/* * Copyright 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #undef LOG_TAG #define LOG_TAG "RenderEngine" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "SkiaRenderEngine.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Cache.h" #include "ColorSpaces.h" #include "filters/BlurFilter.h" #include "filters/GaussianBlurFilter.h" #include "filters/KawaseBlurFilter.h" #include "filters/LinearEffect.h" #include "log/log_main.h" #include "skia/debug/SkiaCapture.h" #include "skia/debug/SkiaMemoryReporter.h" #include "skia/filters/StretchShaderFactory.h" #include "system/graphics-base-v1.0.h" #ifdef MTK_DUMP_SKIA_GL_SHADER #include #endif #ifdef MTK_QUEUE_FENCE_CHECK // To ensure fenceName & surfaceName are fixed const char RE_FENCE_NAME[64] = "RE Completion"; const char RE_SURFACE_NAME[64] = "RenderEngine"; #endif namespace { #ifdef MTK_DUMP_SKIA_GL_SHADER // Debugging settings static bool kPrintLayerSettings = false; static bool kFlushAfterEveryLayer = kPrintLayerSettings; static bool kEnableLayerBrightening = true; #else // Debugging settings static const bool kPrintLayerSettings = false; static const bool kFlushAfterEveryLayer = kPrintLayerSettings; static constexpr bool kEnableLayerBrightening = true; #endif } // namespace // Utility functions related to SkRect namespace { static inline SkRect getSkRect(const android::FloatRect& rect) { return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom); } static inline SkRect getSkRect(const android::Rect& rect) { return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom); } /** * Verifies that common, simple bounds + clip combinations can be converted into * a single RRect draw call returning true if possible. If true the radii parameter * will be filled with the correct radii values that combined with bounds param will * produce the insected roundRect. If false, the returned state of the radii param is undefined. */ static bool intersectionIsRoundRect(const SkRect& bounds, const SkRect& crop, const SkRect& insetCrop, const android::vec2& cornerRadius, SkVector radii[4]) { const bool leftEqual = bounds.fLeft == crop.fLeft; const bool topEqual = bounds.fTop == crop.fTop; const bool rightEqual = bounds.fRight == crop.fRight; const bool bottomEqual = bounds.fBottom == crop.fBottom; // In the event that the corners of the bounds only partially align with the crop we // need to ensure that the resulting shape can still be represented as a round rect. // In particular the round rect implementation will scale the value of all corner radii // if the sum of the radius along any edge is greater than the length of that edge. // See https://www.w3.org/TR/css-backgrounds-3/#corner-overlap const bool requiredWidth = bounds.width() > (cornerRadius.x * 2); const bool requiredHeight = bounds.height() > (cornerRadius.y * 2); if (!requiredWidth || !requiredHeight) { return false; } // Check each cropped corner to ensure that it exactly matches the crop or its corner is // contained within the cropped shape and does not need rounded. // compute the UpperLeft corner radius if (leftEqual && topEqual) { radii[0].set(cornerRadius.x, cornerRadius.y); } else if ((leftEqual && bounds.fTop >= insetCrop.fTop) || (topEqual && bounds.fLeft >= insetCrop.fLeft)) { radii[0].set(0, 0); } else { return false; } // compute the UpperRight corner radius if (rightEqual && topEqual) { radii[1].set(cornerRadius.x, cornerRadius.y); } else if ((rightEqual && bounds.fTop >= insetCrop.fTop) || (topEqual && bounds.fRight <= insetCrop.fRight)) { radii[1].set(0, 0); } else { return false; } // compute the BottomRight corner radius if (rightEqual && bottomEqual) { radii[2].set(cornerRadius.x, cornerRadius.y); } else if ((rightEqual && bounds.fBottom <= insetCrop.fBottom) || (bottomEqual && bounds.fRight <= insetCrop.fRight)) { radii[2].set(0, 0); } else { return false; } // compute the BottomLeft corner radius if (leftEqual && bottomEqual) { radii[3].set(cornerRadius.x, cornerRadius.y); } else if ((leftEqual && bounds.fBottom <= insetCrop.fBottom) || (bottomEqual && bounds.fLeft >= insetCrop.fLeft)) { radii[3].set(0, 0); } else { return false; } return true; } static inline std::pair getBoundsAndClip(const android::FloatRect& boundsRect, const android::FloatRect& cropRect, const android::vec2& cornerRadius) { const SkRect bounds = getSkRect(boundsRect); const SkRect crop = getSkRect(cropRect); SkRRect clip; if (cornerRadius.x > 0 && cornerRadius.y > 0) { // it the crop and the bounds are equivalent or there is no crop then we don't need a clip if (bounds == crop || crop.isEmpty()) { return {SkRRect::MakeRectXY(bounds, cornerRadius.x, cornerRadius.y), clip}; } // This makes an effort to speed up common, simple bounds + clip combinations by // converting them to a single RRect draw. It is possible there are other cases // that can be converted. if (crop.contains(bounds)) { const auto insetCrop = crop.makeInset(cornerRadius.x, cornerRadius.y); if (insetCrop.contains(bounds)) { return {SkRRect::MakeRect(bounds), clip}; // clip is empty - no rounding required } SkVector radii[4]; if (intersectionIsRoundRect(bounds, crop, insetCrop, cornerRadius, radii)) { SkRRect intersectionBounds; intersectionBounds.setRectRadii(bounds, radii); return {intersectionBounds, clip}; } } // we didn't hit any of our fast paths so set the clip to the cropRect clip.setRectXY(crop, cornerRadius.x, cornerRadius.y); } // if we hit this point then we either don't have rounded corners or we are going to rely // on the clip to round the corners for us return {SkRRect::MakeRect(bounds), clip}; } static inline bool layerHasBlur(const android::renderengine::LayerSettings& layer, bool colorTransformModifiesAlpha) { if (layer.backgroundBlurRadius > 0 || layer.blurRegions.size()) { // return false if the content is opaque and would therefore occlude the blur const bool opaqueContent = !layer.source.buffer.buffer || layer.source.buffer.isOpaque; const bool opaqueAlpha = layer.alpha == 1.0f && !colorTransformModifiesAlpha; return layer.skipContentDraw || !