5981 lines
207 KiB
C++
5981 lines
207 KiB
C++
// Copyright 2012 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <utility>
|
|
|
|
#include "base/files/file.h"
|
|
#include "base/files/file_util.h"
|
|
#include "base/functional/bind.h"
|
|
#include "base/functional/callback_helpers.h"
|
|
#include "base/metrics/field_trial.h"
|
|
#include "base/metrics/field_trial_param_associator.h"
|
|
#include "base/run_loop.h"
|
|
#include "base/strings/string_number_conversions.h"
|
|
#include "base/strings/string_util.h"
|
|
#include "base/test/metrics/histogram_tester.h"
|
|
#include "base/test/scoped_feature_list.h"
|
|
#include "base/threading/platform_thread.h"
|
|
#include "base/time/time.h"
|
|
#include "build/build_config.h"
|
|
#include "net/base/completion_once_callback.h"
|
|
#include "net/base/io_buffer.h"
|
|
#include "net/base/net_errors.h"
|
|
#include "net/base/request_priority.h"
|
|
#include "net/base/test_completion_callback.h"
|
|
#include "net/disk_cache/blockfile/backend_impl.h"
|
|
#include "net/disk_cache/blockfile/entry_impl.h"
|
|
#include "net/disk_cache/cache_util.h"
|
|
#include "net/disk_cache/disk_cache_test_base.h"
|
|
#include "net/disk_cache/disk_cache_test_util.h"
|
|
#include "net/disk_cache/memory/mem_entry_impl.h"
|
|
#include "net/disk_cache/simple/simple_backend_impl.h"
|
|
#include "net/disk_cache/simple/simple_entry_format.h"
|
|
#include "net/disk_cache/simple/simple_entry_impl.h"
|
|
#include "net/disk_cache/simple/simple_histogram_enums.h"
|
|
#include "net/disk_cache/simple/simple_synchronous_entry.h"
|
|
#include "net/disk_cache/simple/simple_test_util.h"
|
|
#include "net/disk_cache/simple/simple_util.h"
|
|
#include "net/test/gtest_util.h"
|
|
#include "testing/gmock/include/gmock/gmock.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
using net::test::IsError;
|
|
using net::test::IsOk;
|
|
|
|
using base::Time;
|
|
using disk_cache::EntryResult;
|
|
using disk_cache::EntryResultCallback;
|
|
using disk_cache::RangeResult;
|
|
using disk_cache::ScopedEntryPtr;
|
|
|
|
// Tests that can run with different types of caches.
|
|
class DiskCacheEntryTest : public DiskCacheTestWithCache {
|
|
public:
|
|
void InternalSyncIOBackground(disk_cache::Entry* entry);
|
|
void ExternalSyncIOBackground(disk_cache::Entry* entry);
|
|
|
|
protected:
|
|
void InternalSyncIO();
|
|
void InternalAsyncIO();
|
|
void ExternalSyncIO();
|
|
void ExternalAsyncIO();
|
|
void ReleaseBuffer(int stream_index);
|
|
void StreamAccess();
|
|
void GetKey();
|
|
void GetTimes(int stream_index);
|
|
void GrowData(int stream_index);
|
|
void TruncateData(int stream_index);
|
|
void ZeroLengthIO(int stream_index);
|
|
void Buffering();
|
|
void SizeAtCreate();
|
|
void SizeChanges(int stream_index);
|
|
void ReuseEntry(int size, int stream_index);
|
|
void InvalidData(int stream_index);
|
|
void ReadWriteDestroyBuffer(int stream_index);
|
|
void DoomNormalEntry();
|
|
void DoomEntryNextToOpenEntry();
|
|
void DoomedEntry(int stream_index);
|
|
void BasicSparseIO();
|
|
void HugeSparseIO();
|
|
void GetAvailableRangeTest();
|
|
void CouldBeSparse();
|
|
void UpdateSparseEntry();
|
|
void DoomSparseEntry();
|
|
void PartialSparseEntry();
|
|
void SparseInvalidArg();
|
|
void SparseClipEnd(int64_t max_index, bool expected_unsupported);
|
|
bool SimpleCacheMakeBadChecksumEntry(const std::string& key, int data_size);
|
|
bool SimpleCacheThirdStreamFileExists(const char* key);
|
|
void SyncDoomEntry(const char* key);
|
|
void CreateEntryWithHeaderBodyAndSideData(const std::string& key,
|
|
int data_size);
|
|
void TruncateFileFromEnd(int file_index,
|
|
const std::string& key,
|
|
int data_size,
|
|
int truncate_size);
|
|
void UseAfterBackendDestruction();
|
|
void CloseSparseAfterBackendDestruction();
|
|
void LastUsedTimePersists();
|
|
void TruncateBackwards();
|
|
void ZeroWriteBackwards();
|
|
void SparseOffset64Bit();
|
|
};
|
|
|
|
// This part of the test runs on the background thread.
|
|
void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) {
|
|
const int kSize1 = 10;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
EXPECT_EQ(0, entry->ReadData(0, 0, buffer1.get(), kSize1,
|
|
net::CompletionOnceCallback()));
|
|
base::strlcpy(buffer1->data(), "the data", kSize1);
|
|
EXPECT_EQ(10, entry->WriteData(0, 0, buffer1.get(), kSize1,
|
|
net::CompletionOnceCallback(), false));
|
|
memset(buffer1->data(), 0, kSize1);
|
|
EXPECT_EQ(10, entry->ReadData(0, 0, buffer1.get(), kSize1,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_STREQ("the data", buffer1->data());
|
|
|
|
const int kSize2 = 5000;
|
|
const int kSize3 = 10000;
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize2);
|
|
scoped_refptr<net::IOBuffer> buffer3 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize3);
|
|
memset(buffer3->data(), 0, kSize3);
|
|
CacheTestFillBuffer(buffer2->data(), kSize2, false);
|
|
base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
|
|
EXPECT_EQ(5000, entry->WriteData(1, 1500, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback(), false));
|
|
memset(buffer2->data(), 0, kSize2);
|
|
EXPECT_EQ(4989, entry->ReadData(1, 1511, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_STREQ("big data goes here", buffer2->data());
|
|
EXPECT_EQ(5000, entry->ReadData(1, 0, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
|
|
EXPECT_EQ(1500, entry->ReadData(1, 5000, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback()));
|
|
|
|
EXPECT_EQ(0, entry->ReadData(1, 6500, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(6500, entry->ReadData(1, 0, buffer3.get(), kSize3,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(8192, entry->WriteData(1, 0, buffer3.get(), 8192,
|
|
net::CompletionOnceCallback(), false));
|
|
EXPECT_EQ(8192, entry->ReadData(1, 0, buffer3.get(), kSize3,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(8192, entry->GetDataSize(1));
|
|
|
|
// We need to delete the memory buffer on this thread.
|
|
EXPECT_EQ(0, entry->WriteData(0, 0, nullptr, 0, net::CompletionOnceCallback(),
|
|
true));
|
|
EXPECT_EQ(0, entry->WriteData(1, 0, nullptr, 0, net::CompletionOnceCallback(),
|
|
true));
|
|
}
|
|
|
|
// We need to support synchronous IO even though it is not a supported operation
|
|
// from the point of view of the disk cache's public interface, because we use
|
|
// it internally, not just by a few tests, but as part of the implementation
|
|
// (see sparse_control.cc, for example).
|
|
void DiskCacheEntryTest::InternalSyncIO() {
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
|
|
ASSERT_TRUE(nullptr != entry);
|
|
|
|
// The bulk of the test runs from within the callback, on the cache thread.
|
|
RunTaskForTest(base::BindOnce(&DiskCacheEntryTest::InternalSyncIOBackground,
|
|
base::Unretained(this), entry));
|
|
|
|
entry->Doom();
|
|
entry->Close();
|
|
FlushQueueForTest();
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, InternalSyncIO) {
|
|
InitCache();
|
|
InternalSyncIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
InternalSyncIO();
|
|
}
|
|
|
|
void DiskCacheEntryTest::InternalAsyncIO() {
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
|
|
ASSERT_TRUE(nullptr != entry);
|
|
|
|
// Avoid using internal buffers for the test. We have to write something to
|
|
// the entry and close it so that we flush the internal buffer to disk. After
|
|
// that, IO operations will be really hitting the disk. We don't care about
|
|
// the content, so just extending the entry is enough (all extensions zero-
|
|
// fill any holes).
|
|
EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, nullptr, 0, false));
|
|
EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, nullptr, 0, false));
|
|
entry->Close();
|
|
ASSERT_THAT(OpenEntry("the first key", &entry), IsOk());
|
|
|
|
MessageLoopHelper helper;
|
|
// Let's verify that each IO goes to the right callback object.
