/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkTArray_DEFINED #define SkTArray_DEFINED #include "include/private/base/SkAlignedStorage.h" #include "include/private/base/SkAssert.h" #include "include/private/base/SkAttributes.h" #include "include/private/base/SkContainers.h" #include "include/private/base/SkMalloc.h" #include "include/private/base/SkMath.h" #include "include/private/base/SkSpan_impl.h" #include "include/private/base/SkTo.h" #include "include/private/base/SkTypeTraits.h" // IWYU pragma: keep #include #include #include #include #include #include #include #include /** SkTArray implements a typical, mostly std::vector-like array. Each T will be default-initialized on allocation, and ~T will be called on destruction. MEM_MOVE controls the behavior when a T needs to be moved (e.g. when the array is resized) - true: T will be bit-copied via memcpy. - false: T will be moved via move-constructors. Modern implementations of std::vector will generally provide similar performance characteristics when used with appropriate care. Consider using std::vector in new code. */ template > class SkTArray { public: using value_type = T; /** * Creates an empty array with no initial storage */ SkTArray() : fOwnMemory(true), fCapacity{0} {} /** * Creates an empty array that will preallocate space for reserveCount * elements. */ explicit SkTArray(int reserveCount) : SkTArray() { this->reserve_back(reserveCount); } /** * Copies one array to another. The new array will be heap allocated. */ SkTArray(const SkTArray& that) : SkTArray(that.fData, that.fSize) {} SkTArray(SkTArray&& that) { if (that.fOwnMemory) { this->setData(that); that.setData({}); } else { this->initData(that.fSize); that.move(fData); } fSize = std::exchange(that.fSize, 0); } /** * Creates a SkTArray by copying contents of a standard C array. The new * array will be heap allocated. Be careful not to use this constructor * when you really want the (void*, int) version. */ SkTArray(const T* array, int count) { this->initData(count); this->copy(array); } /** * Creates a SkTArray by copying contents of an initializer list. */ SkTArray(std::initializer_list data) : SkTArray(data.begin(), data.size()) {} SkTArray& operator=(const SkTArray& that) { if (this == &that) { return *this; } this->clear(); this->checkRealloc(that.size(), kExactFit); fSize = that.fSize; this->copy(that.fData); return *this; } SkTArray& operator=(SkTArray&& that) { if (this != &that) { this->clear(); if (that.fOwnMemory) { // The storage is on the heap, so move the data pointer. if (fOwnMemory) { sk_free(fData); } fData = std::exchange(that.fData, nullptr); // Can't use exchange with bitfields. fCapacity = that.fCapacity; that.fCapacity = 0; fOwnMemory = true; } else { // The data is stored inline in that, so move it element-by-element. this->checkRealloc(that.size(), kExactFit); that.move(fData); } fSize = std::exchange(that.fSize, 0); } return *this; } ~SkTArray() { this->destroyAll(); if (fOwnMemory) { sk_free(fData); } } /** * Resets to size() = n newly constructed T objects and resets any reserve count. */ void reset(int n) { SkASSERT(n >= 0); this->clear(); this->checkRealloc(n, kExactFit); fSize = n; for (int i = 0; i < this->size(); ++i) { new (fData + i) T; } } /** * Resets to a copy of a C array and resets any reserve count. */ void reset(const T* array, int count) { SkASSERT(count >= 0); this->clear(); this->checkRealloc(count, kExactFit); fSize = count; this->copy(array); } /** * Ensures there is enough reserved space for n elements. */ void reserve(int n) { SkASSERT(n >= 0); if (n > this->size()) { this->checkRealloc(n - this->size(), kGrowing); } } /** * Ensures there is enough reserved space for n additional elements. The is guaranteed at least * until the array size grows above n and subsequently shrinks below n, any version of reset() * is called, or reserve_back() is called again. */ void reserve_back(int n) { SkASSERT(n >= 0); if (n > 0) { this->checkRealloc(n, kExactFit); } } void removeShuffle(int n) { SkASSERT(n < this->size()); int newCount = fSize - 1; fSize = newCount; fData[n].