:daf3:439d:c931"' $ Node2.wpanctl('get -v IPv6:LinkLocalAddress') -> '"fe80::ec08:f348:646f:d37d"' - Node1 sent 20 bytes (":YeQuNKjuOtd%H#ipM7P") to [fe80::ec08:f348:646f:d37d]:404 from [fe80::bcec:daf3:439d:c931]:12557 - Node2 received 20 bytes (":YeQuNKjuOtd%H#ipM7P") on port 404 from [fe80::bcec:daf3:439d:c931]:12557 ```