(opaqueContent && opaqueAlpha); } return false; } static inline SkColor getSkColor(const android::vec4& color) { return SkColorSetARGB(color.a * 255, color.r * 255, color.g * 255, color.b * 255); } static inline SkM44 getSkM44(const android::mat4& matrix) { return SkM44(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1], matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2], matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3]); } static inline SkPoint3 getSkPoint3(const android::vec3& vector) { return SkPoint3::Make(vector.x, vector.y, vector.z); } } // namespace namespace android { namespace renderengine { namespace skia { using base::StringAppendF; std::future SkiaRenderEngine::primeCache() { Cache::primeShaderCache(this); return {}; } sk_sp SkiaRenderEngine::SkSLCacheMonitor::load(const SkData& key) { // This "cache" does not actually cache anything. It just allows us to // monitor Skia's internal cache. So this method always returns null. return nullptr; } void SkiaRenderEngine::SkSLCacheMonitor::store(const SkData& key, const SkData& data, const SkString& description) { mShadersCachedSinceLastCall++; mTotalShadersCompiled++; ATRACE_FORMAT("SF cache: %i shaders", mTotalShadersCompiled); } int SkiaRenderEngine::reportShadersCompiled() { return mSkSLCacheMonitor.totalShadersCompiled(); } void SkiaRenderEngine::setEnableTracing(bool tracingEnabled) { SkAndroidFrameworkTraceUtil::setEnableTracing(tracingEnabled); } SkiaRenderEngine::SkiaRenderEngine(RenderEngineType type, PixelFormat pixelFormat, bool useColorManagement, bool supportsBackgroundBlur) : RenderEngine(type), mDefaultPixelFormat(pixelFormat), mUseColorManagement(useColorManagement) { if (supportsBackgroundBlur) { ALOGD("Background Blurs Enabled"); mBlurFilter = new KawaseBlurFilter(); } mCapture = std::make_unique(); #ifdef MTK_IN_DISPLAY_FINGERPRINT mSkiaDitherEffect = new SkiaDitherEffect(); #endif #ifdef MTK_SF_PQ_MANAGEMENT mIsPrimary = false; #endif #if defined(MTK_DUMP_SKIA_GL_SHADER) || defined (MTK_SKIP_SKIA_EXTERNAL_TEXTURE_CACHE) char propString[PROPERTY_VALUE_MAX] = {}; #endif #ifdef MTK_DUMP_SKIA_GL_SHADER property_get("vendor.debug.sf.dump_re_layer", propString, "0"); int dumpSetting = atoi(propString); mDumpShader = (dumpSetting >= 2); kPrintLayerSettings = (dumpSetting >=1); kFlushAfterEveryLayer = kPrintLayerSettings; #endif #ifdef MTK_SKIP_SKIA_EXTERNAL_TEXTURE_CACHE // default enable property_get("vendor.debug.sf.skip_ext_texture", propString, "1"); mSkipExternalTexture = atoi(propString) > 0; #endif } SkiaRenderEngine::~SkiaRenderEngine() { } // To be called from backend dtors. void SkiaRenderEngine::finishRenderingAndAbandonContext() { std::lock_guard lock(mRenderingMutex); if (mBlurFilter) { delete mBlurFilter; } if (mGrContext) { mGrContext->flushAndSubmit(true); mGrContext->abandonContext(); } if (mProtectedGrContext) { mProtectedGrContext->flushAndSubmit(true); mProtectedGrContext->abandonContext(); } } void SkiaRenderEngine::useProtectedContext(bool useProtectedContext) { if (useProtectedContext == mInProtectedContext || (useProtectedContext && !supportsProtectedContent())) { return; } // release any scratch resources before switching into a new mode if (getActiveGrContext()) { getActiveGrContext()->purgeUnlockedResources(true); } // Backend-specific way to switch to protected context if (useProtectedContextImpl( useProtectedContext ? GrProtected::kYes : GrProtected::kNo)) { mInProtectedContext = useProtectedContext; // given that we are sharing the same thread between two GrContexts we need to // make sure that the thread state is reset when switching between the two. if (getActiveGrContext()) { getActiveGrContext()->resetContext(); } } } GrDirectContext* SkiaRenderEngine::getActiveGrContext() { return mInProtectedContext ? mProtectedGrContext.get() : mGrContext.get(); } static float toDegrees(uint32_t transform) { switch (transform) { case ui::Transform::ROT_90: return 90.0; case ui::Transform::ROT_180: return 180.0; case ui::Transform::ROT_270: return 270.0; default: return 0.0; } } static SkColorMatrix toSkColorMatrix(const android::mat4& matrix) { return SkColorMatrix(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], 0, matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1], 0, matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2], 0, matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3], 0); } static bool needsToneMapping(ui::Dataspace sourceDataspace, ui::Dataspace destinationDataspace) { int64_t sourceTransfer = sourceDataspace & HAL_DATASPACE_TRANSFER_MASK; int64_t destTransfer = destinationDataspace & HAL_DATASPACE_TRANSFER_MASK; // Treat unsupported dataspaces as srgb if (destTransfer != HAL_DATASPACE_TRANSFER_LINEAR && destTransfer != HAL_DATASPACE_TRANSFER_HLG && destTransfer != HAL_DATASPACE_TRANSFER_ST2084) { destTransfer = HAL_DATASPACE_TRANSFER_SRGB; } if (sourceTransfer != HAL_DATASPACE_TRANSFER_LINEAR && sourceTransfer != HAL_DATASPACE_TRANSFER_HLG && sourceTransfer != HAL_DATASPACE_TRANSFER_ST2084) { sourceTransfer = HAL_DATASPACE_TRANSFER_SRGB; } const bool isSourceLinear = sourceTransfer == HAL_DATASPACE_TRANSFER_LINEAR; const bool isSourceSRGB = sourceTransfer == HAL_DATASPACE_TRANSFER_SRGB; const bool isDestLinear = destTransfer == HAL_DATASPACE_TRANSFER_LINEAR; const bool isDestSRGB = destTransfer == HAL_DATASPACE_TRANSFER_SRGB; return !(isSourceLinear && isDestSRGB) && !(isSourceSRGB && isDestLinear) && sourceTransfer != destTransfer; } void SkiaRenderEngine::ensureGrContextsCreated() { if (mGrContext) { return; } GrContextOptions options; options.fDisableDriverCorrectnessWorkarounds = true; options.fDisableDistanceFieldPaths = true; options.fReducedShaderVariations = true; options.fPersistentCache = &mSkSLCacheMonitor; std::tie(mGrContext, mProtectedGrContext) = createDirectContexts(options); } void SkiaRenderEngine::mapExternalTextureBuffer(const sp& buffer, bool isRenderable) { // Only run this if RE is running on its own thread. This // way the access to GL operations is guaranteed to be happening on the // same thread. if (mRenderEngineType != RenderEngineType::SKIA_GL_THREADED && mRenderEngineType != RenderEngineType::SKIA_VK_THREADED) { return; } // We don't attempt to map a buffer if the buffer contains protected content. In GL this is // important because GPU resources for protected buffers are much more limited. (In Vk we // simply match the existing