|
|
CallbackTest callback1(&helper, false);
|
|
CallbackTest callback2(&helper, false);
|
|
CallbackTest callback3(&helper, false);
|
|
CallbackTest callback4(&helper, false);
|
|
CallbackTest callback5(&helper, false);
|
|
CallbackTest callback6(&helper, false);
|
|
CallbackTest callback7(&helper, false);
|
|
CallbackTest callback8(&helper, false);
|
|
CallbackTest callback9(&helper, false);
|
|
CallbackTest callback10(&helper, false);
|
|
CallbackTest callback11(&helper, false);
|
|
CallbackTest callback12(&helper, false);
|
|
CallbackTest callback13(&helper, false);
|
|
|
|
const int kSize1 = 10;
|
|
const int kSize2 = 5000;
|
|
const int kSize3 = 10000;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize2);
|
|
scoped_refptr<net::IOBuffer> buffer3 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize3);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
CacheTestFillBuffer(buffer2->data(), kSize2, false);
|
|
CacheTestFillBuffer(buffer3->data(), kSize3, false);
|
|
|
|
EXPECT_EQ(0, entry->ReadData(0, 15 * 1024, buffer1.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run,
|
|
base::Unretained(&callback1))));
|
|
base::strlcpy(buffer1->data(), "the data", kSize1);
|
|
int expected = 0;
|
|
int ret = entry->WriteData(
|
|
0, 0, buffer1.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback2)), false);
|
|
EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
memset(buffer2->data(), 0, kSize2);
|
|
ret = entry->ReadData(
|
|
0, 0, buffer2.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback3)));
|
|
EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_STREQ("the data", buffer2->data());
|
|
|
|
base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
|
|
ret = entry->WriteData(
|
|
1, 1500, buffer2.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback4)), true);
|
|
EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
memset(buffer3->data(), 0, kSize3);
|
|
ret = entry->ReadData(
|
|
1, 1511, buffer3.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback5)));
|
|
EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_STREQ("big data goes here", buffer3->data());
|
|
ret = entry->ReadData(
|
|
1, 0, buffer2.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback6)));
|
|
EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
memset(buffer3->data(), 0, kSize3);
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
|
|
ret = entry->ReadData(
|
|
1, 5000, buffer2.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback7)));
|
|
EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
ret = entry->ReadData(
|
|
1, 0, buffer3.get(), kSize3,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback9)));
|
|
EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
ret = entry->WriteData(
|
|
1, 0, buffer3.get(), 8192,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback10)), true);
|
|
EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
ret = entry->ReadData(
|
|
1, 0, buffer3.get(), kSize3,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback11)));
|
|
EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_EQ(8192, entry->GetDataSize(1));
|
|
|
|
ret = entry->ReadData(
|
|
0, 0, buffer1.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback12)));
|
|
EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
ret = entry->ReadData(
|
|
1, 0, buffer2.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback13)));
|
|
EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
|
|
EXPECT_FALSE(helper.callback_reused_error());
|
|
|
|
entry->Doom();
|
|
entry->Close();
|
|
FlushQueueForTest();
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, InternalAsyncIO) {
|
|
InitCache();
|
|
InternalAsyncIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
InternalAsyncIO();
|
|
}
|
|
|
|
// This part of the test runs on the background thread.
|
|
void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) {
|
|
const int kSize1 = 17000;
|
|
const int kSize2 = 25000;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize2);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
CacheTestFillBuffer(buffer2->data(), kSize2, false);
|
|
base::strlcpy(buffer1->data(), "the data", kSize1);
|
|
EXPECT_EQ(17000, entry->WriteData(0, 0, buffer1.get(), kSize1,
|
|
net::CompletionOnceCallback(), false));
|
|
memset(buffer1->data(), 0, kSize1);
|
|
EXPECT_EQ(17000, entry->ReadData(0, 0, buffer1.get(), kSize1,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_STREQ("the data", buffer1->data());
|
|
|
|
base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
|
|
EXPECT_EQ(25000, entry->WriteData(1, 10000, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback(), false));
|
|
memset(buffer2->data(), 0, kSize2);
|
|
EXPECT_EQ(24989, entry->ReadData(1, 10011, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_STREQ("big data goes here", buffer2->data());
|
|
EXPECT_EQ(25000, entry->ReadData(1, 0, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(5000, entry->ReadData(1, 30000, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback()));
|
|
|
|
EXPECT_EQ(0, entry->ReadData(1, 35000, buffer2.get(), kSize2,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(17000, entry->ReadData(1, 0, buffer1.get(), kSize1,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(17000, entry->WriteData(1, 20000, buffer1.get(), kSize1,
|
|
net::CompletionOnceCallback(), false));
|
|
EXPECT_EQ(37000, entry->GetDataSize(1));
|
|
|
|
// We need to delete the memory buffer on this thread.
|
|
EXPECT_EQ(0, entry->WriteData(0, 0, nullptr, 0, net::CompletionOnceCallback(),
|
|
true));
|
|
EXPECT_EQ(0, entry->WriteData(1, 0, nullptr, 0, net::CompletionOnceCallback(),
|
|
true));
|
|
}
|
|
|
|
void DiskCacheEntryTest::ExternalSyncIO() {
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
|
|
|
|
// The bulk of the test runs from within the callback, on the cache thread.
|
|
RunTaskForTest(base::BindOnce(&DiskCacheEntryTest::ExternalSyncIOBackground,
|
|
base::Unretained(this), entry));
|
|
|
|
entry->Doom();
|
|
entry->Close();
|
|
FlushQueueForTest();
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ExternalSyncIO) {
|
|
InitCache();
|
|
ExternalSyncIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) {
|
|
InitCache();
|
|
cache_impl_->SetFlags(disk_cache::kNoBuffering);
|
|
ExternalSyncIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
ExternalSyncIO();
|
|
}
|
|
|
|
void DiskCacheEntryTest::ExternalAsyncIO() {
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
|
|
|
|
int expected = 0;
|
|
|
|
MessageLoopHelper helper;
|
|
// Let's verify that each IO goes to the right callback object.
|
|
CallbackTest callback1(&helper, false);
|
|
CallbackTest callback2(&helper, false);
|
|
CallbackTest callback3(&helper, false);
|
|
CallbackTest callback4(&helper, false);
|
|
CallbackTest callback5(&helper, false);
|
|
CallbackTest callback6(&helper, false);
|
|
CallbackTest callback7(&helper, false);
|
|
CallbackTest callback8(&helper, false);
|
|
CallbackTest callback9(&helper, false);
|
|
|
|
const int kSize1 = 17000;
|
|
const int kSize2 = 25000;
|
|
const int kSize3 = 25000;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize2);
|
|
scoped_refptr<net::IOBuffer> buffer3 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize3);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
CacheTestFillBuffer(buffer2->data(), kSize2, false);
|
|
CacheTestFillBuffer(buffer3->data(), kSize3, false);
|
|
base::strlcpy(buffer1->data(), "the data", kSize1);
|
|
int ret = entry->WriteData(
|
|
0, 0, buffer1.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback1)), false);
|
|
EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
|
|
memset(buffer2->data(), 0, kSize1);
|
|
ret = entry->ReadData(
|
|
0, 0, buffer2.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback2)));
|
|
EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_STREQ("the data", buffer2->data());
|
|
|
|
base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
|
|
ret = entry->WriteData(
|
|
1, 10000, buffer2.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback3)), false);
|
|
EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
|
|
memset(buffer3->data(), 0, kSize3);
|
|
ret = entry->ReadData(
|
|
1, 10011, buffer3.get(), kSize3,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback4)));
|
|
EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_STREQ("big data goes here", buffer3->data());
|
|
ret = entry->ReadData(
|
|
1, 0, buffer2.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback5)));
|
|
EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
memset(buffer3->data(), 0, kSize3);
|
|
EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 10000));
|
|
ret = entry->ReadData(
|
|
1, 30000, buffer2.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback6)));
|
|
EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
ret = entry->ReadData(
|
|
1, 35000, buffer2.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback7)));
|
|
EXPECT_TRUE(0 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
ret = entry->ReadData(
|
|
1, 0, buffer1.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback8)));
|
|
EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
ret = entry->WriteData(
|
|
1, 20000, buffer3.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback9)), false);
|
|
EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_EQ(37000, entry->GetDataSize(1));
|
|
|
|
EXPECT_FALSE(helper.callback_reused_error());
|
|
|
|
entry->Doom();
|
|
entry->Close();
|
|
FlushQueueForTest();
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ExternalAsyncIO) {
|
|
InitCache();
|
|
ExternalAsyncIO();
|
|
}
|
|
|
|
// TODO(http://crbug.com/497101): This test is flaky.
|
|
#if BUILDFLAG(IS_IOS)
|
|
#define MAYBE_ExternalAsyncIONoBuffer DISABLED_ExternalAsyncIONoBuffer
|
|
#else
|
|
#define MAYBE_ExternalAsyncIONoBuffer ExternalAsyncIONoBuffer
|
|
#endif
|
|
TEST_F(DiskCacheEntryTest, MAYBE_ExternalAsyncIONoBuffer) {
|
|
InitCache();
|
|
cache_impl_->SetFlags(disk_cache::kNoBuffering);
|
|
ExternalAsyncIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
ExternalAsyncIO();
|
|
}
|
|
|
|
// Tests that IOBuffers are not referenced after IO completes.
|
|
void DiskCacheEntryTest::ReleaseBuffer(int stream_index) {
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
|
|
ASSERT_TRUE(nullptr != entry);
|
|
|
|
const int kBufferSize = 1024;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kBufferSize);
|
|
CacheTestFillBuffer(buffer->data(), kBufferSize, false);
|
|
|
|
net::ReleaseBufferCompletionCallback cb(buffer.get());
|
|
int rv = entry->WriteData(
|
|
stream_index, 0, buffer.get(), kBufferSize, cb.callback(), false);
|
|
EXPECT_EQ(kBufferSize, cb.GetResult(rv));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ReleaseBuffer) {
|
|
InitCache();
|
|
cache_impl_->SetFlags(disk_cache::kNoBuffering);
|
|
ReleaseBuffer(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyReleaseBuffer) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
ReleaseBuffer(0);
|
|
}
|
|
|
|
void DiskCacheEntryTest::StreamAccess() {
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
|
|
ASSERT_TRUE(nullptr != entry);
|
|
|
|
const int kBufferSize = 1024;
|
|
const int kNumStreams = 3;
|
|
scoped_refptr<net::IOBuffer> reference_buffers[kNumStreams];
|
|
for (auto& reference_buffer : reference_buffers) {
|
|
reference_buffer = base::MakeRefCounted<net::IOBuffer>(kBufferSize);
|
|
CacheTestFillBuffer(reference_buffer->data(), kBufferSize, false);
|
|
}
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kBufferSize);
|
|
for (int i = 0; i < kNumStreams; i++) {
|
|
EXPECT_EQ(
|
|
kBufferSize,
|
|
WriteData(entry, i, 0, reference_buffers[i].get(), kBufferSize, false));
|
|
memset(buffer1->data(), 0, kBufferSize);
|
|
EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer1.get(), kBufferSize));
|
|
EXPECT_EQ(
|
|
0, memcmp(reference_buffers[i]->data(), buffer1->data(), kBufferSize));
|
|
}
|
|
EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
|
|
ReadData(entry, kNumStreams, 0, buffer1.get(), kBufferSize));
|
|
entry->Close();
|
|
|
|
// Open the entry and read it in chunks, including a read past the end.
