/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "Scheduler/EventThread.h" #include "Scheduler/RefreshRateSelector.h" #include "TestableScheduler.h" #include "TestableSurfaceFlinger.h" #include "mock/DisplayHardware/MockDisplayMode.h" #include "mock/MockEventThread.h" #include "mock/MockLayer.h" #include "mock/MockSchedulerCallback.h" namespace android::scheduler { using android::mock::createDisplayMode; using testing::_; using testing::Return; namespace { using MockEventThread = android::mock::EventThread; using MockLayer = android::mock::MockLayer; class SchedulerTest : public testing::Test { protected: class MockEventThreadConnection : public android::EventThreadConnection { public: explicit MockEventThreadConnection(EventThread* eventThread) : EventThreadConnection(eventThread, /*callingUid*/ static_cast(0), ResyncCallback()) {} ~MockEventThreadConnection() = default; MOCK_METHOD1(stealReceiveChannel, binder::Status(gui::BitTube* outChannel)); MOCK_METHOD1(setVsyncRate, binder::Status(int count)); MOCK_METHOD0(requestNextVsync, binder::Status()); }; SchedulerTest(); static constexpr PhysicalDisplayId kDisplayId1 = PhysicalDisplayId::fromPort(255u); static inline const ftl::NonNull kDisplay1Mode60 = ftl::as_non_null(createDisplayMode(kDisplayId1, DisplayModeId(0), 60_Hz)); static inline const ftl::NonNull kDisplay1Mode120 = ftl::as_non_null(createDisplayMode(kDisplayId1, DisplayModeId(1), 120_Hz)); static inline const DisplayModes kDisplay1Modes = makeModes(kDisplay1Mode60, kDisplay1Mode120); static constexpr PhysicalDisplayId kDisplayId2 = PhysicalDisplayId::fromPort(254u); static inline const ftl::NonNull kDisplay2Mode60 = ftl::as_non_null(createDisplayMode(kDisplayId2, DisplayModeId(0), 60_Hz)); static inline const ftl::NonNull kDisplay2Mode120 = ftl::as_non_null(createDisplayMode(kDisplayId2, DisplayModeId(1), 120_Hz)); static inline const DisplayModes kDisplay2Modes = makeModes(kDisplay2Mode60, kDisplay2Mode120); static constexpr PhysicalDisplayId kDisplayId3 = PhysicalDisplayId::fromPort(253u); static inline const ftl::NonNull kDisplay3Mode60 = ftl::as_non_null(createDisplayMode(kDisplayId3, DisplayModeId(0), 60_Hz)); static inline const DisplayModes kDisplay3Modes = makeModes(kDisplay3Mode60); std::shared_ptr mSelector = std::make_shared(makeModes(kDisplay1Mode60), kDisplay1Mode60->getId()); mock::SchedulerCallback mSchedulerCallback; TestableScheduler* mScheduler = new TestableScheduler{mSelector, mSchedulerCallback}; ConnectionHandle mConnectionHandle; MockEventThread* mEventThread; sp mEventThreadConnection; TestableSurfaceFlinger mFlinger; }; SchedulerTest::SchedulerTest() { auto eventThread = std::make_unique(); mEventThread = eventThread.get(); EXPECT_CALL(*mEventThread, registerDisplayEventConnection(_)).WillOnce(Return(0)); mEventThreadConnection = sp::make(mEventThread); // createConnection call to scheduler makes a createEventConnection call to EventThread. Make // sure that call gets executed and returns an EventThread::Connection object. EXPECT_CALL(*mEventThread, createEventConnection(_, _)) .WillRepeatedly(Return(mEventThreadConnection)); mConnectionHandle = mScheduler->createConnection(std::move(eventThread)); EXPECT_TRUE(mConnectionHandle); mFlinger.resetScheduler(mScheduler); } } // namespace