behavior for protected buffers.) In Vk, we never cache any // buffers while in a protected context, since Vk cannot share across contexts, and protected // is less common. const bool isProtectedBuffer = buffer->getUsage() & GRALLOC_USAGE_PROTECTED; if (isProtectedBuffer || (mRenderEngineType == RenderEngineType::SKIA_VK_THREADED && isProtected())) { return; } #ifdef MTK_SKIP_SKIA_EXTERNAL_TEXTURE_CACHE // defer the external texture, the handling will be postponed to drawlayer to save time // for legacy chips if (isSkipExternalTexureCache(buffer)) { return; } #endif ATRACE_CALL(); // If we were to support caching protected buffers then we will need to switch the // currently bound context if we are not already using the protected context (and subsequently // switch back after the buffer is cached). However, for non-protected content we can bind // the texture in either GL context because they are initialized with the same share_context // which allows the texture state to be shared between them. auto grContext = getActiveGrContext(); auto& cache = mTextureCache; std::lock_guard lock(mRenderingMutex); mGraphicBufferExternalRefs[buffer->getId()]++; if (const auto& iter = cache.find(buffer->getId()); iter == cache.end()) { std::shared_ptr imageTextureRef = std::make_shared(grContext, buffer->toAHardwareBuffer(), isRenderable, mTextureCleanupMgr); cache.insert({buffer->getId(), imageTextureRef}); } } void SkiaRenderEngine::unmapExternalTextureBuffer(sp&& buffer) { ATRACE_CALL(); std::lock_guard lock(mRenderingMutex); if (const auto& iter = mGraphicBufferExternalRefs.find(buffer->getId()); iter != mGraphicBufferExternalRefs.end()) { if (iter->second == 0) { ALOGW("Attempted to unmap GraphicBuffer from RenderEngine texture, but the " "ref count was already zero!", buffer->getId()); mGraphicBufferExternalRefs.erase(buffer->getId()); return; } iter->second--; // Swap contexts if needed prior to deleting this buffer // See Issue 1 of // https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt: even // when a protected context and an unprotected context are part of the same share group, // protected surfaces may not be accessed by an unprotected context, implying that protected // surfaces may only be freed when a protected context is active. const bool inProtected = mInProtectedContext; useProtectedContext(buffer->getUsage() & GRALLOC_USAGE_PROTECTED); if (iter->second == 0) { mTextureCache.erase(buffer->getId()); mGraphicBufferExternalRefs.erase(buffer->getId()); } // Swap back to the previous context so that cached values of isProtected in SurfaceFlinger // are up-to-date. if (inProtected != mInProtectedContext) { useProtectedContext(inProtected); } } } std::shared_ptr SkiaRenderEngine::getOrCreateBackendTexture( const sp& buffer, bool isOutputBuffer) { // Do not lookup the buffer in the cache for protected contexts with the SkiaVk back-end if (mRenderEngineType == RenderEngineType::SKIA_GL_THREADED || (mRenderEngineType == RenderEngineType::SKIA_VK_THREADED && !isProtected())) { #ifndef MTK_AOSP_DISPLAY_BUGFIX if (const auto& it = mTextureCache.find(buffer->getId()); it != mTextureCache.end()) { #else if (const auto& it = mTextureCache.find(buffer->getId()); it != mTextureCache.end() \ && it->second->isOutputBuffer() == isOutputBuffer) { #endif return it->second; } } return std::make_shared(getActiveGrContext(), buffer->toAHardwareBuffer(), isOutputBuffer, mTextureCleanupMgr); } bool SkiaRenderEngine::canSkipPostRenderCleanup() const { std::lock_guard lock(mRenderingMutex); return mTextureCleanupMgr.isEmpty(); } void SkiaRenderEngine::cleanupPostRender() { ATRACE_CALL(); std::lock_guard lock(mRenderingMutex); mTextureCleanupMgr.cleanup(); } sk_sp SkiaRenderEngine::createRuntimeEffectShader( const RuntimeEffectShaderParameters& parameters) { // The given surface will be stretched by HWUI via matrix transformation // which gets similar results for most surfaces // Determine later on if we need to leverage the stertch shader within // surface flinger const auto& stretchEffect = parameters.layer.stretchEffect; auto shader = parameters.shader; if (stretchEffect.hasEffect()) { const auto targetBuffer = parameters.layer.source.buffer.buffer; const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr; if (graphicBuffer && parameters.shader) { shader = mStretchShaderFactory.createSkShader(shader, stretchEffect); } } if (parameters.requiresLinearEffect) { auto effect = shaders::LinearEffect{.inputDataspace = parameters.layer.sourceDataspace, .outputDataspace = parameters.outputDataSpace, .undoPremultipliedAlpha = parameters.undoPremultipliedAlpha}; auto effectIter = mRuntimeEffects.find(effect); sk_sp runtimeEffect = nullptr; if (effectIter == mRuntimeEffects.end()) { runtimeEffect = buildRuntimeEffect(effect); mRuntimeEffects.insert({effect, runtimeEffect}); } else { runtimeEffect = effectIter->second; } mat4 colorTransform = parameters.layer.colorTransform; colorTransform *= mat4::scale(vec4(parameters.layerDimmingRatio, parameters.layerDimmingRatio, parameters.layerDimmingRatio, 1.f)); const auto targetBuffer = parameters.layer.source.buffer.buffer; const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr; const auto hardwareBuffer = graphicBuffer ? graphicBuffer->toAHardwareBuffer() : nullptr; return createLinearEffectShader(parameters.shader, effect, runtimeEffect, std::move(colorTransform), parameters.display.maxLuminance, parameters.display.currentLuminanceNits, parameters.layer.source.buffer.maxLuminanceNits, hardwareBuffer, parameters.display.renderIntent); } return parameters.shader; } void SkiaRenderEngine::initCanvas(SkCanvas* canvas, const DisplaySettings& display) { if (CC_UNLIKELY(mCapture->isCaptureRunning())) { // Record display settings when capture is running. std::stringstream displaySettings; PrintTo(display, &displaySettings); // Store the DisplaySettings in additional information. canvas->drawAnnotation(SkRect::MakeEmpty(), "DisplaySettings", SkData::MakeWithCString(displaySettings.str().c_str())); } // Before doing any drawing, let's make sure that we'll start at the origin of the display. // Some displays don't start at 0,0 for example when we're mirroring the screen. Also, virtual // displays might