~T(); if (n != newCount) { this->move(n, newCount); } } // Is the array empty. bool empty() const { return fSize == 0; } /** * Adds 1 new default-initialized T value and returns it by reference. Note * the reference only remains valid until the next call that adds or removes * elements. */ T& push_back() { void* newT = this->push_back_raw(1); return *new (newT) T; } /** * Version of above that uses a copy constructor to initialize the new item */ T& push_back(const T& t) { void* newT = this->push_back_raw(1); return *new (newT) T(t); } /** * Version of above that uses a move constructor to initialize the new item */ T& push_back(T&& t) { void* newT = this->push_back_raw(1); return *new (newT) T(std::move(t)); } /** * Construct a new T at the back of this array. */ template T& emplace_back(Args&&... args) { void* newT = this->push_back_raw(1); return *new (newT) T(std::forward(args)...); } /** * Allocates n more default-initialized T values, and returns the address of * the start of that new range. Note: this address is only valid until the * next API call made on the array that might add or remove elements. */ T* push_back_n(int n) { SkASSERT(n >= 0); T* newTs = TCast(this->push_back_raw(n)); for (int i = 0; i < n; ++i) { new (&newTs[i]) T; } return newTs; } /** * Version of above that uses a copy constructor to initialize all n items * to the same T. */ T* push_back_n(int n, const T& t) { SkASSERT(n >= 0); T* newTs = TCast(this->push_back_raw(n)); for (int i = 0; i < n; ++i) { new (&newTs[i]) T(t); } return static_cast(newTs); } /** * Version of above that uses a copy constructor to initialize the n items * to separate T values. */ T* push_back_n(int n, const T t[]) { SkASSERT(n >= 0); this->checkRealloc(n, kGrowing); T* end = this->end(); for (int i = 0; i < n; ++i) { new (end + i) T(t[i]); } fSize += n; return end; } /** * Version of above that uses the move constructor to set n items. */ T* move_back_n(int n, T* t) { SkASSERT(n >= 0); this->checkRealloc(n, kGrowing); T* end = this->end(); for (int i = 0; i < n; ++i) { new (end + i) T(std::move(t[i])); } fSize += n; return end; } /** * Removes the last element. Not safe to call when size() == 0. */ void pop_back() { SkASSERT(fSize > 0); --fSize; fData[fSize].~T(); } /** * Removes the last n elements. Not safe to call when size() < n. */ void pop_back_n(int n) { SkASSERT(n >= 0); SkASSERT(this->size() >= n); int i = fSize; while (i-- > fSize - n) { (*this)[i].~T(); } fSize -= n; } /** * Pushes or pops from the back to resize. Pushes will be default * initialized. */ void resize_back(int newCount) { SkASSERT(newCount >= 0); if (newCount > this->size()) { this->push_back_n(newCount - fSize); } else if (newCount < this->size()) { this->pop_back_n(fSize - newCount); } } /** Swaps the contents of this array with that array. Does a pointer swap if possible, otherwise copies the T values. */ void swap(SkTArray& that) { using std::swap; if (this == &that) { return; } if (fOwnMemory && that.fOwnMemory) { swap(fData, that.fData); swap(fSize, that.fSize); // Can't use swap because fCapacity is a bit field. auto allocCount = fCapacity; fCapacity = that.fCapacity; that.fCapacity = allocCount; } else { // This could be more optimal... SkTArray copy(std::move(that)); that = std::move(*this); *this = std::move(copy); } } T* begin() { return fData; } const T* begin() const { return fData; } // It's safe to use fItemArray + fSize because if fItemArray is nullptr then adding 0 is // valid and returns nullptr. See [expr.add] in the C++ standard. T* end() { if (fData == nullptr) { SkASSERT(fSize == 0); } return fData + fSize; } const T* end() const { if (fData == nullptr) { SkASSERT(fSize == 0); } return fData + fSize; } T* data() { return fData; } const T* data() const { return fData; } int size() const { return fSize; } size_t size_bytes() const { return this->bytes(fSize); } void resize(size_t count) { this->resize_back((int)count); } void clear() { this->destroyAll(); fSize = 0; } void shrink_to_fit() { if (!fOwnMemory || fSize == fCapacity) { return; } if (fSize == 