|
|
ASSERT_THAT(OpenEntry("the first key", &entry), IsOk());
|
|
ASSERT_TRUE(nullptr != entry);
|
|
const int kReadBufferSize = 600;
|
|
const int kFinalReadSize = kBufferSize - kReadBufferSize;
|
|
static_assert(kFinalReadSize < kReadBufferSize,
|
|
"should be exactly two reads");
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kReadBufferSize);
|
|
for (int i = 0; i < kNumStreams; i++) {
|
|
memset(buffer2->data(), 0, kReadBufferSize);
|
|
EXPECT_EQ(kReadBufferSize,
|
|
ReadData(entry, i, 0, buffer2.get(), kReadBufferSize));
|
|
EXPECT_EQ(
|
|
0,
|
|
memcmp(reference_buffers[i]->data(), buffer2->data(), kReadBufferSize));
|
|
|
|
memset(buffer2->data(), 0, kReadBufferSize);
|
|
EXPECT_EQ(
|
|
kFinalReadSize,
|
|
ReadData(entry, i, kReadBufferSize, buffer2.get(), kReadBufferSize));
|
|
EXPECT_EQ(0,
|
|
memcmp(reference_buffers[i]->data() + kReadBufferSize,
|
|
buffer2->data(),
|
|
kFinalReadSize));
|
|
}
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, StreamAccess) {
|
|
InitCache();
|
|
StreamAccess();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
StreamAccess();
|
|
}
|
|
|
|
void DiskCacheEntryTest::GetKey() {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(key, entry->GetKey()) << "short key";
|
|
entry->Close();
|
|
|
|
int seed = static_cast<int>(Time::Now().ToInternalValue());
|
|
srand(seed);
|
|
char key_buffer[20000];
|
|
|
|
CacheTestFillBuffer(key_buffer, 3000, true);
|
|
key_buffer[1000] = '\0';
|
|
|
|
key = key_buffer;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key";
|
|
entry->Close();
|
|
|
|
key_buffer[1000] = 'p';
|
|
key_buffer[3000] = '\0';
|
|
key = key_buffer;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_TRUE(key == entry->GetKey()) << "medium size key";
|
|
entry->Close();
|
|
|
|
CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true);
|
|
key_buffer[19999] = '\0';
|
|
|
|
key = key_buffer;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_TRUE(key == entry->GetKey()) << "long key";
|
|
entry->Close();
|
|
|
|
CacheTestFillBuffer(key_buffer, 0x4000, true);
|
|
key_buffer[0x4000] = '\0';
|
|
|
|
key = key_buffer;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_TRUE(key == entry->GetKey()) << "16KB key";
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, GetKey) {
|
|
InitCache();
|
|
GetKey();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
GetKey();
|
|
}
|
|
|
|
void DiskCacheEntryTest::GetTimes(int stream_index) {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
|
|
Time t1 = Time::Now();
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_TRUE(entry->GetLastModified() >= t1);
|
|
EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
|
|
|
|
AddDelay();
|
|
Time t2 = Time::Now();
|
|
EXPECT_TRUE(t2 > t1);
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 200, nullptr, 0, false));
|
|
if (type_ == net::APP_CACHE) {
|
|
EXPECT_TRUE(entry->GetLastModified() < t2);
|
|
} else {
|
|
EXPECT_TRUE(entry->GetLastModified() >= t2);
|
|
}
|
|
EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
|
|
|
|
AddDelay();
|
|
Time t3 = Time::Now();
|
|
EXPECT_TRUE(t3 > t2);
|
|
const int kSize = 200;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
EXPECT_EQ(kSize, ReadData(entry, stream_index, 0, buffer.get(), kSize));
|
|
if (type_ == net::APP_CACHE) {
|
|
EXPECT_TRUE(entry->GetLastUsed() < t2);
|
|
EXPECT_TRUE(entry->GetLastModified() < t2);
|
|
} else if (type_ == net::SHADER_CACHE) {
|
|
EXPECT_TRUE(entry->GetLastUsed() < t3);
|
|
EXPECT_TRUE(entry->GetLastModified() < t3);
|
|
} else {
|
|
EXPECT_TRUE(entry->GetLastUsed() >= t3);
|
|
EXPECT_TRUE(entry->GetLastModified() < t3);
|
|
}
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, GetTimes) {
|
|
InitCache();
|
|
GetTimes(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
GetTimes(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, AppCacheGetTimes) {
|
|
SetCacheType(net::APP_CACHE);
|
|
InitCache();
|
|
GetTimes(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ShaderCacheGetTimes) {
|
|
SetCacheType(net::SHADER_CACHE);
|
|
InitCache();
|
|
GetTimes(0);
|
|
}
|
|
|
|
void DiskCacheEntryTest::GrowData(int stream_index) {
|
|
std::string key1("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
|
|
|
|
const int kSize = 20000;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer1->data(), kSize, false);
|
|
memset(buffer2->data(), 0, kSize);
|
|
|
|
base::strlcpy(buffer1->data(), "the data", kSize);
|
|
EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
|
|
EXPECT_EQ(10, ReadData(entry, stream_index, 0, buffer2.get(), 10));
|
|
EXPECT_STREQ("the data", buffer2->data());
|
|
EXPECT_EQ(10, entry->GetDataSize(stream_index));
|
|
|
|
EXPECT_EQ(2000,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
|
|
EXPECT_EQ(2000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
|
|
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
|
|
|
|
EXPECT_EQ(20000,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
|
|
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
|
|
entry->Close();
|
|
|
|
memset(buffer2->data(), 0, kSize);
|
|
std::string key2("Second key");
|
|
ASSERT_THAT(CreateEntry(key2, &entry), IsOk());
|
|
EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
|
|
EXPECT_EQ(10, entry->GetDataSize(stream_index));
|
|
entry->Close();
|
|
|
|
// Go from an internal address to a bigger block size.
|
|
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
|
|
EXPECT_EQ(2000,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
|
|
EXPECT_EQ(2000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
|
|
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
|
|
entry->Close();
|
|
memset(buffer2->data(), 0, kSize);
|
|
|
|
// Go from an internal address to an external one.
|
|
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
|
|
EXPECT_EQ(20000,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
|
|
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
|
|
entry->Close();
|
|
|
|
// Double check the size from disk.
|
|
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
|
|
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
|
|
|
|
// Now extend the entry without actual data.
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 45500, buffer1.get(), 0, false));
|
|
entry->Close();
|
|
|
|
// And check again from disk.
|
|
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
|
|
EXPECT_EQ(45500, entry->GetDataSize(stream_index));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, GrowData) {
|
|
InitCache();
|
|
GrowData(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) {
|
|
InitCache();
|
|
cache_impl_->SetFlags(disk_cache::kNoBuffering);
|
|
GrowData(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
GrowData(0);
|
|
}
|
|
|
|
void DiskCacheEntryTest::TruncateData(int stream_index) {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize1 = 20000;
|
|
const int kSize2 = 20000;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize2);
|
|
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
memset(buffer2->data(), 0, kSize2);
|
|
|
|
// Simple truncation:
|
|
EXPECT_EQ(200, WriteData(entry, stream_index, 0, buffer1.get(), 200, false));
|
|
EXPECT_EQ(200, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, false));
|
|
EXPECT_EQ(200, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, true));
|
|
EXPECT_EQ(100, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 50, buffer1.get(), 0, true));
|
|
EXPECT_EQ(50, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
|
|
EXPECT_EQ(0, entry->GetDataSize(stream_index));
|
|
entry->Close();
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
// Go to an external file.
|
|
EXPECT_EQ(20000,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
|
|
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), 20000));
|
|
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000));
|
|
memset(buffer2->data(), 0, kSize2);
|
|
|
|
// External file truncation
|
|
EXPECT_EQ(18000,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), 18000, false));
|
|
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(18000,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), 18000, true));
|
|
EXPECT_EQ(18000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 17500, buffer1.get(), 0, true));
|
|
EXPECT_EQ(17500, entry->GetDataSize(stream_index));
|
|
|
|
// And back to an internal block.
|
|
EXPECT_EQ(600,
|
|
WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
|
|
EXPECT_EQ(1600, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer2.get(), 600));
|
|
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600));
|
|
EXPECT_EQ(1000, ReadData(entry, stream_index, 0, buffer2.get(), 1000));
|
|
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000))
|
|
<< "Preserves previous data";
|
|
|
|
// Go from external file to zero length.
|
|
EXPECT_EQ(20000,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
|
|
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
|
|
EXPECT_EQ(0, entry->GetDataSize(stream_index));
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, TruncateData) {
|
|
InitCache();
|
|
TruncateData(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) {
|
|
InitCache();
|
|
cache_impl_->SetFlags(disk_cache::kNoBuffering);
|
|
TruncateData(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
TruncateData(0);
|
|
}
|
|
|
|
void DiskCacheEntryTest::ZeroLengthIO(int stream_index) {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
EXPECT_EQ(0, ReadData(entry, stream_index, 0, nullptr, 0));
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 0, nullptr, 0, false));
|
|
|
|
// This write should extend the entry.