TEST_F(SchedulerTest, invalidConnectionHandle) { ConnectionHandle handle; const sp connection = mScheduler->createDisplayEventConnection(handle); EXPECT_FALSE(connection); EXPECT_FALSE(mScheduler->getEventConnection(handle)); // The EXPECT_CALLS make sure we don't call the functions on the subsequent event threads. EXPECT_CALL(*mEventThread, onHotplugReceived(_, _)).Times(0); mScheduler->onHotplugReceived(handle, kDisplayId1, false); std::string output; EXPECT_CALL(*mEventThread, dump(_)).Times(0); mScheduler->dump(handle, output); EXPECT_TRUE(output.empty()); EXPECT_CALL(*mEventThread, setDuration(10ns, 20ns)).Times(0); mScheduler->setDuration(handle, 10ns, 20ns); } TEST_F(SchedulerTest, validConnectionHandle) { const sp connection = mScheduler->createDisplayEventConnection(mConnectionHandle); ASSERT_EQ(mEventThreadConnection, connection); EXPECT_TRUE(mScheduler->getEventConnection(mConnectionHandle)); EXPECT_CALL(*mEventThread, onHotplugReceived(kDisplayId1, false)).Times(1); mScheduler->onHotplugReceived(mConnectionHandle, kDisplayId1, false); std::string output("dump"); EXPECT_CALL(*mEventThread, dump(output)).Times(1); mScheduler->dump(mConnectionHandle, output); EXPECT_FALSE(output.empty()); EXPECT_CALL(*mEventThread, setDuration(10ns, 20ns)).Times(1); mScheduler->setDuration(mConnectionHandle, 10ns, 20ns); static constexpr size_t kEventConnections = 5; EXPECT_CALL(*mEventThread, getEventThreadConnectionCount()).WillOnce(Return(kEventConnections)); EXPECT_EQ(kEventConnections, mScheduler->getEventThreadConnectionCount(mConnectionHandle)); } TEST_F(SchedulerTest, chooseRefreshRateForContentIsNoopWhenModeSwitchingIsNotSupported) { // The layer is registered at creation time and deregistered at destruction time. sp layer = sp::make(mFlinger.flinger()); // recordLayerHistory should be a noop ASSERT_EQ(0u, mScheduler->getNumActiveLayers()); mScheduler->recordLayerHistory(layer->getSequence(), layer->getLayerProps(), 0, LayerHistory::LayerUpdateType::Buffer); ASSERT_EQ(0u, mScheduler->getNumActiveLayers()); constexpr hal::PowerMode kPowerModeOn = hal::PowerMode::ON; FTL_FAKE_GUARD(kMainThreadContext, mScheduler->setDisplayPowerMode(kDisplayId1, kPowerModeOn)); constexpr uint32_t kDisplayArea = 999'999; mScheduler->onActiveDisplayAreaChanged(kDisplayArea); EXPECT_CALL(mSchedulerCallback, requestDisplayModes(_)).Times(0); mScheduler->chooseRefreshRateForContent(); } TEST_F(SchedulerTest, updateDisplayModes) { ASSERT_EQ(0u, mScheduler->layerHistorySize()); sp layer = sp::make(mFlinger.flinger()); ASSERT_EQ(1u, mScheduler->layerHistorySize()); // Replace `mSelector` with a new `RefreshRateSelector` that has different display modes. mScheduler->registerDisplay(kDisplayId1, std::make_shared(kDisplay1Modes, kDisplay1Mode60->getId())); ASSERT_EQ(0u, mScheduler->getNumActiveLayers()); mScheduler->recordLayerHistory(layer->getSequence(), layer->getLayerProps(), 0, LayerHistory::LayerUpdateType::Buffer); ASSERT_EQ(1u, mScheduler->getNumActiveLayers()); } TEST_F(SchedulerTest, dispatchCachedReportedMode) { mScheduler->clearCachedReportedMode(); EXPECT_CALL(*mEventThread, onModeChanged(_)).Times(0); EXPECT_NO_FATAL_FAILURE(mScheduler->dispatchCachedReportedMode()); } TEST_F(SchedulerTest, onNonPrimaryDisplayModeChanged_invalidParameters) { const