0) { sk_free(fData); fData = nullptr; fCapacity = 0; } else { SkSpan allocation = Allocate(fSize); this->move(TCast(allocation.data())); if (fOwnMemory) { sk_free(fData); } this->setDataFromBytes(allocation); } } /** * Get the i^th element. */ T& operator[] (int i) { SkASSERT(i < this->size()); SkASSERT(i >= 0); return fData[i]; } const T& operator[] (int i) const { SkASSERT(i < this->size()); SkASSERT(i >= 0); return fData[i]; } T& at(int i) { return (*this)[i]; } const T& at(int i) const { return (*this)[i]; } /** * equivalent to operator[](0) */ T& front() { SkASSERT(fSize > 0); return fData[0];} const T& front() const { SkASSERT(fSize > 0); return fData[0];} /** * equivalent to operator[](size() - 1) */ T& back() { SkASSERT(fSize); return fData[fSize - 1];} const T& back() const { SkASSERT(fSize > 0); return fData[fSize - 1];} /** * equivalent to operator[](size()-1-i) */ T& fromBack(int i) { SkASSERT(i >= 0); SkASSERT(i < this->size()); return fData[fSize - i - 1]; } const T& fromBack(int i) const { SkASSERT(i >= 0); SkASSERT(i < this->size()); return fData[fSize - i - 1]; } bool operator==(const SkTArray& right) const { int leftCount = this->size(); if (leftCount != right.size()) { return false; } for (int index = 0; index < leftCount; ++index) { if (fData[index] != right.fData[index]) { return false; } } return true; } bool operator!=(const SkTArray& right) const { return !(*this == right); } int capacity() const { return fCapacity; } protected: // Creates an empty array that will use the passed storage block until it is insufficiently // large to hold the entire array. template SkTArray(SkAlignedSTStorage* storage, int size = 0) { static_assert(InitialCapacity >= 0); SkASSERT(size >= 0); SkASSERT(storage->get() != nullptr); if (size > InitialCapacity) { this->initData(size); } else { this->setDataFromBytes(*storage); fSize = size; // setDataFromBytes always sets fOwnMemory to true, but we are actually using static // storage here, which shouldn't ever be freed. fOwnMemory = false; } } // Copy a C array, using pre-allocated storage if preAllocCount >= count. Otherwise, storage // will only be used when array shrinks to fit. template SkTArray(const T* array, int size, SkAlignedSTStorage* storage) : SkTArray{storage, size} { this->copy(array); } private: // Growth factors for checkRealloc. static constexpr double kExactFit = 1.0; static constexpr double kGrowing = 1.5; static constexpr int kMinHeapAllocCount = 8; static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two."); // Note for 32-bit machines kMaxCapacity will be <= SIZE_MAX. For 64-bit machines it will // just be INT_MAX if the sizeof(T) < 2^32. static constexpr int kMaxCapacity = SkToInt(std::min(SIZE_MAX / sizeof(T), (size_t)INT_MAX)); void setDataFromBytes(SkSpan allocation) { T* data = TCast(allocation.data()); // We have gotten extra bytes back from the allocation limit, pin to kMaxCapacity. It // would seem like the SkContainerAllocator should handle the divide, but it would have // to a full divide instruction. If done here the size is known at compile, and usually // can be implemented by a right shift. The full divide takes ~50X longer than the shift. size_t size = std::min(allocation.size() / sizeof(T), SkToSizeT(kMaxCapacity)); setData(SkSpan(data, size)); } void setData(SkSpan array) { fData = array.data(); fCapacity = SkToU32(array.size()); fOwnMemory = true; } // We disable Control-Flow Integrity sanitization (go/cfi) when casting item-array buffers. // CFI flags this code as dangerous because we are casting `buffer` to a T* while the buffer's // contents might still be uninitialized memory. When T has a vtable, this is especially risky // because we could hypothetically access a virtual method on fItemArray and jump to an // unpredictable location in memory. Of course, SkTArray won't actually use fItemArray in this // way, and we don't want to construct a T before the user requests one. There's no real risk // here, so disable CFI when doing these casts. SK_NO_SANITIZE("cfi") static T* TCast(void* buffer) { return (T*)buffer; } size_t