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 1000, nullptr, 0, false));
|
|
EXPECT_EQ(0, ReadData(entry, stream_index, 500, nullptr, 0));
|
|
EXPECT_EQ(0, ReadData(entry, stream_index, 2000, nullptr, 0));
|
|
EXPECT_EQ(1000, entry->GetDataSize(stream_index));
|
|
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 100000, nullptr, 0, true));
|
|
EXPECT_EQ(0, ReadData(entry, stream_index, 50000, nullptr, 0));
|
|
EXPECT_EQ(100000, entry->GetDataSize(stream_index));
|
|
|
|
// Let's verify the actual content.
|
|
const int kSize = 20;
|
|
const char zeros[kSize] = {};
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
EXPECT_EQ(kSize, ReadData(entry, stream_index, 500, buffer.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
|
|
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
EXPECT_EQ(kSize, ReadData(entry, stream_index, 5000, buffer.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
|
|
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
EXPECT_EQ(kSize, ReadData(entry, stream_index, 50000, buffer.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ZeroLengthIO) {
|
|
InitCache();
|
|
ZeroLengthIO(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) {
|
|
InitCache();
|
|
cache_impl_->SetFlags(disk_cache::kNoBuffering);
|
|
ZeroLengthIO(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
ZeroLengthIO(0);
|
|
}
|
|
|
|
// Tests that we handle the content correctly when buffering, a feature of the
|
|
// standard cache that permits fast responses to certain reads.
|
|
void DiskCacheEntryTest::Buffering() {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 200;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer1->data(), kSize, true);
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
|
|
entry->Close();
|
|
|
|
// Write a little more and read what we wrote before.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1.get(), kSize, false));
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
|
|
|
|
// Now go to an external file.
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1.get(), kSize, false));
|
|
entry->Close();
|
|
|
|
// Write something else and verify old data.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1.get(), kSize, false));
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
|
|
|
|
// Extend the file some more.
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1.get(), kSize, false));
|
|
entry->Close();
|
|
|
|
// And now make sure that we can deal with data in both places (ram/disk).
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1.get(), kSize, false));
|
|
|
|
// We should not overwrite the data at 18000 with this.
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1.get(), kSize, false));
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
|
|
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1.get(), kSize, false));
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
|
|
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
|
|
|
|
// Extend the file again and read before without closing the entry.
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, false));
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1.get(), kSize, false));
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, Buffering) {
|
|
InitCache();
|
|
Buffering();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, BufferingNoBuffer) {
|
|
InitCache();
|
|
cache_impl_->SetFlags(disk_cache::kNoBuffering);
|
|
Buffering();
|
|
}
|
|
|
|
// Checks that entries are zero length when created.
|
|
void DiskCacheEntryTest::SizeAtCreate() {
|
|
const char key[] = "the first key";
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kNumStreams = 3;
|
|
for (int i = 0; i < kNumStreams; ++i)
|
|
EXPECT_EQ(0, entry->GetDataSize(i));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SizeAtCreate) {
|
|
InitCache();
|
|
SizeAtCreate();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlySizeAtCreate) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
SizeAtCreate();
|
|
}
|
|
|
|
// Some extra tests to make sure that buffering works properly when changing
|
|
// the entry size.
|
|
void DiskCacheEntryTest::SizeChanges(int stream_index) {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 200;
|
|
const char zeros[kSize] = {};
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer1->data(), kSize, true);
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
|
|
EXPECT_EQ(kSize,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), kSize, true));
|
|
EXPECT_EQ(kSize,
|
|
WriteData(entry, stream_index, 17000, buffer1.get(), kSize, true));
|
|
EXPECT_EQ(kSize,
|
|
WriteData(entry, stream_index, 23000, buffer1.get(), kSize, true));
|
|
entry->Close();
|
|
|
|
// Extend the file and read between the old size and the new write.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(23000 + kSize, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(kSize,
|
|
WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
|
|
EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(kSize, ReadData(entry, stream_index, 24000, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize));
|
|
|
|
// Read at the end of the old file size.
|
|
EXPECT_EQ(
|
|
kSize,
|
|
ReadData(entry, stream_index, 23000 + kSize - 35, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35));
|
|
|
|
// Read slightly before the last write.
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(kSize, ReadData(entry, stream_index, 24900, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
|
|
EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
|
|
|
|
// Extend the entry a little more.
|
|
EXPECT_EQ(kSize,
|
|
WriteData(entry, stream_index, 26000, buffer1.get(), kSize, true));
|
|
EXPECT_EQ(26000 + kSize, entry->GetDataSize(stream_index));
|
|
CacheTestFillBuffer(buffer2->data(), kSize, true);
|
|
EXPECT_EQ(kSize, ReadData(entry, stream_index, 25900, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
|
|
EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
|
|
|
|
// And now reduce the size.
|
|
EXPECT_EQ(kSize,
|
|
WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
|
|
EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(
|
|
28,
|
|
ReadData(entry, stream_index, 25000 + kSize - 28, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28));
|
|
|
|
// Reduce the size with a buffer that is not extending the size.
|
|
EXPECT_EQ(kSize,
|
|
WriteData(entry, stream_index, 24000, buffer1.get(), kSize, false));
|
|
EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(kSize,
|
|
WriteData(entry, stream_index, 24500, buffer1.get(), kSize, true));
|
|
EXPECT_EQ(24500 + kSize, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(kSize, ReadData(entry, stream_index, 23900, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
|
|
EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
|
|
|
|
// And now reduce the size below the old size.
|
|
EXPECT_EQ(kSize,
|
|
WriteData(entry, stream_index, 19000, buffer1.get(), kSize, true));
|
|
EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(kSize, ReadData(entry, stream_index, 18900, buffer2.get(), kSize));
|
|
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
|
|
EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
|
|
|
|
// Verify that the actual file is truncated.
|
|
entry->Close();
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
|
|
|
|
// Extend the newly opened file with a zero length write, expect zero fill.
|
|
EXPECT_EQ(
|
|
0,
|
|
WriteData(entry, stream_index, 20000 + kSize, buffer1.get(), 0, false));
|
|
EXPECT_EQ(kSize,
|
|
ReadData(entry, stream_index, 19000 + kSize, buffer1.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer1->data(), zeros, kSize));
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SizeChanges) {
|
|
InitCache();
|
|
SizeChanges(1);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) {
|
|
InitCache();
|
|
cache_impl_->SetFlags(disk_cache::kNoBuffering);
|
|
SizeChanges(1);
|
|
}
|
|
|
|
// Write more than the total cache capacity but to a single entry. |size| is the
|
|
// amount of bytes to write each time.
|
|
void DiskCacheEntryTest::ReuseEntry(int size, int stream_index) {
|
|
std::string key1("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
|
|
|
|
entry->Close();
|
|
std::string key2("the second key");
|
|
ASSERT_THAT(CreateEntry(key2, &entry), IsOk());
|
|
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(size);
|
|
CacheTestFillBuffer(buffer->data(), size, false);
|
|
|
|
for (int i = 0; i < 15; i++) {
|
|
EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer.get(), 0, true));
|
|
EXPECT_EQ(size,
|
|
WriteData(entry, stream_index, 0, buffer.get(), size, false));
|
|
entry->Close();
|
|
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
|
|
}
|
|
|
|
entry->Close();
|
|
ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry";
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ReuseExternalEntry) {
|
|
SetMaxSize(200 * 1024);
|
|
InitCache();
|
|
ReuseEntry(20 * 1024, 0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) {
|
|
SetMemoryOnlyMode();
|
|
SetMaxSize(200 * 1024);
|
|
InitCache();
|
|
ReuseEntry(20 * 1024, 0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ReuseInternalEntry) {
|
|
SetMaxSize(100 * 1024);
|
|
InitCache();
|
|
ReuseEntry(10 * 1024, 0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) {
|
|
SetMemoryOnlyMode();
|
|
SetMaxSize(100 * 1024);
|
|
InitCache();
|
|
ReuseEntry(10 * 1024, 0);
|
|
}
|
|
|
|
// Reading somewhere that was not written should return zeros.
|
|
void DiskCacheEntryTest::InvalidData(int stream_index) {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize1 = 20000;
|
|
const int kSize2 = 20000;
|
|
const int kSize3 = 20000;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize2);
|
|
scoped_refptr<net::IOBuffer> buffer3 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize3);
|
|
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
memset(buffer2->data(), 0, kSize2);
|
|
|
|
// Simple data grow:
|
|
EXPECT_EQ(200,
|
|
WriteData(entry, stream_index, 400, buffer1.get(), 200, false));
|
|
EXPECT_EQ(600, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(100, ReadData(entry, stream_index, 300, buffer3.get(), 100));
|
|
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
|
|
entry->Close();
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
// The entry is now on disk. Load it and extend it.
|
|
EXPECT_EQ(200,
|
|
WriteData(entry, stream_index, 800, buffer1.get(), 200, false));
|
|
EXPECT_EQ(1000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(100, ReadData(entry, stream_index, 700, buffer3.get(), 100));
|
|
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
|
|
entry->Close();
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
// This time using truncate.
|
|
EXPECT_EQ(200,
|
|
WriteData(entry, stream_index, 1800, buffer1.get(), 200, true));
|
|
EXPECT_EQ(2000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(100, ReadData(entry, stream_index, 1500, buffer3.get(), 100));
|
|
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
|
|
|
|
// Go to an external file.
|
|
EXPECT_EQ(200,
|
|
WriteData(entry, stream_index, 19800, buffer1.get(), 200, false));
|
|
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(4000, ReadData(entry, stream_index, 14000, buffer3.get(), 4000));
|
|
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000));
|
|
|
|
// And back to an internal block.
|
|
EXPECT_EQ(600,
|
|
WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
|
|
EXPECT_EQ(1600, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer3.get(), 600));
|
|
EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600));
|
|
|
|
// Extend it again.