have different scaling when compared to the physical screen. canvas->clipRect(getSkRect(display.physicalDisplay)); canvas->translate(display.physicalDisplay.left, display.physicalDisplay.top); const auto clipWidth = display.clip.width(); const auto clipHeight = display.clip.height(); auto rotatedClipWidth = clipWidth; auto rotatedClipHeight = clipHeight; // Scale is contingent on the rotation result. if (display.orientation & ui::Transform::ROT_90) { std::swap(rotatedClipWidth, rotatedClipHeight); } const auto scaleX = static_cast(display.physicalDisplay.width()) / static_cast(rotatedClipWidth); const auto scaleY = static_cast(display.physicalDisplay.height()) / static_cast(rotatedClipHeight); canvas->scale(scaleX, scaleY); // Canvas rotation is done by centering the clip window at the origin, rotating, translating // back so that the top left corner of the clip is at (0, 0). canvas->translate(rotatedClipWidth / 2, rotatedClipHeight / 2); canvas->rotate(toDegrees(display.orientation)); canvas->translate(-clipWidth / 2, -clipHeight / 2); canvas->translate(-display.clip.left, -display.clip.top); } class AutoSaveRestore { public: AutoSaveRestore(SkCanvas* canvas) : mCanvas(canvas) { mSaveCount = canvas->save(); } ~AutoSaveRestore() { restore(); } void replace(SkCanvas* canvas) { mCanvas = canvas; mSaveCount = canvas->save(); } void restore() { if (mCanvas) { mCanvas->restoreToCount(mSaveCount); mCanvas = nullptr; } } private: SkCanvas* mCanvas; int mSaveCount; }; static SkRRect getBlurRRect(const BlurRegion& region) { const auto rect = SkRect::MakeLTRB(region.left, region.top, region.right, region.bottom); const SkVector radii[4] = {SkVector::Make(region.cornerRadiusTL, region.cornerRadiusTL), SkVector::Make(region.cornerRadiusTR, region.cornerRadiusTR), SkVector::Make(region.cornerRadiusBR, region.cornerRadiusBR), SkVector::Make(region.cornerRadiusBL, region.cornerRadiusBL)}; SkRRect roundedRect; roundedRect.setRectRadii(rect, radii); return roundedRect; } // Arbitrary default margin which should be close enough to zero. constexpr float kDefaultMargin = 0.0001f; static bool equalsWithinMargin(float expected, float value, float margin = kDefaultMargin) { LOG_ALWAYS_FATAL_IF(margin < 0.f, "Margin is negative!"); return std::abs(expected - value) < margin; } namespace { template void logSettings(const T& t) { std::stringstream stream; PrintTo(t, &stream); auto string = stream.str(); size_t pos = 0; // Perfetto ignores \n, so split up manually into separate ALOGD statements. const size_t size = string.size(); while (pos < size) { const size_t end = std::min(string.find("\n", pos), size); ALOGD("%s", string.substr(pos, end - pos).c_str()); pos = end + 1; } } } // namespace // Helper class intended to be used on the stack to ensure that texture cleanup // is deferred until after this class goes out of scope. class DeferTextureCleanup final { public: DeferTextureCleanup(AutoBackendTexture::CleanupManager& mgr) : mMgr(mgr) { mMgr.setDeferredStatus(true); } ~DeferTextureCleanup() { mMgr.setDeferredStatus(false); } private: DISALLOW_COPY_AND_ASSIGN(DeferTextureCleanup); AutoBackendTexture::CleanupManager& mMgr; }; void SkiaRenderEngine::drawLayersInternal( const std::shared_ptr>&& resultPromise, const DisplaySettings& display, const std::vector& layers, const std::shared_ptr& buffer, const bool /*useFramebufferCache*/, base::unique_fd&& bufferFence) { ATRACE_FORMAT("%s for %s", __func__, display.namePlusId.c_str()); std::lock_guard lock(mRenderingMutex); #ifdef MTK_SF_PQ_MANAGEMENT bool is_primary = getAndClearDeviceInfo(); #endif if (buffer == nullptr) { ALOGE("No output buffer provided. Aborting GPU composition."); resultPromise->set_value(base::unexpected(BAD_VALUE)); return; } validateOutputBufferUsage(buffer->getBuffer()); auto grContext = getActiveGrContext(); // any AutoBackendTexture deletions will now be deferred until cleanupPostRender is called DeferTextureCleanup dtc(mTextureCleanupMgr); auto surfaceTextureRef = getOrCreateBackendTexture(buffer->getBuffer(), true); // wait on the buffer to be ready to use prior to using it waitFence(grContext, bufferFence); sk_sp dstSurface = surfaceTextureRef->getOrCreateSurface(display.outputDataspace, grContext); SkCanvas* dstCanvas = mCapture->tryCapture(dstSurface.get()); if (dstCanvas == nullptr) { ALOGE("Cannot acquire canvas from Skia."); resultPromise->set_value(base::unexpected(BAD_VALUE)); return; } // setup color filter if necessary sk_sp displayColorTransform; if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) { displayColorTransform = SkColorFilters::Matrix(toSkColorMatrix(display.colorTransform)); } const bool ctModifiesAlpha = displayColorTransform && !displayColorTransform->isAlphaUnchanged(); // Find the max layer white point to determine the max luminance of the scene... const float maxLayerWhitePoint = std::transform_reduce( layers.cbegin(), layers.cend(), 0.f, [](float left, float right) { return std::max(left, right); }, [&](const auto& l) { return l.whitePointNits; }); // ...and compute the dimming ratio if dimming is requested const float displayDimmingRatio = display.targetLuminanceNits > 0.f && maxLayerWhitePoint > 0.f && (kEnableLayerBrightening || display.targetLuminanceNits > maxLayerWhitePoint) ? maxLayerWhitePoint / display.targetLuminanceNits : 1.f; // Find if any layers have requested blur, we'll use that info to decide when to render to an // offscreen buffer and when to render to the native buffer. sk_sp activeSurface(dstSurface); SkCanvas* canvas = dstCanvas; SkiaCapture::OffscreenState offscreenCaptureState; const LayerSettings* blurCompositionLayer = nullptr; #ifdef MTK_AOSP_DISPLAY_BUGFIX // porting google workarond b/270314344 if (mBlurFilter && !isProtected()) { #else if (mBlurFilter) { #endif bool requiresCompositionLayer = false; for (const auto& layer : layers) { // if the layer doesn't have blur or it is not visible then continue if (!layerHasBlur(layer, ctModifiesAlpha)) { continue; } if (layer.backgroundBlurRadius > 0 && layer.backgroundBlurRadius < mBlurFilter->getMaxCrossFadeRadius()) { requiresCompositionLayer = true; } for (auto region : layer.blurRegions) { if (region.blurRadius < mBlurFilter->getMaxCrossFadeRadius()) { requiresCompositionLayer = true; } } if (requiresCompositionLayer) { activeSurface = dstSurface->makeSurface(dstSurface->imageInfo()); canvas = mCapture->tryOffscreenCapture(activeSurface.get(), &offscreenCaptureState); blurCompositionLayer = &layer; break; } } } AutoSaveRestore surfaceAutoSaveRestore(canvas); // Clear the entire canvas with a transparent black to prevent ghost images. canvas->clear(SK_ColorTRANSPARENT); initCanvas(canvas, display); if (kPrintLayerSettings) { logSettings(display); } #ifdef MTK_IN_DISPLAY_FINGERPRINT bool enableDither= false; float ditherAlpha = 1.0f; int ditherDimLayerCnt = 0; for (const auto& layer : layers) { if (layer.enableDither){ enableDither = true; ditherDimLayerCnt ++; ditherAlpha = ditherAlpha*(1.0f - (float)layer.alpha); } } if (enableDither) { ALOGI("ditherAlpha %f, dim layer cnt %d", ditherAlpha, ditherDimLayerCnt); } #endif for (const auto& layer : layers) { ATRACE_FORMAT("DrawLayer: %s", layer.name.c_str()); if (kPrintLayerSettings) { logSettings(layer); } sk_sp blurInput; if (blurCompositionLayer == &layer) { LOG_ALWAYS_FATAL_IF(activeSurface == dstSurface); LOG_ALWAYS_FATAL_IF(canvas == dstCanvas); // save a snapshot of the activeSurface to use as input to the blur shaders blurInput = activeSurface->makeImageSnapshot(); // blit the offscreen framebuffer into the destination AHB, but only // if there are blur regions. backgroundBlurRadius blurs the entire // image below, so it can skip this step. if (layer.blurRegions.size()) { SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); if (CC_UNLIKELY(mCapture->isCaptureRunning())) { uint64_t id = mCapture->endOffscreenCapture(&offscreenCaptureState); dstCanvas->drawAnnotation(SkRect::Make(dstCanvas->imageInfo().dimensions()), String8::format("SurfaceID|%" PRId64, id).c_str(), nullptr); dstCanvas->drawImage(blurInput, 0, 0, SkSamplingOptions(), &paint); } else { activeSurface->draw(dstCanvas, 0, 0, SkSamplingOptions(), &paint); } } // assign dstCanvas to canvas and ensure that the canvas state is up to date canvas = dstCanvas; surfaceAutoSaveRestore.replace(canvas); initCanvas(canvas, display); LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getSaveCount() != dstSurface->getCanvas()->getSaveCount()); LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getTotalMatrix() != dstSurface->getCanvas()->getTotalMatrix()); // assign dstSurface to activeSurface activeSurface = dstSurface; } SkAutoCanvasRestore layerAutoSaveRestore(canvas, true); if (CC_UNLIKELY(mCapture->isCaptureRunning())) { // Record the name of the layer if the capture is running. std::stringstream layerSettings; PrintTo(layer, &layerSettings); // Store the LayerSettings in additional information. canvas->drawAnnotation(SkRect::MakeEmpty(), layer.name.c_str(), SkData::MakeWithCString(layerSettings.str().c_str())); } // Layers have a local transform that should be applied to them canvas->concat(getSkM44(layer.geometry.positionTransform).asM33()); const auto [bounds, roundRectClip] = getBoundsAndClip(layer.geometry.boundaries, layer.geometry.roundedCornersCrop, layer.geometry.roundedCornersRadius); #ifdef MTK_AOSP_DISPLAY_BUGFIX // porting google workarond b/270314344 if (mBlurFilter && layerHasBlur(layer, ctModifiesAlpha) && !isProtected()) { #else if (mBlurFilter && layerHasBlur(layer, ctModifiesAlpha)) { #endif std::unordered_map> cachedBlurs; // if multiple layers have blur, then we need to take a snapshot now because // only the lowest layer will have blurImage populated earlier if (!blurInput) { blurInput = activeSurface->makeImageSnapshot(); } // rect to be blurred in the coordinate space of blurInput SkRect blurRect = canvas->getTotalMatrix().mapRect(bounds.rect()); // Some layers may be much bigger than the screen. If we used // `blurRect` directly, this would allocate a large buffer with no // benefit. Apply the clip, which already takes the display size // into account. The clipped size will then be used to calculate the // size of the buffer we will create for blurring. if (!blurRect.intersect(SkRect::Make(canvas->getDeviceClipBounds()))) { // This should not happen, but if it did, we would use the full // sized layer, which should still be fine. ALOGW("blur bounds does not intersect display clip!"); } // if the clip needs to be applied then apply it now and make sure // it is restored before we attempt to draw any shadows. SkAutoCanvasRestore acr(canvas, true); if (!roundRectClip.isEmpty()) { canvas->clipRRect(roundRectClip, true); } #ifdef MTK_AOSP_DISPLAY_BUGFIX // define in skia GR_GL_MAXRENDERBUFFER_SIZE #define MAX_RE_RENDER_SIZE (34020) bool isBlurRectLarge = false; if (blurRect.width() > MAX_RE_RENDER_SIZE || blurRect.height() > MAX_RE_RENDER_SIZE ) { isBlurRectLarge = true; } // filter empty layers or // filter layer with too much width/height otherwise crash could occur if (blurRect.width() > 0 && blurRect.height() > 0 && !isBlurRectLarge) { #else // TODO(b/182216890): Filter out empty layers earlier if (blurRect.width() > 0 && blurRect.height() > 0) { #endif if (layer.backgroundBlurRadius > 0) { ATRACE_NAME("BackgroundBlur"); auto blurredImage = mBlurFilter->generate(grContext, layer.backgroundBlurRadius, blurInput, blurRect); cachedBlurs[layer.backgroundBlurRadius] = blurredImage; mBlurFilter->drawBlurRegion(canvas, bounds, layer.backgroundBlurRadius, 1.0f, blurRect, blurredImage, blurInput); } canvas->concat(getSkM44(layer.blurRegionTransform).asM33()); for (auto region : layer.blurRegions) { if (cachedBlurs[region.blurRadius] == nullptr) { ATRACE_NAME("BlurRegion"); cachedBlurs[region.blurRadius] = mBlurFilter->generate(grContext, region.blurRadius, blurInput, blurRect); } mBlurFilter->drawBlurRegion(canvas, getBlurRRect(region), region.blurRadius, region.alpha, blurRect, cachedBlurs[region.blurRadius], blurInput); } } } if (layer.shadow.length > 0) { // This would require a new parameter/flag to SkShadowUtils::DrawShadow LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with a shadow"); SkRRect shadowBounds, shadowClip; if (layer.geometry.boundaries == layer.shadow.boundaries) { shadowBounds = bounds; shadowClip = roundRectClip; } else { std::tie(shadowBounds, shadowClip) = getBoundsAndClip(layer.shadow.boundaries, layer.geometry.roundedCornersCrop, layer.geometry.roundedCornersRadius); } // Technically, if