/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wextra" #undef LOG_TAG #define LOG_TAG "VSyncPredictor" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include #include #include #include #ifdef MTK_SF_MSYNC #include #endif #include #include #include #include #include #include #include "RefreshRateSelector.h" #include "VSyncPredictor.h" #ifdef MTK_VSYNC_HINT_SUPPORT #include "../mediatek/Scheduler/VSyncHinter.h" #endif namespace android::scheduler { using base::StringAppendF; static auto constexpr kMaxPercent = 100u; #ifdef MTK_SF_MSYNC static bool isShowM2Trace() { static bool enable = false; static bool read = false; if (!read) { enable = android::base::GetBoolProperty("vendor.debug.sf.show_msync2_trace", false); read = true; } return enable; } #define M2_TRACE(x, ...) \ { \ if (isShowM2Trace()) { \ ATRACE_FORMAT("msync2_sf: " x, ##__VA_ARGS__); \ } \ } #endif #ifdef MTK_SF_DEBUG_SUPPORT static bool isTraceOn() { static bool enable = false; static bool read = false; if (!read) { enable = android::base::GetBoolProperty("debug.sf.vsp_trace", false); read = true; } return enable; } #define VSP_TRACE(x, ...) \ { \ if (CC_UNLIKELY(isTraceOn())) { \ ATRACE_FORMAT("VSP: " x, ##__VA_ARGS__); \ } \ } #endif VSyncPredictor::~VSyncPredictor() = default; VSyncPredictor::VSyncPredictor(PhysicalDisplayId id, nsecs_t idealPeriod, size_t historySize, size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent) : mId(id), mTraceOn(property_get_bool("debug.sf.vsp_trace", false)), kHistorySize(historySize), kMinimumSamplesForPrediction(minimumSamplesForPrediction), kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)), mIdealPeriod(idealPeriod) { resetModel(); } inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const { if (CC_UNLIKELY(mTraceOn)) { traceInt64(name, value); } } inline void VSyncPredictor::traceInt64(const char* name, int64_t value) const { #ifdef MTK_SF_DEBUG_SUPPORT ATRACE_INT64(ftl::Concat(ftl::truncated<25>(name), " ", mId.value).c_str(), value); #else ATRACE_INT64(ftl::Concat(ftl::truncated<14>(name), " ", mId.value).c_str(), value); #endif } inline size_t VSyncPredictor::next(size_t i) const { return (i + 1) % mTimestamps.size(); } bool VSyncPredictor::validate(nsecs_t timestamp) const { #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: enter, timestamp=%" PRId64, __func__, timestamp); #endif if (mLastTimestampIndex < 0 || mTimestamps.empty()) { #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: return true, mLastTimestampIndex < 0 || mTimestamps.empty()", __func__); #endif return true; } auto const aValidTimestamp = mTimestamps[mLastTimestampIndex]; #ifdef MTK_AOSP_DISPLAY_BUGFIX auto it = mRateMap.find(mIdealPeriod); auto const _currentPeriod = it == mRateMap.end() ? mIdealPeriod : it->second.slope; auto const percent = (timestamp - aValidTimestamp) % _currentPeriod * kMaxPercent / _currentPeriod; #else auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod; #endif #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: percent=%" PRId64 ", timestamp(%" PRId64 ") - aValidTimestamp(%" PRId64 ")=%" PRId64 ", mIdealPeriod=%" PRId64, __func__, percent, timestamp, aValidTimestamp, timestamp - aValidTimestamp, mIdealPeriod); #endif if (percent >= kOutlierTolerancePercent && percent <= (kMaxPercent - kOutlierTolerancePercent)) { #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: return false, percent(%" PRId64 ") inside 20 ~ 80, kOutlierTolerancePercent=%zu, kMaxPercent=%u", __func__, percent, kOutlierTolerancePercent, kMaxPercent); #endif return false; } const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(), [timestamp](nsecs_t a, nsecs_t b) { return std::abs(timestamp - a) < std::abs(timestamp - b); }); #ifdef MTK_AOSP_DISPLAY_BUGFIX const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / _currentPeriod; #else const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / mIdealPeriod; #endif #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: distancePercent=%" PRId64 ", latest timestamp=%" PRId64 ", timestamp=%" PRId64, __func__, distancePercent, *iter, timestamp); #endif if (distancePercent < kOutlierTolerancePercent) { // duplicate timestamp #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: return false, duplicate timestamp, distancePercent=%" PRId64 ", kOutlierTolerancePercent=%zu", __func__, distancePercent, kOutlierTolerancePercent); #endif return false; } #ifdef MTK_AOSP_DISPLAY_BUGFIX // sw vsync uses the oldest ts, current slop, and intercept to predict next vsync // If a new timestamp doesn't match with predict module, it should be a invalid one. if (it == mRateMap.end() || mTimestamps.size() < kMinimumSamplesForPrediction) { return true; } auto const _oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end()); auto const _intercept = it->second.intercept; auto const _time_shift = std::abs(timestamp - (_oldest + _intercept)) % _currentPeriod; if ((_currentPeriod - 1666667) > 0 && _time_shift >= 1666667 /* 1.6ms */ && _time_shift <= (_currentPeriod - 1666667)) { ATRACE_INT64("M-VSP-time_shift", _time_shift); ATRACE_INT64("M-VSP-mIdealPeriod", mIdealPeriod); ATRACE_INT64("M-VSP-currentPeriod", _currentPeriod); ATRACE_INT64("M-VSP-intercept", _intercept); ATRACE_INT64("M-VSP-oldest", _oldest); return false; } #endif #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: leave true, timestamp=%" PRId64, __func__, timestamp); #endif return true; } nsecs_t VSyncPredictor::currentPeriod() const { std::lock_guard lock(mMutex); return mRateMap.find(mIdealPeriod)->second.slope; } bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) { std::lock_guard lock(mMutex); #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: enter, timestamp=%" PRId64, __func__, timestamp); #endif #ifdef MTK_SF_MSYNC if (mMSyncTriggerResync) { M2_TRACE("addVsyncTimestamp return false, msync2 off, trigger resync"); mMSyncTriggerResync = false; return false; } #endif if (!validate(timestamp)) { #ifdef MTK_SF_MSYNC if (mMSyncOn) { if (!mMSyncQ2QFull) { M2_TRACE("addVsyncTimestamp return true, msync2 on, q2q not full, not add to model"); return true; } } #endif // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored, // don't insert this ts into mTimestamps ringbuffer. If we are still // in the learning phase we should just clear all timestamps and start // over. if (mTimestamps.size() < kMinimumSamplesForPrediction) { #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: mTimestamps.size() < kMinimumSamplesForPrediction, timestamp=%" PRId64, __func__, timestamp); #endif // Add the timestamp to mTimestamps before clearing it so we could // update mKnownTimestamp based on the new timestamp. mTimestamps.push_back(timestamp); clearTimestamps(); } else if (!mTimestamps.empty()) { mKnownTimestamp = std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end())); #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: !mTimestamps.empty(), mKnownTimestamp=%" PRId64, __func__, *mKnownTimestamp); traceInt64If("VSP-mKnownTimestamp", *mKnownTimestamp); #endif } else { mKnownTimestamp = timestamp; #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: should never run this, mKnownTimestamp=%" PRId64, __func__, *mKnownTimestamp); traceInt64If("VSP-mKnownTimestamp", *mKnownTimestamp); #endif } #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: return false, not valid timestamp=%" PRId64, __func__, timestamp); #endif return false; } if (mTimestamps.size() != kHistorySize) { mTimestamps.push_back(timestamp); mLastTimestampIndex = next(mLastTimestampIndex); } else { mLastTimestampIndex = next(mLastTimestampIndex); mTimestamps[mLastTimestampIndex] = timestamp; } traceInt64If("VSP-ts", timestamp); #ifdef MTK_SF_DEBUG_SUPPORT traceInt64If("VSP-mTimestamps", static_cast(mTimestamps.size())); traceInt64If("VSP-mLastTimestampIndex", static_cast(mLastTimestampIndex)); #endif const size_t numSamples = mTimestamps.size(); if (numSamples < kMinimumSamplesForPrediction) { mRateMap[mIdealPeriod] = {mIdealPeriod, 0}; #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: return true, need more samples, mIdealPeriod=%" PRId64 ", numSamples=%zu, kMinimumSamplesForPrediction=%zu", __func__, mIdealPeriod, numSamples, kMinimumSamplesForPrediction); #endif return true; } // This