131 lines
4.7 KiB
C++
131 lines
4.7 KiB
C++
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <fp16.h>
|
|
|
|
#include <xnnpack.h>
|
|
#include <xnnpack/microfnptr.h>
|
|
#include <xnnpack/microparams-init.h>
|
|
|
|
|
|
class RAddStoreExpMinusMaxMicrokernelTester {
|
|
public:
|
|
inline RAddStoreExpMinusMaxMicrokernelTester& elements(size_t elements) {
|
|
assert(elements != 0);
|
|
this->elements_ = elements;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t elements() const {
|
|
return this->elements_;
|
|
}
|
|
|
|
inline RAddStoreExpMinusMaxMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void Test(xnn_f16_raddstoreexpminusmax_ukernel_function raddstoreexpminusmax, xnn_init_f16_expminus_params_fn init_params) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
// Choose such range that exph(x[i]) overflows, but exph(x[i] - x_max) doesn't.
|
|
// However, the range is still narrow enough that double-precision exp doesn't overflow.
|
|
std::uniform_real_distribution<float> f32dist(15.0f, 20.0f);
|
|
|
|
std::vector<uint16_t> x(elements() + XNN_EXTRA_BYTES / sizeof(uint16_t));
|
|
std::vector<uint16_t> y(elements());
|
|
std::vector<float> y_ref(elements());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(x.begin(), x.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
|
|
std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
|
|
|
|
// Compute reference results.
|
|
float sum_ref = 0.0f;
|
|
float x_max_as_float = -std::numeric_limits<float>::infinity();
|
|
for (size_t i = 0; i < elements(); i++) {
|
|
x_max_as_float = std::max(x_max_as_float, fp16_ieee_to_fp32_value(x[i]));
|
|
}
|
|
const uint16_t x_max_as_half = fp16_ieee_from_fp32_value(x_max_as_float);
|
|
for (size_t i = 0; i < elements(); i++) {
|
|
const float y_ref_value = exp(fp16_ieee_to_fp32_value(x[i]) - x_max_as_float);
|
|
y_ref[i] = y_ref_value;
|
|
sum_ref += y_ref_value;
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
uint16_t sum = UINT16_C(0x7E00) /* NaN */;
|
|
xnn_f16_expminus_params params;
|
|
init_params(¶ms);
|
|
raddstoreexpminusmax(elements() * sizeof(uint16_t), x.data(), &x_max_as_half, y.data(), &sum, ¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < elements(); i++) {
|
|
ASSERT_NEAR(y_ref[i], fp16_ieee_to_fp32_value(y[i]), std::abs(y_ref[i]) * 5.0e-3f)
|
|
<< "element " << i << " / " << elements() << ", x_max " << x_max_as_float;
|
|
}
|
|
ASSERT_NEAR(sum_ref, fp16_ieee_to_fp32_value(sum), std::abs(sum_ref) * 5.0e-3f)
|
|
<< "batch " << elements() << ", x_max " << x_max_as_float;
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f32_raddstoreexpminusmax_ukernel_function raddstoreexpminusmax, xnn_init_f32_expminus_params_fn init_params) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
// Choose such range that expf(x[i]) overflows, but expf(x[i] - x_max) doesn't.
|
|
// However, the range is still narrow enough that double-precision exp doesn't overflow.
|
|
std::uniform_real_distribution<float> f32dist(90.0f, 100.0f);
|
|
|
|
std::vector<float> x(elements() + XNN_EXTRA_BYTES / sizeof(float));
|
|
std::vector<float> y(elements());
|
|
std::vector<double> y_ref(elements());
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(x.begin(), x.end(), [&]() { return f32dist(rng); });
|
|
std::fill(y.begin(), y.end(), std::nanf(""));
|
|
|
|
// Compute reference results.
|
|
double sum_ref = 0.0f;
|
|
const float x_max = *std::max_element(x.begin(), x.begin() + elements());
|
|
for (size_t i = 0; i < elements(); i++) {
|
|
const double y_ref_value = exp(double(x[i]) - double(x_max));
|
|
y_ref[i] = y_ref_value;
|
|
sum_ref += y_ref_value;
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
float sum = std::nanf("");
|
|
xnn_f32_expminus_params params;
|
|
init_params(¶ms);
|
|
raddstoreexpminusmax(elements() * sizeof(float), x.data(), &x_max, y.data(), &sum, ¶ms);
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < elements(); i++) {
|
|
ASSERT_NEAR(y_ref[i], double(y[i]), std::abs(y_ref[i]) * 1.0e-6)
|
|
<< "element " << i << " / " << elements() << ", x_max " << x_max;
|
|
}
|
|
ASSERT_NEAR(sum_ref, double(sum), std::abs(sum_ref) * 1.0e-6)
|
|
<< "batch " << elements() << ", x_max " << x_max;
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t elements_{1};
|
|
size_t iterations_{15};
|
|
};
|