|
|
EXPECT_EQ(600,
|
|
WriteData(entry, stream_index, 2000, buffer1.get(), 600, false));
|
|
EXPECT_EQ(2600, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(200, ReadData(entry, stream_index, 1800, buffer3.get(), 200));
|
|
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
|
|
|
|
// And again (with truncation flag).
|
|
EXPECT_EQ(600,
|
|
WriteData(entry, stream_index, 3000, buffer1.get(), 600, true));
|
|
EXPECT_EQ(3600, entry->GetDataSize(stream_index));
|
|
EXPECT_EQ(200, ReadData(entry, stream_index, 2800, buffer3.get(), 200));
|
|
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, InvalidData) {
|
|
InitCache();
|
|
InvalidData(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) {
|
|
InitCache();
|
|
cache_impl_->SetFlags(disk_cache::kNoBuffering);
|
|
InvalidData(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
InvalidData(0);
|
|
}
|
|
|
|
// Tests that the cache preserves the buffer of an IO operation.
|
|
void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index) {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 200;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
net::TestCompletionCallback cb;
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry->WriteData(
|
|
stream_index, 0, buffer.get(), kSize, cb.callback(), false));
|
|
|
|
// Release our reference to the buffer.
|
|
buffer = nullptr;
|
|
EXPECT_EQ(kSize, cb.WaitForResult());
|
|
|
|
// And now test with a Read().
|
|
buffer = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
EXPECT_EQ(
|
|
net::ERR_IO_PENDING,
|
|
entry->ReadData(stream_index, 0, buffer.get(), kSize, cb.callback()));
|
|
buffer = nullptr;
|
|
EXPECT_EQ(kSize, cb.WaitForResult());
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) {
|
|
InitCache();
|
|
ReadWriteDestroyBuffer(0);
|
|
}
|
|
|
|
void DiskCacheEntryTest::DoomNormalEntry() {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
entry->Doom();
|
|
entry->Close();
|
|
|
|
const int kSize = 20000;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, true);
|
|
buffer->data()[19999] = '\0';
|
|
|
|
key = buffer->data();
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer.get(), kSize, false));
|
|
EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer.get(), kSize, false));
|
|
entry->Doom();
|
|
entry->Close();
|
|
|
|
FlushQueueForTest();
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, DoomEntry) {
|
|
InitCache();
|
|
DoomNormalEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
DoomNormalEntry();
|
|
}
|
|
|
|
// Tests dooming an entry that's linked to an open entry.
|
|
void DiskCacheEntryTest::DoomEntryNextToOpenEntry() {
|
|
disk_cache::Entry* entry1;
|
|
disk_cache::Entry* entry2;
|
|
ASSERT_THAT(CreateEntry("fixed", &entry1), IsOk());
|
|
entry1->Close();
|
|
ASSERT_THAT(CreateEntry("foo", &entry1), IsOk());
|
|
entry1->Close();
|
|
ASSERT_THAT(CreateEntry("bar", &entry1), IsOk());
|
|
entry1->Close();
|
|
|
|
ASSERT_THAT(OpenEntry("foo", &entry1), IsOk());
|
|
ASSERT_THAT(OpenEntry("bar", &entry2), IsOk());
|
|
entry2->Doom();
|
|
entry2->Close();
|
|
|
|
ASSERT_THAT(OpenEntry("foo", &entry2), IsOk());
|
|
entry2->Doom();
|
|
entry2->Close();
|
|
entry1->Close();
|
|
|
|
ASSERT_THAT(OpenEntry("fixed", &entry1), IsOk());
|
|
entry1->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, DoomEntryNextToOpenEntry) {
|
|
InitCache();
|
|
DoomEntryNextToOpenEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, NewEvictionDoomEntryNextToOpenEntry) {
|
|
SetNewEviction();
|
|
InitCache();
|
|
DoomEntryNextToOpenEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, AppCacheDoomEntryNextToOpenEntry) {
|
|
SetCacheType(net::APP_CACHE);
|
|
InitCache();
|
|
DoomEntryNextToOpenEntry();
|
|
}
|
|
|
|
// Verify that basic operations work as expected with doomed entries.
|
|
void DiskCacheEntryTest::DoomedEntry(int stream_index) {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
entry->Doom();
|
|
|
|
FlushQueueForTest();
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
Time initial = Time::Now();
|
|
AddDelay();
|
|
|
|
const int kSize1 = 2000;
|
|
const int kSize2 = 2000;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize2);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
memset(buffer2->data(), 0, kSize2);
|
|
|
|
EXPECT_EQ(2000,
|
|
WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
|
|
EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
|
|
EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1));
|
|
EXPECT_EQ(key, entry->GetKey());
|
|
EXPECT_TRUE(initial < entry->GetLastModified());
|
|
EXPECT_TRUE(initial < entry->GetLastUsed());
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, DoomedEntry) {
|
|
InitCache();
|
|
DoomedEntry(0);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
DoomedEntry(0);
|
|
}
|
|
|
|
// Tests that we discard entries if the data is missing.
|
|
TEST_F(DiskCacheEntryTest, MissingData) {
|
|
InitCache();
|
|
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
// Write to an external file.
|
|
const int kSize = 20000;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
|
|
entry->Close();
|
|
FlushQueueForTest();
|
|
|
|
disk_cache::Addr address(0x80000001);
|
|
base::FilePath name = cache_impl_->GetFileName(address);
|
|
EXPECT_TRUE(base::DeleteFile(name));
|
|
|
|
// Attempt to read the data.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(net::ERR_FILE_NOT_FOUND,
|
|
ReadData(entry, 0, 0, buffer.get(), kSize));
|
|
entry->Close();
|
|
|
|
// The entry should be gone.
|
|
ASSERT_NE(net::OK, OpenEntry(key, &entry));
|
|
}
|
|
|
|
// Test that child entries in a memory cache backend are not visible from
|
|
// enumerations.
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
|
|
const int kSize = 4096;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
std::string key("the first key");
|
|
disk_cache::Entry* parent_entry;
|
|
ASSERT_THAT(CreateEntry(key, &parent_entry), IsOk());
|
|
|
|
// Writes to the parent entry.
|
|
EXPECT_EQ(kSize, parent_entry->WriteSparseData(
|
|
0, buf.get(), kSize, net::CompletionOnceCallback()));
|
|
|
|
// This write creates a child entry and writes to it.
|
|
EXPECT_EQ(kSize, parent_entry->WriteSparseData(
|
|
8192, buf.get(), kSize, net::CompletionOnceCallback()));
|
|
|
|
parent_entry->Close();
|
|
|
|
// Perform the enumerations.
|
|
std::unique_ptr<TestIterator> iter = CreateIterator();
|
|
disk_cache::Entry* entry = nullptr;
|
|
int count = 0;
|
|
while (iter->OpenNextEntry(&entry) == net::OK) {
|
|
ASSERT_TRUE(entry != nullptr);
|
|
++count;
|
|
disk_cache::MemEntryImpl* mem_entry =
|
|
reinterpret_cast<disk_cache::MemEntryImpl*>(entry);
|
|
EXPECT_EQ(disk_cache::MemEntryImpl::EntryType::kParent, mem_entry->type());
|
|
mem_entry->Close();
|
|
}
|
|
EXPECT_EQ(1, count);
|
|
}
|
|
|
|
// Writes |buf_1| to offset and reads it back as |buf_2|.
|
|
void VerifySparseIO(disk_cache::Entry* entry,
|
|
int64_t offset,
|
|
net::IOBuffer* buf_1,
|
|
int size,
|
|
net::IOBuffer* buf_2) {
|
|
net::TestCompletionCallback cb;
|
|
|
|
memset(buf_2->data(), 0, size);
|
|
int ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
|
|
EXPECT_EQ(0, cb.GetResult(ret));
|
|
|
|
ret = entry->WriteSparseData(offset, buf_1, size, cb.callback());
|
|
EXPECT_EQ(size, cb.GetResult(ret));
|
|
|
|
ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
|
|
EXPECT_EQ(size, cb.GetResult(ret));
|
|
|
|
EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size));
|
|
}
|
|
|
|
// Reads |size| bytes from |entry| at |offset| and verifies that they are the
|
|
// same as the content of the provided |buffer|.
|
|
void VerifyContentSparseIO(disk_cache::Entry* entry,
|
|
int64_t offset,
|
|
char* buffer,
|
|
int size) {
|
|
net::TestCompletionCallback cb;
|
|
|
|
scoped_refptr<net::IOBuffer> buf_1 =
|
|
base::MakeRefCounted<net::IOBuffer>(size);
|
|
memset(buf_1->data(), 0, size);
|
|
int ret = entry->ReadSparseData(offset, buf_1.get(), size, cb.callback());
|
|
EXPECT_EQ(size, cb.GetResult(ret));
|
|
EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size));
|
|
}
|
|
|
|
void DiskCacheEntryTest::BasicSparseIO() {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 2048;
|
|
scoped_refptr<net::IOBuffer> buf_1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buf_2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf_1->data(), kSize, false);
|
|
|
|
// Write at offset 0.
|
|
VerifySparseIO(entry, 0, buf_1.get(), kSize, buf_2.get());
|
|
|
|
// Write at offset 0x400000 (4 MB).
|
|
VerifySparseIO(entry, 0x400000, buf_1.get(), kSize, buf_2.get());
|
|
|
|
// Write at offset 0x800000000 (32 GB).
|
|
VerifySparseIO(entry, 0x800000000LL, buf_1.get(), kSize, buf_2.get());
|
|
|
|
entry->Close();
|
|
|
|
// Check everything again.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
|
|
VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize);
|
|
VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize);
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, BasicSparseIO) {
|
|
InitCache();
|
|
BasicSparseIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
BasicSparseIO();
|
|
}
|
|
|
|
void DiskCacheEntryTest::HugeSparseIO() {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
// Write 1.2 MB so that we cover multiple entries.