is a 'simple linear regression' calculation of Y over X, with Y being the // vsync timestamps, and X being the ordinal of vsync count. // The calculated slope is the vsync period. // Formula for reference: // Sigma_i: means sum over all timestamps. // mean(variable): statistical mean of variable. // X: snapped ordinal of the timestamp // Y: vsync timestamp // // Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) ) // slope = ------------------------------------------- // Sigma_i ( X_i - mean(X) ) ^ 2 // // intercept = mean(Y) - slope * mean(X) // std::vector vsyncTS(numSamples); std::vector ordinals(numSamples); // Normalizing to the oldest timestamp cuts down on error in calculating the intercept. const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end()); auto it = mRateMap.find(mIdealPeriod); auto const currentPeriod = it->second.slope; // The mean of the ordinals must be precise for the intercept calculation, so scale them up for // fixed-point arithmetic. constexpr int64_t kScalingFactor = 1000; nsecs_t meanTS = 0; nsecs_t meanOrdinal = 0; for (size_t i = 0; i < numSamples; i++) { const auto timestamp = mTimestamps[i] - oldestTS; vsyncTS[i] = timestamp; meanTS += timestamp; const auto ordinal = currentPeriod == 0 ? 0 : (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor; ordinals[i] = ordinal; meanOrdinal += ordinal; } meanTS /= numSamples; meanOrdinal /= numSamples; for (size_t i = 0; i < numSamples; i++) { vsyncTS[i] -= meanTS; ordinals[i] -= meanOrdinal; } nsecs_t top = 0; nsecs_t bottom = 0; for (size_t i = 0; i < numSamples; i++) { top += vsyncTS[i] * ordinals[i]; bottom += ordinals[i] * ordinals[i]; } if (CC_UNLIKELY(bottom == 0)) { it->second = {mIdealPeriod, 0}; clearTimestamps(); #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: return false, bottom == 0", __func__); #endif return false; } #ifdef MTK_AOSP_DISPLAY_BUGFIX nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom > 0 ? top * kScalingFactor / bottom : top / bottom * kScalingFactor; nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor); auto const percent = currentPeriod > 0 ? std::abs(anticipatedPeriod - currentPeriod) * kMaxPercent / currentPeriod : std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod; #else nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom; nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor); auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod; #endif #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: percent=%" PRId64 ", std::abs(anticipatedPeriod(%" PRId64 ") - mIdealPeriod(%" PRId64 "))=%" PRId64, __func__, percent, anticipatedPeriod, mIdealPeriod, std::abs(anticipatedPeriod - mIdealPeriod)); #endif if (percent >= kOutlierTolerancePercent) { it->second = {mIdealPeriod, 0}; clearTimestamps(); #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: return false, anticipatedPeriod not valid" PRId64, __func__); #endif return false; } traceInt64If("VSP-period", anticipatedPeriod); traceInt64If("VSP-intercept", intercept); #ifdef MTK_VSYNC_HINT_SUPPORT VSyncHinter::getInstance().notifyVsyncPeriod(anticipatedPeriod); #endif it->second = {anticipatedPeriod, intercept}; #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: leave true, model update, ts:%" PRId64 ", slope(anticipatedPeriod):%" PRId64 ", intercept:%" PRId64, __func__, timestamp, anticipatedPeriod, intercept); #endif ALOGV("model update ts %" PRIu64 ": %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, mId.value, timestamp, anticipatedPeriod, intercept); return true; } auto VSyncPredictor::getVsyncSequenceLocked(nsecs_t timestamp) const -> VsyncSequence { const auto vsync = nextAnticipatedVSyncTimeFromLocked(timestamp); if (!mLastVsyncSequence) return {vsync, 0}; const auto [slope, _] = getVSyncPredictionModelLocked(); const auto [lastVsyncTime, lastVsyncSequence] = *mLastVsyncSequence; const auto vsyncSequence = lastVsyncSequence + static_cast(std::round((vsync - lastVsyncTime) / static_cast(slope))); return {vsync, vsyncSequence}; } nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const { auto const [slope, intercept] = getVSyncPredictionModelLocked(); if (mTimestamps.empty()) { #ifndef MTK_SF_MSYNC_3 traceInt64("VSP-mode", 1); #endif auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint; #ifdef MTK_AOSP_DISPLAY_BUGFIX auto const numPeriodsOut = ((timePoint - knownTimestamp) / slope) + 1; #else auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1; #endif #ifdef MTK_SF_MSYNC_3 // knownTimestamp is too old to guess correct next vsync // we use mNextPredictedTargetdVsync instead. // mNextPredictedTargetdVsync can be valid only if // content detection is enabled. if (knownTimestamp < mNextPredictedTargetdVsync) { traceInt64("VSP-mode", 3); auto overridedNumPeriodsOut = ((timePoint - mNextPredictedTargetdVsync) / mIdealPeriod) + 1; if (overridedNumPeriodsOut < 1) { ATRACE_NAME("overridedNumPeriodsOut too small!"); overridedNumPeriodsOut = 1; } auto result = mNextPredictedTargetdVsync + overridedNumPeriodsOut * mIdealPeriod; #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: VSP-mode-3, mIdealPeriod=%" PRId64 ", mNextPredictedTargetdVsync=%" PRId64 ", result=%" PRId64 ", diff=%" PRId64, __func__, mIdealPeriod, mNextPredictedTargetdVsync, result, result - mNextPredictedTargetdVsync); #endif return result; } else { traceInt64("VSP-mode", 1); } #endif #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: VSP-mode-1, knownTimestamp=%" PRId64 ", result=%" PRId64 ", diff=%" PRId64, __func__, knownTimestamp, knownTimestamp + numPeriodsOut * mIdealPeriod, (knownTimestamp + numPeriodsOut * mIdealPeriod) - knownTimestamp); #endif #ifdef MTK_AOSP_DISPLAY_BUGFIX return knownTimestamp + numPeriodsOut * slope; #else return knownTimestamp + numPeriodsOut * mIdealPeriod; #endif } #ifdef MTK_SF_MSYNC_3 { auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint; if (knownTimestamp < mNextPredictedTargetdVsync) { traceInt64("VSP-mode", 5); auto overridedNumPeriodsOut = ((timePoint - mNextPredictedTargetdVsync) / mIdealPeriod) + 1; if (overridedNumPeriodsOut < 1) { overridedNumPeriodsOut = 1; } auto result = mNextPredictedTargetdVsync + overridedNumPeriodsOut * mIdealPeriod; #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: VSP-mode-5, mIdealPeriod=%" PRId64 ", mNextPredictedTargetdVsync=%" PRId64 ", result=%" PRId64 ", diff=%" PRId64, __func__, mIdealPeriod, mNextPredictedTargetdVsync, result, result - mNextPredictedTargetdVsync); #endif return result; } } #endif auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end()); // See b/145667109, the ordinal calculation must take into account the intercept. auto const zeroPoint = oldest + intercept; auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope; auto const prediction = (ordinalRequest * slope) + intercept + oldest; traceInt64("VSP-mode", 0); traceInt64If("VSP-timePoint", timePoint); traceInt64If("VSP-prediction", prediction); #ifdef MTK_SF_DEBUG_SUPPORT traceInt64If("VSP-oldest", oldest); #endif auto const printer = [&, slope = slope, intercept = intercept] { std::stringstream str; str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+" << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept << "oldestTS: " << oldest << " ordinal: " << ordinalRequest; return str.str(); }; #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: %s", __func__, printer().c_str()); #endif ALOGV("%s", printer().c_str()); LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s", printer().c_str()); return prediction; } nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const { std::lock_guard lock(mMutex); // update the mLastVsyncSequence for reference point mLastVsyncSequence = getVsyncSequenceLocked(timePoint); const auto renderRatePhase = [&]() REQUIRES(mMutex) -> int { if (!mRenderRate) return 0; const auto divisor = RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod), *mRenderRate); if (divisor <= 1) return 0; const int mod = mLastVsyncSequence->seq % divisor; if (mod == 0) return 0; return divisor - mod; }(); if (renderRatePhase == 0) { return mLastVsyncSequence->vsyncTime; } auto const [slope, intercept] = getVSyncPredictionModelLocked(); const auto approximateNextVsync = mLastVsyncSequence->vsyncTime + slope * renderRatePhase; return nextAnticipatedVSyncTimeFromLocked(approximateNextVsync - slope / 2); } /* * Returns whether a given vsync timestamp is in phase with a frame rate. * If the frame rate is not a divisor of the refresh rate, it is always considered in phase. * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6): * isVSyncInPhase(16.6, 30) = true * isVSyncInPhase(33.3, 30) = false * isVSyncInPhase(50.0, 30) = true */ bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) const { std::lock_guard lock(mMutex); const auto divisor = RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod), frameRate); return isVSyncInPhaseLocked(timePoint, static_cast(divisor)); } bool VSyncPredictor::isVSyncInPhaseLocked(nsecs_t timePoint, unsigned divisor) const { const TimePoint now = TimePoint::now(); const auto getTimePointIn = [](TimePoint now, nsecs_t timePoint) -> float { return ticks(TimePoint::fromNs(timePoint) - now); }; ATRACE_FORMAT("%s timePoint in: %.2f divisor: %zu", __func__, getTimePointIn(now, timePoint), divisor); if (divisor <= 1 || timePoint == 0) { return true; } const nsecs_t period = mRateMap[mIdealPeriod].slope; const nsecs_t justBeforeTimePoint = timePoint - period / 2; const auto vsyncSequence = getVsyncSequenceLocked(justBeforeTimePoint); ATRACE_FORMAT_INSTANT("vsync in: %.2f sequence: %" PRId64, getTimePointIn(now, vsyncSequence.vsyncTime), vsyncSequence.seq); return vsyncSequence.seq % divisor == 0; } void VSyncPredictor::setRenderRate(Fps fps) { ALOGV("%s %s: %s", __func__, to_string(mId).c_str(), to_string(fps).c_str()); std::lock_guard lock(mMutex); mRenderRate = fps; } VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const { std::lock_guard lock(mMutex); const auto model = VSyncPredictor::getVSyncPredictionModelLocked(); return {model.slope, model.intercept}; } VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const { return mRateMap.find(mIdealPeriod)->second; } void VSyncPredictor::setPeriod(nsecs_t period) { ATRACE_FORMAT("%s %s", __func__, to_string(mId).c_str()); traceInt64("VSP-setPeriod", period); std::lock_guard lock(mMutex); static constexpr size_t kSizeLimit = 30; if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) { mRateMap.erase(mRateMap.begin()); } mIdealPeriod = period; if (mRateMap.find(period) == mRateMap.end()) { mRateMap[mIdealPeriod] = {period, 0}; } clearTimestamps(); } void VSyncPredictor::clearTimestamps() { if (!mTimestamps.empty()) { auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end()); if (mKnownTimestamp) { mKnownTimestamp = std::max(*mKnownTimestamp, maxRb); } else { mKnownTimestamp = maxRb; } mTimestamps.clear(); mLastTimestampIndex = 0; #ifdef MTK_SF_DEBUG_SUPPORT VSP_TRACE("%s: mKnownTimestamp=%" PRId64, __func__, *mKnownTimestamp); traceInt64If("VSP-mKnownTimestamp", *mKnownTimestamp); traceInt64If("VSP-mTimestamps", 0); traceInt64If("VSP-mLastTimestampIndex", 0); #endif } } bool VSyncPredictor::needsMoreSamples() const { std::lock_guard lock(mMutex); return mTimestamps.size() < kMinimumSamplesForPrediction; } void VSyncPredictor::resetModel() { std::lock_guard lock(mMutex); mRateMap[mIdealPeriod] = {mIdealPeriod, 0}; clearTimestamps(); } void VSyncPredictor::dump(std::string& result) const { std::lock_guard lock(mMutex); StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f); StringAppendF(&result, "\tRefresh Rate Map:\n"); for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) { StringAppendF(&result, "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n", idealPeriod / 1e6f, periodInterceptTuple.slope / 1e6f, periodInterceptTuple.intercept); } } #ifdef MTK_SF_MSYNC_3 void VSyncPredictor::setNextPredictedTargetVsync(nsecs_t time) { mNextPredictedTargetdVsync = time; } #endif #ifdef MTK_SF_MSYNC void VSyncPredictor::setMSyncOn(bool on) { if (mMSyncOn == on) { return; } mMSyncOn = on; if (!mMSyncOn) { mMSyncTriggerResync = true; } } void VSyncPredictor::setQ2QFull(bool bQ2QFull) { if (mMSyncQ2QFull == bQ2QFull) { return; } mMSyncQ2QFull = bQ2QFull; } #endif } // namespace android::scheduler // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wextra"