81 lines
2.2 KiB
C++
81 lines
2.2 KiB
C++
// Copyright 2022 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <xnnpack.h>
|
|
#include <xnnpack/microfnptr.h>
|
|
|
|
|
|
class VSquareAbsMicrokernelTester {
|
|
public:
|
|
inline VSquareAbsMicrokernelTester& batch_size(size_t batch_size) {
|
|
assert(batch_size != 0);
|
|
this->batch_ = batch_size;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t batch_size() const {
|
|
return this->batch_;
|
|
}
|
|
|
|
inline VSquareAbsMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void Test(xnn_cs16_vsquareabs_ukernel_function vsquareabs) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto i16rng = std::bind(std::uniform_int_distribution<int16_t>(), std::ref(rng));
|
|
|
|
std::vector<int16_t> x(batch_size() * 2 + XNN_EXTRA_BYTES / sizeof(int16_t));
|
|
std::vector<uint32_t> y(batch_size());
|
|
std::vector<uint32_t> y_ref(batch_size());
|
|
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(x.begin(), x.end(), std::ref(i16rng));
|
|
std::fill(y.begin(), y.end(), INT32_C(0x12345678));
|
|
|
|
// Compute reference results.
|
|
for (size_t n = 0; n < batch_size(); n++) {
|
|
const int16_t r = x[n * 2];
|
|
const int16_t i = x[n * 2 + 1];
|
|
uint32_t rsquare = static_cast<uint32_t>(static_cast<int32_t>(r) * static_cast<int32_t>(r));
|
|
uint32_t isquare = static_cast<uint32_t>(static_cast<int32_t>(i) * static_cast<int32_t>(i));
|
|
uint32_t value = rsquare + isquare;
|
|
y_ref[n] = value;
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
vsquareabs(batch_size(), x.data(), y.data());
|
|
|
|
// Verify results.
|
|
for (size_t n = 0; n < batch_size(); n++) {
|
|
ASSERT_EQ(y[n], y_ref[n])
|
|
<< ", batch " << n << " / " << batch_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t batch_{1};
|
|
size_t iterations_{15};
|
|
};
|