|
|
const int kSize = 1200 * 1024;
|
|
scoped_refptr<net::IOBuffer> buf_1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buf_2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf_1->data(), kSize, false);
|
|
|
|
// Write at offset 0x20F0000 (33 MB - 64 KB).
|
|
VerifySparseIO(entry, 0x20F0000, buf_1.get(), kSize, buf_2.get());
|
|
entry->Close();
|
|
|
|
// Check it again.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize);
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, HugeSparseIO) {
|
|
InitCache();
|
|
HugeSparseIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
HugeSparseIO();
|
|
}
|
|
|
|
void DiskCacheEntryTest::GetAvailableRangeTest() {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 16 * 1024;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
// Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf.get(), kSize));
|
|
|
|
// We stop at the first empty block.
|
|
TestRangeResultCompletionCallback cb;
|
|
RangeResult result = cb.GetResult(
|
|
entry->GetAvailableRange(0x20F0000, kSize * 2, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(kSize, result.available_len);
|
|
EXPECT_EQ(0x20F0000, result.start);
|
|
|
|
result = cb.GetResult(entry->GetAvailableRange(0, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
|
|
result = cb.GetResult(
|
|
entry->GetAvailableRange(0x20F0000 - kSize, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
|
|
result = cb.GetResult(entry->GetAvailableRange(0, 0x2100000, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(kSize, result.available_len);
|
|
EXPECT_EQ(0x20F0000, result.start);
|
|
|
|
// We should be able to Read based on the results of GetAvailableRange.
|
|
net::TestCompletionCallback read_cb;
|
|
result =
|
|
cb.GetResult(entry->GetAvailableRange(0x2100000, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
int rv =
|
|
entry->ReadSparseData(result.start, buf.get(), kSize, read_cb.callback());
|
|
EXPECT_EQ(0, read_cb.GetResult(rv));
|
|
|
|
result =
|
|
cb.GetResult(entry->GetAvailableRange(0x20F2000, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0x2000, result.available_len);
|
|
EXPECT_EQ(0x20F2000, result.start);
|
|
EXPECT_EQ(0x2000, ReadSparseData(entry, result.start, buf.get(), kSize));
|
|
|
|
// Make sure that we respect the |len| argument.
|
|
result = cb.GetResult(
|
|
entry->GetAvailableRange(0x20F0001 - kSize, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(1, result.available_len);
|
|
EXPECT_EQ(0x20F0000, result.start);
|
|
|
|
// Use very small ranges. Write at offset 50.
|
|
const int kTinyLen = 10;
|
|
EXPECT_EQ(kTinyLen, WriteSparseData(entry, 50, buf.get(), kTinyLen));
|
|
|
|
result = cb.GetResult(
|
|
entry->GetAvailableRange(kTinyLen * 2, kTinyLen, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
EXPECT_EQ(kTinyLen * 2, result.start);
|
|
|
|
// Get a huge range with maximum boundary
|
|
result = cb.GetResult(entry->GetAvailableRange(
|
|
0x2100000, std::numeric_limits<int32_t>::max(), cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, GetAvailableRange) {
|
|
InitCache();
|
|
GetAvailableRangeTest();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
GetAvailableRangeTest();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, GetAvailableRangeBlockFileDiscontinuous) {
|
|
// crbug.com/791056 --- blockfile problem when there is a sub-KiB write before
|
|
// a bunch of full 1KiB blocks, and a GetAvailableRange is issued to which
|
|
// both are a potentially relevant.
|
|
InitCache();
|
|
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
scoped_refptr<net::IOBuffer> buf_2k =
|
|
base::MakeRefCounted<net::IOBuffer>(2 * 1024);
|
|
CacheTestFillBuffer(buf_2k->data(), 2 * 1024, false);
|
|
|
|
const int kSmallSize = 612; // sub-1k
|
|
scoped_refptr<net::IOBuffer> buf_small =
|
|
base::MakeRefCounted<net::IOBuffer>(kSmallSize);
|
|
CacheTestFillBuffer(buf_small->data(), kSmallSize, false);
|
|
|
|
// Sets some bits for blocks representing 1K ranges [1024, 3072),
|
|
// which will be relevant for the next GetAvailableRange call.
|
|
EXPECT_EQ(2 * 1024, WriteSparseData(entry, /* offset = */ 1024, buf_2k.get(),
|
|
/* size = */ 2 * 1024));
|
|
|
|
// Now record a partial write from start of the first kb.
|
|
EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0,
|
|
buf_small.get(), kSmallSize));
|
|
|
|
// Try to query a range starting from that block 0.
|
|
// The cache tracks: [0, 612) [1024, 3072).
|
|
// The request is for: [812, 2059) so response should be [1024, 2059), which
|
|
// has length = 1035. Previously this return a negative number for rv.
|
|
TestRangeResultCompletionCallback cb;
|
|
RangeResult result =
|
|
cb.GetResult(entry->GetAvailableRange(812, 1247, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(1035, result.available_len);
|
|
EXPECT_EQ(1024, result.start);
|
|
|
|
// Now query [512, 1536). This matches both [512, 612) and [1024, 1536),
|
|
// so this should return [512, 612).
|
|
result = cb.GetResult(entry->GetAvailableRange(512, 1024, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(100, result.available_len);
|
|
EXPECT_EQ(512, result.start);
|
|
|
|
// Now query next portion, [612, 1636). This now just should produce
|
|
// [1024, 1636)
|
|
result = cb.GetResult(entry->GetAvailableRange(612, 1024, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(612, result.available_len);
|
|
EXPECT_EQ(1024, result.start);
|
|
|
|
// Do a continuous small write, this one at [3072, 3684).
|
|
// This means the cache tracks [1024, 3072) via bitmaps and [3072, 3684)
|
|
// as the last write.
|
|
EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 3072,
|
|
buf_small.get(), kSmallSize));
|
|
|
|
// Query [2048, 4096). Should get [2048, 3684)
|
|
result = cb.GetResult(entry->GetAvailableRange(2048, 2048, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(1636, result.available_len);
|
|
EXPECT_EQ(2048, result.start);
|
|
|
|
// Now write at [4096, 4708). Since only one sub-kb thing is tracked, this
|
|
// now tracks [1024, 3072) via bitmaps and [4096, 4708) as the last write.
|
|
EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 4096,
|
|
buf_small.get(), kSmallSize));
|
|
|
|
// Query [2048, 4096). Should get [2048, 3072)
|
|
result = cb.GetResult(entry->GetAvailableRange(2048, 2048, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(1024, result.available_len);
|
|
EXPECT_EQ(2048, result.start);
|
|
|
|
// Query 2K more after that: [3072, 5120). Should get [4096, 4708)
|
|
result = cb.GetResult(entry->GetAvailableRange(3072, 2048, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(612, result.available_len);
|
|
EXPECT_EQ(4096, result.start);
|
|
|
|
// Also double-check that offsets within later children are correctly
|
|
// computed.
|
|
EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0x200400,
|
|
buf_small.get(), kSmallSize));
|
|
result =
|
|
cb.GetResult(entry->GetAvailableRange(0x100000, 0x200000, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(kSmallSize, result.available_len);
|
|
EXPECT_EQ(0x200400, result.start);
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
// Tests that non-sequential writes that are not aligned with the minimum sparse
|
|
// data granularity (1024 bytes) do in fact result in dropped data.
|
|
TEST_F(DiskCacheEntryTest, SparseWriteDropped) {
|
|
InitCache();
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 180;
|
|
scoped_refptr<net::IOBuffer> buf_1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buf_2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf_1->data(), kSize, false);
|
|
|
|
// Do small writes (180 bytes) that get increasingly close to a 1024-byte
|
|
// boundary. All data should be dropped until a boundary is crossed, at which
|
|
// point the data after the boundary is saved (at least for a while).
|
|
int offset = 1024 - 500;
|
|
int rv = 0;
|
|
net::TestCompletionCallback cb;
|
|
TestRangeResultCompletionCallback range_cb;
|
|
RangeResult result;
|
|
for (int i = 0; i < 5; i++) {
|
|
// Check result of last GetAvailableRange.
|
|
EXPECT_EQ(0, result.available_len);
|
|
|
|
rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback());
|
|
EXPECT_EQ(kSize, cb.GetResult(rv));
|
|
|
|
result = range_cb.GetResult(
|
|
entry->GetAvailableRange(offset - 100, kSize, range_cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
|
|
result = range_cb.GetResult(
|
|
entry->GetAvailableRange(offset, kSize, range_cb.callback()));
|
|
if (!result.available_len) {
|
|
rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
|
|
EXPECT_EQ(0, cb.GetResult(rv));
|
|
}
|
|
offset += 1024 * i + 100;
|
|
}
|
|
|
|
// The last write started 100 bytes below a bundary, so there should be 80
|
|
// bytes after the boundary.
|
|
EXPECT_EQ(80, result.available_len);
|
|
EXPECT_EQ(1024 * 7, result.start);
|
|
rv = entry->ReadSparseData(result.start, buf_2.get(), kSize, cb.callback());
|
|
EXPECT_EQ(80, cb.GetResult(rv));
|
|
EXPECT_EQ(0, memcmp(buf_1.get()->data() + 100, buf_2.get()->data(), 80));
|
|
|
|
// And even that part is dropped when another write changes the offset.
|
|
offset = result.start;
|
|
rv = entry->WriteSparseData(0, buf_1.get(), kSize, cb.callback());
|
|
EXPECT_EQ(kSize, cb.GetResult(rv));
|
|
|
|
result = range_cb.GetResult(
|
|
entry->GetAvailableRange(offset, kSize, range_cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
entry->Close();
|
|
}
|
|
|
|
// Tests that small sequential writes are not dropped.
