162 lines
5.0 KiB
C++
162 lines
5.0 KiB
C++
// Copyright 2022 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <xnnpack.h>
|
|
#include <xnnpack/aligned-allocator.h>
|
|
#include <xnnpack/math.h>
|
|
#include <xnnpack/microfnptr.h>
|
|
|
|
|
|
extern XNN_INTERNAL const uint16_t xnn_table_vlog[129];
|
|
|
|
class VLogMicrokernelTester {
|
|
public:
|
|
inline VLogMicrokernelTester& batch(size_t batch) {
|
|
assert(batch != 0);
|
|
this->batch_ = batch;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t batch() const {
|
|
return this->batch_;
|
|
}
|
|
|
|
inline VLogMicrokernelTester& input_lshift(uint32_t input_lshift) {
|
|
assert(input_lshift < 32);
|
|
this->input_lshift_ = input_lshift;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t input_lshift() const {
|
|
return this->input_lshift_;
|
|
}
|
|
|
|
inline VLogMicrokernelTester& output_scale(uint32_t output_scale) {
|
|
this->output_scale_ = output_scale;
|
|
return *this;
|
|
}
|
|
|
|
inline uint32_t output_scale() const {
|
|
return this->output_scale_;
|
|
}
|
|
|
|
inline VLogMicrokernelTester& inplace(bool inplace) {
|
|
this->inplace_ = inplace;
|
|
return *this;
|
|
}
|
|
|
|
inline bool inplace() const {
|
|
return this->inplace_;
|
|
}
|
|
|
|
inline VLogMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void Test(xnn_u32_vlog_ukernel_function vlog) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto i16rng = std::bind(std::uniform_int_distribution<uint16_t>(), std::ref(rng));
|
|
auto i32rng = std::bind(std::uniform_int_distribution<uint32_t>(), std::ref(rng));
|
|
|
|
std::vector<uint32_t> x(batch() + XNN_EXTRA_BYTES / sizeof(uint32_t));
|
|
std::vector<uint16_t> y(batch() * (inplace() ? sizeof(uint32_t) / sizeof(uint16_t) : 1) + XNN_EXTRA_BYTES / sizeof(uint32_t));
|
|
std::vector<uint16_t> y_ref(batch());
|
|
const uint32_t* x_data = inplace() ? reinterpret_cast<const uint32_t*>(y.data()) : x.data();
|
|
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(x.begin(), x.end(), std::ref(i32rng));
|
|
std::generate(y.begin(), y.end(), std::ref(i16rng));
|
|
std::generate(y_ref.begin(), y_ref.end(), std::ref(i16rng));
|
|
|
|
// Compute reference results.
|
|
for (size_t n = 0; n < batch(); n++) {
|
|
const uint32_t x_value = x_data[n];
|
|
const uint32_t scaled = x_value << input_lshift();
|
|
uint32_t log_value = 0;
|
|
if (scaled != 0) {
|
|
const uint32_t out_scale = output_scale();
|
|
|
|
const int log_scale = 65536;
|
|
const int log_scale_log2 = 16;
|
|
const int log_coeff = 45426;
|
|
const uint32_t log2x = math_clz_nonzero_u32(scaled) ^ 31; // log2 of scaled
|
|
assert(log2x < 32);
|
|
|
|
// Number of segments in the log lookup table. The table will be log_segments+1
|
|
// in length (with some padding).
|
|
const int log_segments_log2 = 7;
|
|
|
|
// Part 1
|
|
uint32_t frac = scaled - (UINT32_C(1) << log2x);
|
|
|
|
// Shift the fractional part into msb of 16 bits
|
|
frac = XNN_UNPREDICTABLE(log2x < log_scale_log2) ?
|
|
(frac << (log_scale_log2 - log2x)) :
|
|
(frac >> (log2x - log_scale_log2));
|
|
|
|
// Part 2
|
|
const uint32_t base_seg = frac >> (log_scale_log2 - log_segments_log2);
|
|
const uint32_t seg_unit = (UINT32_C(1) << log_scale_log2) >> log_segments_log2;
|
|
|
|
assert(128 == (1 << log_segments_log2));
|
|
assert(base_seg < (1 << log_segments_log2));
|
|
|
|
const uint32_t c0 = xnn_table_vlog[base_seg];
|
|
const uint32_t c1 = xnn_table_vlog[base_seg + 1];
|
|
const uint32_t seg_base = seg_unit * base_seg;
|
|
const uint32_t rel_pos = ((c1 - c0) * (frac - seg_base)) >> log_scale_log2;
|
|
const uint32_t fraction = frac + c0 + rel_pos;
|
|
|
|
const uint32_t log2 = (log2x << log_scale_log2) + fraction;
|
|
const uint32_t round = log_scale / 2;
|
|
const uint32_t loge = (((uint64_t) log_coeff) * log2 + round) >> log_scale_log2;
|
|
|
|
// Finally scale to our output scale
|
|
log_value = (out_scale * loge + round) >> log_scale_log2;
|
|
}
|
|
|
|
const uint32_t vout = math_min_u32(log_value, (uint32_t) INT16_MAX);
|
|
y_ref[n] = vout;
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
vlog(batch(), x_data, input_lshift(), output_scale(), y.data());
|
|
|
|
// Verify results.
|
|
for (size_t n = 0; n < batch(); n++) {
|
|
ASSERT_EQ(y[n], y_ref[n])
|
|
<< ", input_lshift " << input_lshift()
|
|
<< ", output_scale " << output_scale()
|
|
<< ", batch " << n << " / " << batch();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t batch_{1};
|
|
uint32_t input_lshift_{4};
|
|
uint32_t output_scale_{16};
|
|
bool inplace_{false};
|
|
size_t iterations_{15};
|
|
};
|