bytes(int n) const { SkASSERT(n <= kMaxCapacity); return SkToSizeT(n) * sizeof(T); } static SkSpan Allocate(int capacity, double growthFactor = 1.0) { return SkContainerAllocator{sizeof(T), kMaxCapacity}.allocate(capacity, growthFactor); } void initData(int count) { this->setDataFromBytes(Allocate(count)); fSize = count; } void destroyAll() { if (!this->empty()) { T* cursor = this->begin(); T* const end = this->end(); do { cursor->~T(); cursor++; } while (cursor < end); } } /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage. * In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage. */ void copy(const T* src) { if constexpr (std::is_trivially_copyable_v) { if (!this->empty() && src != nullptr) { sk_careful_memcpy(fData, src, this->size_bytes()); } } else { for (int i = 0; i < this->size(); ++i) { new (fData + i) T(src[i]); } } } void move(int dst, int src) { if constexpr (MEM_MOVE) { memcpy(static_cast(&fData[dst]), static_cast(&fData[src]), sizeof(T)); } else { new (&fData[dst]) T(std::move(fData[src])); fData[src].~T(); } } void move(void* dst) { if constexpr (MEM_MOVE) { sk_careful_memcpy(dst, fData, this->bytes(fSize)); } else { for (int i = 0; i < this->size(); ++i) { new (static_cast(dst) + this->bytes(i)) T(std::move(fData[i])); fData[i].~T(); } } } // Helper function that makes space for n objects, adjusts the count, but does not initialize // the new objects. void* push_back_raw(int n) { this->checkRealloc(n, kGrowing); void* ptr = fData + fSize; fSize += n; return ptr; } void checkRealloc(int delta, double growthFactor) { // This constant needs to be declared in the function where it is used to work around // MSVC's persnickety nature about template definitions. SkASSERT(delta >= 0); SkASSERT(fSize >= 0); SkASSERT(fCapacity >= 0); // Return if there are enough remaining allocated elements to satisfy the request. if (this->capacity() - fSize >= delta) { return; } // Don't overflow fSize or size_t later in the memory allocation. Overflowing memory // allocation really only applies to fSizes on 32-bit machines; on 64-bit machines this // will probably never produce a check. Since kMaxCapacity is bounded above by INT_MAX, // this also checks the bounds of fSize. if (delta > kMaxCapacity - fSize) { sk_report_container_overflow_and_die(); } const int newCount = fSize + delta; SkSpan allocation = Allocate(newCount, growthFactor); this->move(TCast(allocation.data())); if (fOwnMemory) { sk_free(fData); } this->setDataFromBytes(allocation); SkASSERT(this->capacity() >= newCount); SkASSERT(fData != nullptr); } T* fData{nullptr}; int fSize{0}; uint32_t fOwnMemory : 1; uint32_t fCapacity : 31; }; template static inline void swap(SkTArray& a, SkTArray& b) { a.swap(b); } /** * Subclass of SkTArray that contains a preallocated memory block for the array. */ template > class SkSTArray : private SkAlignedSTStorage, public SkTArray { private: static_assert(N > 0); using STORAGE = SkAlignedSTStorage; using INHERITED = SkTArray; public: SkSTArray() : STORAGE{}, INHERITED(static_cast(this)) {} SkSTArray(const T* array, int count) : STORAGE{}, INHERITED(array, count, static_cast(this)) {} SkSTArray(std::initializer_list data) : SkSTArray(data.begin(), SkToInt(data.size())) {} explicit SkSTArray(int reserveCount) : SkSTArray() { this->reserve_back(reserveCount); } SkSTArray (const SkSTArray& that) : SkSTArray() { *this = that; } explicit SkSTArray(const INHERITED& that) : SkSTArray() { *this = that; } SkSTArray ( SkSTArray&& that) : SkSTArray() { *this = std::move(that); } explicit SkSTArray( INHERITED&& that) : SkSTArray() { *this = std::move(that); } SkSTArray& operator=(const SkSTArray& that) { INHERITED::operator=(that); return *this; } SkSTArray& operator=(const INHERITED& that) { INHERITED::operator=(that); return *this; } SkSTArray& operator=(SkSTArray&& that) { INHERITED::operator=(std::move(that)); return *this; } SkSTArray& operator=(INHERITED&& that) { INHERITED::operator=(std::move(that)); return *this; } // Force the use of SkTArray for data() and size(). using INHERITED::data; using INHERITED::size; }; #endif