|
|
TEST_F(DiskCacheEntryTest, SparseSquentialWriteNotDropped) {
|
|
InitCache();
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 180;
|
|
scoped_refptr<net::IOBuffer> buf_1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buf_2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf_1->data(), kSize, false);
|
|
|
|
// Any starting offset is fine as long as it is 1024-bytes aligned.
|
|
int rv = 0;
|
|
RangeResult result;
|
|
net::TestCompletionCallback cb;
|
|
TestRangeResultCompletionCallback range_cb;
|
|
int64_t offset = 1024 * 11;
|
|
for (; offset < 20000; offset += kSize) {
|
|
rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback());
|
|
EXPECT_EQ(kSize, cb.GetResult(rv));
|
|
|
|
result = range_cb.GetResult(
|
|
entry->GetAvailableRange(offset, kSize, range_cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(kSize, result.available_len);
|
|
EXPECT_EQ(offset, result.start);
|
|
|
|
rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
|
|
EXPECT_EQ(kSize, cb.GetResult(rv));
|
|
EXPECT_EQ(0, memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize));
|
|
}
|
|
|
|
entry->Close();
|
|
FlushQueueForTest();
|
|
|
|
// Verify again the last write made.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
offset -= kSize;
|
|
result = range_cb.GetResult(
|
|
entry->GetAvailableRange(offset, kSize, range_cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(kSize, result.available_len);
|
|
EXPECT_EQ(offset, result.start);
|
|
|
|
rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
|
|
EXPECT_EQ(kSize, cb.GetResult(rv));
|
|
EXPECT_EQ(0, memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize));
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
void DiskCacheEntryTest::CouldBeSparse() {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 16 * 1024;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
// Write at offset 0x20F0000 (33 MB - 64 KB).
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
|
|
|
|
EXPECT_TRUE(entry->CouldBeSparse());
|
|
entry->Close();
|
|
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_TRUE(entry->CouldBeSparse());
|
|
entry->Close();
|
|
|
|
// Now verify a regular entry.
|
|
key.assign("another key");
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_FALSE(entry->CouldBeSparse());
|
|
|
|
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf.get(), kSize, false));
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf.get(), kSize, false));
|
|
EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf.get(), kSize, false));
|
|
|
|
EXPECT_FALSE(entry->CouldBeSparse());
|
|
entry->Close();
|
|
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_FALSE(entry->CouldBeSparse());
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, CouldBeSparse) {
|
|
InitCache();
|
|
CouldBeSparse();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
CouldBeSparse();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
|
|
const int kSize = 8192;
|
|
scoped_refptr<net::IOBuffer> buf_1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buf_2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf_1->data(), kSize, false);
|
|
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
// This loop writes back to back starting from offset 0 and 9000.
|
|
for (int i = 0; i < kSize; i += 1024) {
|
|
scoped_refptr<net::WrappedIOBuffer> buf_3 =
|
|
base::MakeRefCounted<net::WrappedIOBuffer>(buf_1->data() + i);
|
|
VerifySparseIO(entry, i, buf_3.get(), 1024, buf_2.get());
|
|
VerifySparseIO(entry, 9000 + i, buf_3.get(), 1024, buf_2.get());
|
|
}
|
|
|
|
// Make sure we have data written.
|
|
VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
|
|
VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize);
|
|
|
|
// This tests a large write that spans 3 entries from a misaligned offset.
|
|
VerifySparseIO(entry, 20481, buf_1.get(), 8192, buf_2.get());
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
|
|
const int kSize = 8192;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
disk_cache::Entry* entry;
|
|
std::string key("the first key");
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
// Writes in the middle of an entry.
|
|
EXPECT_EQ(1024, entry->WriteSparseData(0, buf.get(), 1024,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(1024, entry->WriteSparseData(5120, buf.get(), 1024,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(1024, entry->WriteSparseData(10000, buf.get(), 1024,
|
|
net::CompletionOnceCallback()));
|
|
|
|
// Writes in the middle of an entry and spans 2 child entries.
|
|
EXPECT_EQ(8192, entry->WriteSparseData(50000, buf.get(), 8192,
|
|
net::CompletionOnceCallback()));
|
|
|
|
TestRangeResultCompletionCallback cb;
|
|
// Test that we stop at a discontinuous child at the second block.
|
|
RangeResult result =
|
|
cb.GetResult(entry->GetAvailableRange(0, 10000, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(1024, result.available_len);
|
|
EXPECT_EQ(0, result.start);
|
|
|
|
// Test that number of bytes is reported correctly when we start from the
|
|
// middle of a filled region.
|
|
result = cb.GetResult(entry->GetAvailableRange(512, 10000, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(512, result.available_len);
|
|
EXPECT_EQ(512, result.start);
|
|
|
|
// Test that we found bytes in the child of next block.
|
|
result = cb.GetResult(entry->GetAvailableRange(1024, 10000, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(1024, result.available_len);
|
|
EXPECT_EQ(5120, result.start);
|
|
|
|
// Test that the desired length is respected. It starts within a filled
|
|
// region.
|
|
result = cb.GetResult(entry->GetAvailableRange(5500, 512, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(512, result.available_len);
|
|
EXPECT_EQ(5500, result.start);
|
|
|
|
// Test that the desired length is respected. It starts before a filled
|
|
// region.
|
|
result = cb.GetResult(entry->GetAvailableRange(5000, 620, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(500, result.available_len);
|
|
EXPECT_EQ(5120, result.start);
|
|
|
|
// Test that multiple blocks are scanned.
|
|
result = cb.GetResult(entry->GetAvailableRange(40000, 20000, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(8192, result.available_len);
|
|
EXPECT_EQ(50000, result.start);
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
void DiskCacheEntryTest::UpdateSparseEntry() {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry1;
|
|
ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
|
|
|
|
const int kSize = 2048;
|
|
scoped_refptr<net::IOBuffer> buf_1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buf_2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf_1->data(), kSize, false);
|
|
|
|
// Write at offset 0.
|
|
VerifySparseIO(entry1, 0, buf_1.get(), kSize, buf_2.get());
|
|
entry1->Close();
|
|
|
|
// Write at offset 2048.
|
|
ASSERT_THAT(OpenEntry(key, &entry1), IsOk());
|
|
VerifySparseIO(entry1, 2048, buf_1.get(), kSize, buf_2.get());
|
|
|
|
disk_cache::Entry* entry2;
|
|
ASSERT_THAT(CreateEntry("the second key", &entry2), IsOk());
|
|
|
|
entry1->Close();
|
|
entry2->Close();
|
|
FlushQueueForTest();
|
|
if (memory_only_ || simple_cache_mode_)
|
|
EXPECT_EQ(2, cache_->GetEntryCount());
|
|
else
|
|
EXPECT_EQ(3, cache_->GetEntryCount());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, UpdateSparseEntry) {
|
|
InitCache();
|
|
UpdateSparseEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
UpdateSparseEntry();
|
|
}
|
|
|
|
void DiskCacheEntryTest::DoomSparseEntry() {
|
|
std::string key1("the first key");
|
|
std::string key2("the second key");
|
|
disk_cache::Entry *entry1, *entry2;
|
|
ASSERT_THAT(CreateEntry(key1, &entry1), IsOk());
|
|
ASSERT_THAT(CreateEntry(key2, &entry2), IsOk());
|
|
|
|
const int kSize = 4 * 1024;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
int64_t offset = 1024;
|
|
// Write to a bunch of ranges.
|
|
for (int i = 0; i < 12; i++) {
|
|
EXPECT_EQ(kSize, WriteSparseData(entry1, offset, buf.get(), kSize));
|
|
// Keep the second map under the default size.
|
|
if (i < 9)
|
|
EXPECT_EQ(kSize, WriteSparseData(entry2, offset, buf.get(), kSize));
|
|
|
|
offset *= 4;
|
|
}
|
|
|
|
if (memory_only_ || simple_cache_mode_)
|
|
EXPECT_EQ(2, cache_->GetEntryCount());
|
|
else
|
|
EXPECT_EQ(15, cache_->GetEntryCount());
|
|
|
|
// Doom the first entry while it's still open.
|
|
entry1->Doom();
|
|
entry1->Close();
|
|
entry2->Close();
|
|
|
|
// Doom the second entry after it's fully saved.
|
|
EXPECT_THAT(DoomEntry(key2), IsOk());
|
|
|
|
// Make sure we do all needed work. This may fail for entry2 if between Close
|
|
// and DoomEntry the system decides to remove all traces of the file from the
|
|
// system cache so we don't see that there is pending IO.