bounds is a rect and roundRectClip is not empty, // it means that the bounds and roundedCornersCrop were different // enough that we should intersect them to find the proper shadow. // In practice, this often happens when the two rectangles appear to // not match due to rounding errors. Draw the rounded version, which // looks more like the intent. const auto& rrect = shadowBounds.isRect() && !shadowClip.isEmpty() ? shadowClip : shadowBounds; drawShadow(canvas, rrect, layer.shadow); } const float layerDimmingRatio = layer.whitePointNits <= 0.f ? displayDimmingRatio : (layer.whitePointNits / maxLayerWhitePoint) * displayDimmingRatio; const bool dimInLinearSpace = display.dimmingStage != aidl::android::hardware::graphics::composer3::DimmingStage::GAMMA_OETF; const bool isExtendedHdr = (layer.sourceDataspace & ui::Dataspace::RANGE_MASK) == static_cast(ui::Dataspace::RANGE_EXTENDED) && (display.outputDataspace & ui::Dataspace::TRANSFER_MASK) == static_cast(ui::Dataspace::TRANSFER_SRGB); const ui::Dataspace runtimeEffectDataspace = !dimInLinearSpace && isExtendedHdr ? static_cast( (display.outputDataspace & ui::Dataspace::STANDARD_MASK) | ui::Dataspace::TRANSFER_GAMMA2_2 | (display.outputDataspace & ui::Dataspace::RANGE_MASK)) : display.outputDataspace; // If the input dataspace is range extended, the output dataspace transfer is sRGB // and dimmingStage is GAMMA_OETF, dim in linear space instead, and // set the output dataspace's transfer to be GAMMA2_2. // This allows DPU side to use oetf_gamma_2p2 for extended HDR layer // to avoid tone shift. // The reason of tone shift here is because HDR layers manage white point // luminance in linear space, which color pipelines request GAMMA_OETF break // without a gamma 2.2 fixup. const bool requiresLinearEffect = layer.colorTransform != mat4() || (mUseColorManagement && needsToneMapping(layer.sourceDataspace, display.outputDataspace)) || (dimInLinearSpace && !equalsWithinMargin(1.f, layerDimmingRatio)) || (!dimInLinearSpace && isExtendedHdr); // quick abort from drawing the remaining portion of the layer if (layer.skipContentDraw || (layer.alpha == 0 && !requiresLinearEffect && !layer.disableBlending && (!displayColorTransform || displayColorTransform->isAlphaUnchanged()))) { continue; } // If color management is disabled, then mark the source image with the same colorspace as // the destination surface so that Skia's color management is a no-op. const ui::Dataspace layerDataspace = !mUseColorManagement ? display.outputDataspace : layer.sourceDataspace; SkPaint paint; if (layer.source.buffer.buffer) { ATRACE_NAME("DrawImage"); validateInputBufferUsage(layer.source.buffer.buffer->getBuffer()); const auto& item = layer.source.buffer; #ifdef MTK_SKIP_SKIA_EXTERNAL_TEXTURE_CACHE bool skipUpdate = false; auto imageTextureRef = getOrCreateBackendTexture(item.buffer->getBuffer(), false, &skipUpdate); #else auto imageTextureRef = getOrCreateBackendTexture(item.buffer->getBuffer(), false); #endif #ifdef MTK_SF_PQ_MANAGEMENT updatePQFlag (item.buffer->getBuffer(), requiresLinearEffect, is_primary); #endif // if the layer's buffer has a fence, then we must must respect the fence prior to using // the buffer. if (layer.source.buffer.fence != nullptr) { waitFence(grContext, layer.source.buffer.fence->get()); } // isOpaque means we need to ignore the alpha in the image, // replacing it with the alpha specified by the LayerSettings. See // https://developer.android.com/reference/android/view/SurfaceControl.Builder#setOpaque(boolean) // The proper way to do this is to use an SkColorType that ignores // alpha, like kRGB_888x_SkColorType, and that is used if the // incoming image is kRGBA_8888_SkColorType. However, the incoming // image may be kRGBA_F16_SkColorType, for which there is no RGBX // SkColorType, or kRGBA_1010102_SkColorType, for which we have // kRGB_101010x_SkColorType, but it is not yet supported as a source // on the GPU. (Adding both is tracked in skbug.com/12048.) In the // meantime, we'll use a workaround that works unless we need to do // any color conversion. The workaround requires that we pretend the // image is already premultiplied, so that we do not premultiply it // before applying SkBlendMode::kPlus. const bool useIsOpaqueWorkaround = item.isOpaque && (imageTextureRef->colorType() == kRGBA_1010102_SkColorType || imageTextureRef->colorType() == kRGBA_F16_SkColorType); const auto alphaType = useIsOpaqueWorkaround ? kPremul_SkAlphaType : item.isOpaque ? kOpaque_SkAlphaType : item.usePremultipliedAlpha ? kPremul_SkAlphaType : kUnpremul_SkAlphaType; #ifndef MTK_SKIP_SKIA_EXTERNAL_TEXTURE_CACHE sk_sp image = imageTextureRef->makeImage(layerDataspace, alphaType, grContext); #else sk_sp image = imageTextureRef->makeImage(layerDataspace, alphaType, grContext, skipUpdate); #endif auto texMatrix = getSkM44(item.textureTransform).asM33(); // textureTansform was intended to be passed directly into a shader, so when // building the total matrix with the textureTransform we need to first // normalize it, then apply the textureTransform, then scale back up. texMatrix.preScale(1.0f / bounds.width(), 1.0f / bounds.height()); texMatrix.postScale(image->width(), image->height()); SkMatrix matrix; if (!texMatrix.invert(&matrix)) { matrix = texMatrix; } // The shader does not respect the translation, so we add it to the texture // transform for the SkImage. This will make sure that the correct layer contents // are drawn in the correct part of the screen. matrix.postTranslate(bounds.rect().fLeft, bounds.rect().fTop); sk_sp shader; #ifdef MTK_IN_DISPLAY_FINGERPRINT if (mSkiaDitherEffect != nullptr && mSkiaDitherEffect->isInitOK() && layer.enableDither) { ditherDimLayerCnt --; if (!isProtected() && ditherDimLayerCnt == 0) { sk_sp image = activeSurface->makeImageSnapshot(); sk_sp shader = image->makeShader(SkSamplingOptions()); shader = mSkiaDitherEffect->createDitherShader(grContext, shader, ditherAlpha); if (shader != nullptr){ paint.setShader(shader); }else { ALOGE("%s(), createDitherShader fail", __FUNCTION__); } paint.setBlendMode(SkBlendMode::kSrc); if (!bounds.isRect()) { paint.setAntiAlias(true); canvas->drawRRect(bounds, paint); } else { canvas->drawRect(bounds.rect(), paint); } activeSurface->flush(); } continue; } #endif if (layer.source.buffer.useTextureFiltering) { shader = image->makeShader(SkTileMode::kClamp, SkTileMode::kClamp, SkSamplingOptions( {SkFilterMode::kLinear, SkMipmapMode::kNone}), &matrix); } else { shader = image->makeShader(SkSamplingOptions(), matrix); } if (useIsOpaqueWorkaround) { shader = SkShaders::Blend(SkBlendMode::kPlus, shader, SkShaders::Color(SkColors::kBlack, toSkColorSpace(layerDataspace))); } #ifdef MTK_IN_DISPLAY_FINGERPRINT if (isProtected() && mSkiaDitherEffect != nullptr && mSkiaDitherEffect->isInitOK() && enableDither && !layer.enableDither //not Dim layers && ditherDimLayerCnt ) { shader = mSkiaDitherEffect->createDitherShader(grContext, shader, ditherAlpha); if (shader != nullptr){ paint.setShader(shader); }else { ALOGE("%s(), createDitherShader fail", __FUNCTION__); } } else { //original flow #endif paint.setShader(createRuntimeEffectShader( RuntimeEffectShaderParameters{.shader = shader, .layer = layer, .display = display, .undoPremultipliedAlpha = !item.isOpaque && item.usePremultipliedAlpha, .requiresLinearEffect = requiresLinearEffect, .layerDimmingRatio = dimInLinearSpace ? layerDimmingRatio : 1.f, .outputDataSpace = runtimeEffectDataspace})); // Turn on dithering when dimming beyond this (arbitrary) threshold... static constexpr float kDimmingThreshold = 0.2f; // ...or we're rendering an HDR layer down to an 8-bit target // Most HDR standards require at least 10-bits of color depth for source content, so we // can just extract the transfer function rather than dig into precise gralloc layout. // Furthermore, we can assume that the only 8-bit target we support is RGBA8888. const bool requiresDownsample = isHdrDataspace(layer.sourceDataspace) && buffer->getPixelFormat() == PIXEL_FORMAT_RGBA_8888; if (layerDimmingRatio <= kDimmingThreshold || requiresDownsample) { paint.setDither(true); } paint.setAlphaf(layer.alpha); if (imageTextureRef->colorType() == kAlpha_8_SkColorType) { LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with A8"); // SysUI creates the alpha layer as a coverage layer, which is // appropriate for the DPU. Use a color matrix to convert it to // a mask. // TODO (b/219525258): Handle input as a mask. // // The color matrix will convert A8 pixels with no alpha to // black, as described by this vector. If the display handles // the color transform, we need to invert it to find the color // that will result in black after the DPU applies the transform. SkV4 black{0.0f, 0.0f, 0.0f, 1.0f}; // r, g, b, a if (display.colorTransform != mat4() && display.deviceHandlesColorTransform) { SkM44 colorSpaceMatrix = getSkM44(display.colorTransform); if (colorSpaceMatrix.invert(&colorSpaceMatrix)) { black = colorSpaceMatrix * black; } else { // We'll just have to use 0,0,0 as black, which should // be close to correct. ALOGI("Could not invert colorTransform!"); } } SkColorMatrix colorMatrix(0, 0, 0, 0, black[0], 0, 0, 0, 0, black[1], 0, 0, 0, 0, black[2], 0, 0, 0, -1, 1); if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) { // On the other hand, if the device doesn't handle it, we // have to apply it ourselves. colorMatrix.postConcat(toSkColorMatrix(display.colorTransform)); } paint.setColorFilter(SkColorFilters::Matrix(colorMatrix)); } #ifdef MTK_IN_DISPLAY_FINGERPRINT }// original flow #endif } else { ATRACE_NAME("DrawColor"); const auto color = layer.source.solidColor; sk_sp shader = SkShaders::Color(SkColor4f{.fR = color.r, .fG = color.g, .fB = color.b, .fA = layer.alpha}, toSkColorSpace(layerDataspace)); paint.setShader(createRuntimeEffectShader( RuntimeEffectShaderParameters{.shader = shader, .layer = layer, .display = display, .undoPremultipliedAlpha = false, .requiresLinearEffect = requiresLinearEffect, .layerDimmingRatio = layerDimmingRatio, .outputDataSpace = runtimeEffectDataspace})); } if (layer.disableBlending) { paint.setBlendMode(SkBlendMode::kSrc); } // An A8 buffer will already have the proper color filter attached to // its paint, including the displayColorTransform as needed. if (!paint.getColorFilter()) { if (!dimInLinearSpace && !equalsWithinMargin(1.0, layerDimmingRatio)) { // If we don't dim in linear space, then when we gamma correct the dimming ratio we // can assume a gamma 2.2 transfer function. static constexpr float kInverseGamma22 = 1.f / 2.2f; const auto gammaCorrectedDimmingRatio = std::pow(layerDimmingRatio, kInverseGamma22); auto dimmingMatrix = mat4::scale(vec4(gammaCorrectedDimmingRatio, gammaCorrectedDimmingRatio, gammaCorrectedDimmingRatio, 1.f)); const auto colorFilter = SkColorFilters::Matrix(toSkColorMatrix(std::move(dimmingMatrix))); paint.setColorFilter(displayColorTransform ? displayColorTransform->makeComposed(colorFilter) : colorFilter); } else { paint.setColorFilter(displayColorTransform); } } if (!roundRectClip.isEmpty()) { canvas->clipRRect(roundRectClip, true); } if (!bounds.isRect()) { paint.setAntiAlias(true); canvas->drawRRect(bounds, paint); } else { canvas->drawRect(bounds.rect(), paint); } if (kFlushAfterEveryLayer) { ATRACE_NAME("flush surface"); activeSurface->flush(); } #ifdef MTK_DUMP_SKIA_GL_SHADER if (mDumpShader) { mtkDumpShader(layer, layerDataspace); } #endif } for (const auto& borderRenderInfo : display.borderInfoList) { SkPaint p; p.setColor(SkColor4f{borderRenderInfo.color.r, borderRenderInfo.color.g, borderRenderInfo.color.b, borderRenderInfo.color.a}); p.setAntiAlias(true); p.setStyle(SkPaint::kStroke_Style); p.setStrokeWidth(borderRenderInfo.width); SkRegion sk_region; SkPath path; // Construct a final SkRegion using Regions for (const auto& r : borderRenderInfo.combinedRegion) { sk_region.op({r.left, r.top, r.right, r.bottom}, SkRegion::kUnion_Op); } sk_region.getBoundaryPath(&path); canvas->drawPath(path, p); path.close(); } surfaceAutoSaveRestore.restore(); mCapture->endCapture(); { ATRACE_NAME("flush surface"); LOG_ALWAYS_FATAL_IF(activeSurface != dstSurface); activeSurface->flush(); } auto drawFence = sp::make(flushAndSubmit(grContext)); #ifdef MTK_QUEUE_FENCE_CHECK static gui::FenceMonitor sMonitor(RE_FENCE_NAME); sMonitor.queueFence(drawFence, 0, RE_SURFACE_NAME); #else if (ATRACE_ENABLED()) { static gui::FenceMonitor sMonitor("RE Completion"); sMonitor.queueFence(drawFence); } #endif resultPromise->set_value(std::move(drawFence)); } size_t SkiaRenderEngine::getMaxTextureSize() const { return mGrContext->maxTextureSize(); } size_t SkiaRenderEngine::getMaxViewportDims() const { return mGrContext->maxRenderTargetSize(); } void SkiaRenderEngine::drawShadow(SkCanvas* canvas, const SkRRect& casterRRect, const ShadowSettings& settings) { ATRACE_CALL(); const float casterZ = settings.length / 2.0f; const auto flags = settings.casterIsTranslucent ? kTransparentOccluder_ShadowFlag : kNone_ShadowFlag; SkShadowUtils::DrawShadow(canvas, SkPath::RRect(casterRRect), SkPoint3::Make(0, 0, casterZ), getSkPoint3(settings.lightPos), settings.lightRadius, getSkColor(settings.ambientColor), getSkColor(settings.spotColor), flags); } void SkiaRenderEngine::onActiveDisplaySizeChanged(ui::Size size) { // This cache multiplier was selected based on review of cache sizes relative // to the screen resolution. Looking at the worst case memory needed by blur (~1.5x), // shadows (~1x), and general data structures (e.g. vertex buffers) we selected this as a // conservative default based on that analysis. const float SURFACE_SIZE_MULTIPLIER = 3.5f * bytesPerPixel(mDefaultPixelFormat); const int maxResourceBytes = size.width * size.height * SURFACE_SIZE_MULTIPLIER; // start by resizing the current context getActiveGrContext()->setResourceCacheLimit(maxResourceBytes); // if it is possible to switch contexts then we will resize the other context const bool originalProtectedState = mInProtectedContext; useProtectedContext(!mInProtectedContext); if (mInProtectedContext != originalProtectedState) { getActiveGrContext()->setResourceCacheLimit(maxResourceBytes); // reset back to the initial context that was active when this method was called useProtectedContext(originalProtectedState); } } void SkiaRenderEngine::dump(std::string& result) { // Dump for the specific backend (GLES or Vk) appendBackendSpecificInfoToDump(result); // Info about protected content StringAppendF(&result, "RenderEngine supports protected context: %d\n", supportsProtectedContent()); StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext); StringAppendF(&result, "RenderEngine shaders cached since last dump/primeCache: %d\n", mSkSLCacheMonitor.shadersCachedSinceLastCall()); std::vector cpuResourceMap = { {"skia/sk_resource_cache/bitmap_", "Bitmaps"}, {"skia/sk_resource_cache/rrect-blur_", "Masks"}, {"skia/sk_resource_cache/rects-blur_", "Masks"}, {"skia/sk_resource_cache/tessellated", "Shadows"}, {"skia", "Other"}, }; SkiaMemoryReporter cpuReporter(cpuResourceMap, false); SkGraphics::DumpMemoryStatistics(&cpuReporter); StringAppendF(&result, "Skia CPU Caches: "); cpuReporter.logTotals(result); cpuReporter.logOutput(result); { std::lock_guard lock(mRenderingMutex); std::vector gpuResourceMap = { {"texture_renderbuffer", "Texture/RenderBuffer"}, {"texture", "Texture"}, {"gr_text_blob_cache", "Text"}, {"skia", "Other"}, }; SkiaMemoryReporter gpuReporter(gpuResourceMap, true); mGrContext->dumpMemoryStatistics(&gpuReporter); StringAppendF(&result, "Skia's GPU Caches: "); gpuReporter.logTotals(result); gpuReporter.logOutput(result); StringAppendF(&result, "Skia's Wrapped Objects:\n"); gpuReporter.logOutput(result, true); StringAppendF(&result, "RenderEngine tracked buffers: %zu\n", mGraphicBufferExternalRefs.size()); StringAppendF(&result, "Dumping buffer ids...\n"); for (const auto& [id, refCounts] : mGraphicBufferExternalRefs) { StringAppendF(&result, "- 0x%" PRIx64 " - %d refs \n", id, refCounts); } StringAppendF(&result, "RenderEngine AHB/BackendTexture cache size: %zu\n", mTextureCache.size()); StringAppendF(&result, "Dumping buffer ids...\n"); // TODO(178539829): It would be nice to know which layer these are coming from and what // the texture sizes are. for (const auto& [id, unused] : mTextureCache) { StringAppendF(&result, "- 0x%" PRIx64 "\n", id); } StringAppendF(&result, "\n"); SkiaMemoryReporter gpuProtectedReporter(gpuResourceMap, true); if (mProtectedGrContext) { mProtectedGrContext->dumpMemoryStatistics(&gpuProtectedReporter); } StringAppendF(&result, "Skia's GPU Protected Caches: "); gpuProtectedReporter.logTotals(result); gpuProtectedReporter.logOutput(result); StringAppendF(&result, "Skia's Protected Wrapped Objects:\n"); gpuProtectedReporter.logOutput(result, true); StringAppendF(&result, "\n"); StringAppendF(&result, "RenderEngine runtime effects: %zu\n", mRuntimeEffects.size()); for (const auto& [linearEffect, unused] : mRuntimeEffects) { StringAppendF(&result, "- inputDataspace: %s\n", dataspaceDetails( static_cast(linearEffect.inputDataspace)) .c_str()); StringAppendF(&result, "- outputDataspace: %s\n", dataspaceDetails( static_cast(linearEffect.outputDataspace)) .c_str()); StringAppendF(&result, "undoPremultipliedAlpha: %s\n", linearEffect.undoPremultipliedAlpha ? "true" : "false"); } #ifdef MTK_DUMP_SKIA_GL_SHADER if (mDumpShader) { StringAppendF(&result, "\n ------------ MTK RE SKIA GL SHADER---------------\n"); for (auto iter = shaderInfo.begin(); iter != shaderInfo.end(); ++iter) { StringAppendF(&result, "Layer Name: %s\n", iter->first.c_str()); StringAppendF(&result, "Program: %d\n", iter->second.program); StringAppendF(&result, "Shader Uniforms:\n"); for (auto iter2 = iter->second.uniforms.begin(); iter2 != iter->second.uniforms.end(); ++iter2) { StringAppendF(&result, " (%u,%d)%s:%s(%d):%s\n", iter2->first, iter2->second.location, iter2->second.name.c_str(), iter2->second.type.c_str(), iter2->second.size, iter2->second.value.c_str()); } StringAppendF(&result, "Vertex Shader:\n"); StringAppendF(&result, "%s\n", iter->second.v_shader.c_str()); StringAppendF(&result, "Fragment Shader:\n"); StringAppendF(&result, "%s\n", iter->second.f_shader.c_str()); StringAppendF(&result, "Dataspace: "); StringAppendF(&result, "%" PRId64 "\n", static_cast(iter->second.dataspace)); StringAppendF(&result, "ColorRange: "); StringAppendF(&result, "%u\n", iter->second.colorRange); StringAppendF(&result, "\n"); } StringAppendF(&result, "\n"); } #endif } StringAppendF(&result, "\n"); } } // namespace skia } // namespace renderengine } // namespace android