auto mode = DisplayMode::Builder(hal::HWConfigId(0)) .setId(DisplayModeId(111)) .setPhysicalDisplayId(kDisplayId1) .setVsyncPeriod(111111) .build(); // If the handle is incorrect, the function should return before // onModeChange is called. ConnectionHandle invalidHandle = {.id = 123}; EXPECT_NO_FATAL_FAILURE( mScheduler->onNonPrimaryDisplayModeChanged(invalidHandle, {90_Hz, ftl::as_non_null(mode)})); EXPECT_CALL(*mEventThread, onModeChanged(_)).Times(0); } TEST_F(SchedulerTest, calculateMaxAcquiredBufferCount) { EXPECT_EQ(1, mFlinger.calculateMaxAcquiredBufferCount(60_Hz, 30ms)); EXPECT_EQ(2, mFlinger.calculateMaxAcquiredBufferCount(90_Hz, 30ms)); EXPECT_EQ(3, mFlinger.calculateMaxAcquiredBufferCount(120_Hz, 30ms)); EXPECT_EQ(2, mFlinger.calculateMaxAcquiredBufferCount(60_Hz, 40ms)); EXPECT_EQ(1, mFlinger.calculateMaxAcquiredBufferCount(60_Hz, 10ms)); } MATCHER(Is120Hz, "") { return isApproxEqual(arg.front().mode.fps, 120_Hz); } TEST_F(SchedulerTest, chooseRefreshRateForContentSelectsMaxRefreshRate) { mScheduler->registerDisplay(kDisplayId1, std::make_shared(kDisplay1Modes, kDisplay1Mode60->getId())); const sp layer = sp::make(mFlinger.flinger()); EXPECT_CALL(*layer, isVisible()).WillOnce(Return(true)); mScheduler->recordLayerHistory(layer->getSequence(), layer->getLayerProps(), 0, LayerHistory::LayerUpdateType::Buffer); constexpr hal::PowerMode kPowerModeOn = hal::PowerMode::ON; FTL_FAKE_GUARD(kMainThreadContext, mScheduler->setDisplayPowerMode(kDisplayId1, kPowerModeOn)); constexpr uint32_t kDisplayArea = 999'999; mScheduler->onActiveDisplayAreaChanged(kDisplayArea); EXPECT_CALL(mSchedulerCallback, requestDisplayModes(Is120Hz())).Times(1); mScheduler->chooseRefreshRateForContent(); // No-op if layer requirements have not changed. EXPECT_CALL(mSchedulerCallback, requestDisplayModes(_)).Times(0); mScheduler->chooseRefreshRateForContent(); } TEST_F(SchedulerTest, chooseDisplayModesSingleDisplay) { mScheduler->registerDisplay(kDisplayId1, std::make_shared(kDisplay1Modes, kDisplay1Mode60->getId())); std::vector layers = std::vector({{.weight = 1.f}, {.weight = 1.f}}); mScheduler->setContentRequirements(layers); GlobalSignals globalSignals = {.idle = true}; mScheduler->setTouchStateAndIdleTimerPolicy(globalSignals); using DisplayModeChoice = TestableScheduler::DisplayModeChoice; auto modeChoices = mScheduler->chooseDisplayModes(); ASSERT_EQ(1u, modeChoices.size()); auto choice = modeChoices.get(kDisplayId1); ASSERT_TRUE(choice); EXPECT_EQ(choice->get(), DisplayModeChoice({60_Hz, kDisplay1Mode60}, globalSignals)); globalSignals = {.idle = false}; mScheduler->setTouchStateAndIdleTimerPolicy(globalSignals); modeChoices = mScheduler->chooseDisplayModes(); ASSERT_EQ(1u, modeChoices.size()); choice = modeChoices.get(kDisplayId1); ASSERT_TRUE(choice); EXPECT_EQ(choice->get(), DisplayModeChoice({120_Hz, kDisplay1Mode120}, globalSignals)); globalSignals = {.touch = true}; mScheduler->replaceTouchTimer(10); mScheduler->setTouchStateAndIdleTimerPolicy(globalSignals); modeChoices = mScheduler->chooseDisplayModes(); ASSERT_EQ(1u, modeChoices.size()); choice = modeChoices.get(kDisplayId1); ASSERT_TRUE(choice); EXPECT_EQ(choice->get(), DisplayModeChoice({120_Hz, kDisplay1Mode120}, globalSignals)); } TEST_F(SchedulerTest, chooseDisplayModesMultipleDisplays) { mScheduler->registerDisplay(kDisplayId1, std::make_shared(kDisplay1Modes, kDisplay1Mode60->getId())); mScheduler->registerDisplay(kDisplayId2, std::make_shared(kDisplay2Modes, kDisplay2Mode60->getId())); using DisplayModeChoice = TestableScheduler::DisplayModeChoice; TestableScheduler::DisplayModeChoiceMap expectedChoices; { const GlobalSignals globalSignals = {.idle = true}; expectedChoices = ftl::init::map(kDisplayId1, FrameRateMode{60_Hz, kDisplay1Mode60}, globalSignals)(kDisplayId2, FrameRateMode{60_Hz, kDisplay2Mode60}, globalSignals); std::vector layers = {{.weight = 1.f}, {.weight = 1.f}}; mScheduler->setContentRequirements(layers); mScheduler->setTouchStateAndIdleTimerPolicy(globalSignals); const auto actualChoices = mScheduler->chooseDisplayModes(); EXPECT_EQ(expectedChoices, actualChoices); } { const GlobalSignals globalSignals = {.idle = false}; expectedChoices = ftl::init::map(kDisplayId1, FrameRateMode{120_Hz, kDisplay1Mode120}, globalSignals)(kDisplayId2, FrameRateMode{120_Hz, kDisplay2Mode120}, globalSignals); mScheduler->setTouchStateAndIdleTimerPolicy(globalSignals); const auto actualChoices = mScheduler->chooseDisplayModes(); EXPECT_EQ(expectedChoices, actualChoices); } { const GlobalSignals globalSignals = {.touch = true}; mScheduler->replaceTouchTimer(10); mScheduler->setTouchStateAndIdleTimerPolicy(globalSignals); expectedChoices = ftl::init::map(kDisplayId1, FrameRateMode{120_Hz, kDisplay1Mode120}, globalSignals)(kDisplayId2, FrameRateMode{120_Hz, kDisplay2Mode120}, globalSignals); const auto actualChoices = mScheduler->chooseDisplayModes(); EXPECT_EQ(expectedChoices, actualChoices); } { // The kDisplayId3 does not support 120Hz, The pacesetter display rate is chosen to be 120 // Hz. In this case only the display kDisplayId3 choose 60Hz as it does not support 120Hz. mScheduler ->registerDisplay(kDisplayId3, std::make_shared(kDisplay3Modes, kDisplay3Mode60->getId())); const GlobalSignals globalSignals = {.touch = true}; mScheduler->replaceTouchTimer(10); mScheduler->setTouchStateAndIdleTimerPolicy(globalSignals); expectedChoices = ftl::init::map< const PhysicalDisplayId&, DisplayModeChoice>(kDisplayId1, FrameRateMode{120_Hz, kDisplay1Mode120}, globalSignals)(kDisplayId2, FrameRateMode{120_Hz, kDisplay2Mode120}, globalSignals)(kDisplayId3, FrameRateMode{60_Hz, kDisplay3Mode60}, globalSignals); const auto actualChoices = mScheduler->chooseDisplayModes(); EXPECT_EQ(expectedChoices, actualChoices); } { // We should choose 60Hz despite the touch signal as pacesetter only supports 60Hz mScheduler->setPacesetterDisplay(kDisplayId3); const GlobalSignals globalSignals = {.touch = true}; mScheduler->replaceTouchTimer(10); mScheduler->setTouchStateAndIdleTimerPolicy(globalSignals); expectedChoices = ftl::init::map< const PhysicalDisplayId&, DisplayModeChoice>(kDisplayId1, FrameRateMode{60_Hz, kDisplay1Mode60}, globalSignals)(kDisplayId2, FrameRateMode{60_Hz, kDisplay2Mode60}, globalSignals)(kDisplayId3, FrameRateMode{60_Hz, kDisplay3Mode60}, globalSignals); const auto actualChoices = mScheduler->chooseDisplayModes(); EXPECT_EQ(expectedChoices, actualChoices); } } } // namespace android::scheduler