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
if (memory_only_) {
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
} else {
|
|
if (5 == cache_->GetEntryCount()) {
|
|
// Most likely we are waiting for the result of reading the sparse info
|
|
// (it's always async on Posix so it is easy to miss). Unfortunately we
|
|
// don't have any signal to watch for so we can only wait.
|
|
base::PlatformThread::Sleep(base::Milliseconds(500));
|
|
base::RunLoop().RunUntilIdle();
|
|
}
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, DoomSparseEntry) {
|
|
UseCurrentThread();
|
|
InitCache();
|
|
DoomSparseEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
DoomSparseEntry();
|
|
}
|
|
|
|
// A TestCompletionCallback wrapper that deletes the cache from within the
|
|
// callback. The way TestCompletionCallback works means that all tasks (even
|
|
// new ones) are executed by the message loop before returning to the caller so
|
|
// the only way to simulate a race is to execute what we want on the callback.
|
|
class SparseTestCompletionCallback: public net::TestCompletionCallback {
|
|
public:
|
|
explicit SparseTestCompletionCallback(
|
|
std::unique_ptr<disk_cache::Backend> cache)
|
|
: cache_(std::move(cache)) {}
|
|
|
|
SparseTestCompletionCallback(const SparseTestCompletionCallback&) = delete;
|
|
SparseTestCompletionCallback& operator=(const SparseTestCompletionCallback&) =
|
|
delete;
|
|
|
|
private:
|
|
void SetResult(int result) override {
|
|
cache_.reset();
|
|
TestCompletionCallback::SetResult(result);
|
|
}
|
|
|
|
std::unique_ptr<disk_cache::Backend> cache_;
|
|
};
|
|
|
|
// Tests that we don't crash when the backend is deleted while we are working
|
|
// deleting the sub-entries of a sparse entry.
|
|
TEST_F(DiskCacheEntryTest, DoomSparseEntry2) {
|
|
UseCurrentThread();
|
|
InitCache();
|
|
std::string key("the key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 4 * 1024;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
int64_t offset = 1024;
|
|
// Write to a bunch of ranges.
|
|
for (int i = 0; i < 12; i++) {
|
|
EXPECT_EQ(kSize, entry->WriteSparseData(offset, buf.get(), kSize,
|
|
net::CompletionOnceCallback()));
|
|
offset *= 4;
|
|
}
|
|
EXPECT_EQ(9, cache_->GetEntryCount());
|
|
|
|
entry->Close();
|
|
disk_cache::Backend* cache = cache_.get();
|
|
SparseTestCompletionCallback cb(TakeCache());
|
|
int rv = cache->DoomEntry(key, net::HIGHEST, cb.callback());
|
|
EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING));
|
|
EXPECT_THAT(cb.WaitForResult(), IsOk());
|
|
}
|
|
|
|
void DiskCacheEntryTest::PartialSparseEntry() {
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
// We should be able to deal with IO that is not aligned to the block size
|
|
// of a sparse entry, at least to write a big range without leaving holes.
|
|
const int kSize = 4 * 1024;
|
|
const int kSmallSize = 128;
|
|
scoped_refptr<net::IOBuffer> buf1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf1->data(), kSize, false);
|
|
|
|
// The first write is just to extend the entry. The third write occupies
|
|
// a 1KB block partially, it may not be written internally depending on the
|
|
// implementation.
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1.get(), kSize));
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1.get(), kSize));
|
|
EXPECT_EQ(kSmallSize,
|
|
WriteSparseData(entry, 1080321, buf1.get(), kSmallSize));
|
|
entry->Close();
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
scoped_refptr<net::IOBuffer> buf2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
memset(buf2->data(), 0, kSize);
|
|
EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2.get(), kSize));
|
|
|
|
EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
|
|
EXPECT_EQ(0, ReadSparseData(entry, 0, buf2.get(), kSize));
|
|
|
|
// This read should not change anything.
|
|
if (memory_only_ || simple_cache_mode_)
|
|
EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2.get(), kSize));
|
|
else
|
|
EXPECT_EQ(0, ReadSparseData(entry, 24000, buf2.get(), kSize));
|
|
|
|
EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
|
|
EXPECT_EQ(0, ReadSparseData(entry, 99, buf2.get(), kSize));
|
|
|
|
TestRangeResultCompletionCallback cb;
|
|
RangeResult result;
|
|
if (memory_only_ || simple_cache_mode_) {
|
|
result = cb.GetResult(entry->GetAvailableRange(0, 600, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(100, result.available_len);
|
|
EXPECT_EQ(500, result.start);
|
|
} else {
|
|
result = cb.GetResult(entry->GetAvailableRange(0, 2048, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(1024, result.available_len);
|
|
EXPECT_EQ(1024, result.start);
|
|
}
|
|
result = cb.GetResult(entry->GetAvailableRange(kSize, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(500, result.available_len);
|
|
EXPECT_EQ(kSize, result.start);
|
|
result =
|
|
cb.GetResult(entry->GetAvailableRange(20 * 1024, 10000, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
if (memory_only_ || simple_cache_mode_)
|
|
EXPECT_EQ(3616, result.available_len);
|
|
else
|
|
EXPECT_EQ(3072, result.available_len);
|
|
|
|
EXPECT_EQ(20 * 1024, result.start);
|
|
|
|
// 1. Query before a filled 1KB block.
|
|
// 2. Query within a filled 1KB block.
|
|
// 3. Query beyond a filled 1KB block.
|
|
if (memory_only_ || simple_cache_mode_) {
|
|
result =
|
|
cb.GetResult(entry->GetAvailableRange(19400, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(3496, result.available_len);
|
|
EXPECT_EQ(20000, result.start);
|
|
} else {
|
|
result =
|
|
cb.GetResult(entry->GetAvailableRange(19400, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(3016, result.available_len);
|
|
EXPECT_EQ(20480, result.start);
|
|
}
|
|
result = cb.GetResult(entry->GetAvailableRange(3073, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(1523, result.available_len);
|
|
EXPECT_EQ(3073, result.start);
|
|
result = cb.GetResult(entry->GetAvailableRange(4600, kSize, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
EXPECT_EQ(4600, result.start);
|
|
|
|
// Now make another write and verify that there is no hole in between.
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1.get(), kSize));
|
|
result = cb.GetResult(entry->GetAvailableRange(1024, 10000, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(7 * 1024 + 500, result.available_len);
|
|
EXPECT_EQ(1024, result.start);
|
|
EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
|
|
EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500));
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, PartialSparseEntry) {
|
|
InitCache();
|
|
PartialSparseEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
PartialSparseEntry();
|
|
}
|
|
|
|
void DiskCacheEntryTest::SparseInvalidArg() {
|
|
std::string key("key");
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 2048;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
|
|
WriteSparseData(entry, -1, buf.get(), kSize));
|
|
EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
|
|
WriteSparseData(entry, 0, buf.get(), -1));
|
|
|
|
EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
|
|
ReadSparseData(entry, -1, buf.get(), kSize));
|
|
EXPECT_EQ(net::ERR_INVALID_ARGUMENT, ReadSparseData(entry, 0, buf.get(), -1));
|
|
|
|
int64_t start_out;
|
|
EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
|
|
GetAvailableRange(entry, -1, kSize, &start_out));
|
|
EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
|
|
GetAvailableRange(entry, 0, -1, &start_out));
|
|
|
|
int rv = WriteSparseData(
|
|
entry, std::numeric_limits<int64_t>::max() - kSize + 1, buf.get(), kSize);
|
|
// Blockfile rejects anything over 64GiB with
|
|
// net::ERR_CACHE_OPERATION_NOT_SUPPORTED, which is also OK here, as it's not
|
|
// an overflow or something else nonsensical.
|
|
EXPECT_TRUE(rv == net::ERR_INVALID_ARGUMENT ||
|
|
rv == net::ERR_CACHE_OPERATION_NOT_SUPPORTED);
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SparseInvalidArg) {
|
|
InitCache();
|
|
SparseInvalidArg();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlySparseInvalidArg) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
SparseInvalidArg();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleSparseInvalidArg) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
SparseInvalidArg();
|
|
}
|
|
|
|
void DiskCacheEntryTest::SparseClipEnd(int64_t max_index,
|
|
bool expect_unsupported) {
|
|
std::string key("key");
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 1024;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
scoped_refptr<net::IOBuffer> read_buf =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize * 2);
|
|
CacheTestFillBuffer(read_buf->data(), kSize * 2, false);
|
|
|
|
const int64_t kOffset = max_index - kSize;
|
|
int rv = WriteSparseData(entry, kOffset, buf.get(), kSize);
|
|
EXPECT_EQ(
|
|
rv, expect_unsupported ? net::ERR_CACHE_OPERATION_NOT_SUPPORTED : kSize);
|
|
|
|
// Try to read further than offset range, should get clipped (if supported).
|
|
rv = ReadSparseData(entry, kOffset, read_buf.get(), kSize * 2);
|
|
if (expect_unsupported) {
|
|
EXPECT_EQ(rv, net::ERR_CACHE_OPERATION_NOT_SUPPORTED);
|
|
} else {
|
|
EXPECT_EQ(kSize, rv);
|
|
EXPECT_EQ(0, memcmp(buf->data(), read_buf->data(), kSize));
|
|
}
|
|
|
|
TestRangeResultCompletionCallback cb;
|
|
RangeResult result = cb.GetResult(
|
|
entry->GetAvailableRange(kOffset - kSize, kSize * 3, cb.callback()));
|
|
if (expect_unsupported) {
|
|
// GetAvailableRange just returns nothing found, not an error.
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(result.available_len, 0);
|
|
} else {
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(kSize, result.available_len);
|
|
EXPECT_EQ(kOffset, result.start);
|
|
}
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SparseClipEnd) {
|
|
InitCache();
|
|
|
|
// Blockfile refuses to deal with sparse indices over 64GiB.
|
|
SparseClipEnd(std::numeric_limits<int64_t>::max(),
|
|
/*expected_unsupported=*/true);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SparseClipEnd2) {
|
|
InitCache();
|
|
|
|
const int64_t kLimit = 64ll * 1024 * 1024 * 1024;
|
|
// Separate test for blockfile for indices right at the edge of its address
|
|
// space limit. kLimit must match kMaxEndOffset in sparse_control.cc
|
|
SparseClipEnd(kLimit, /*expected_unsupported=*/false);
|
|
|
|
// Test with things after kLimit, too, which isn't an issue for backends
|
|
// supporting the entire 64-bit offset range.
|
|
std::string key("key2");
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 1024;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
// Try to write after --- fails.
|
|
int rv = WriteSparseData(entry, kLimit, buf.get(), kSize);
|
|
EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv);
|
|
|
|
// Similarly for read.
|
|
rv = ReadSparseData(entry, kLimit, buf.get(), kSize);
|
|
EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv);
|
|
|
|
// GetAvailableRange just returns nothing.
|
|
TestRangeResultCompletionCallback cb;
|
|
RangeResult result =
|
|
cb.GetResult(entry->GetAvailableRange(kLimit, kSize * 3, cb.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlySparseClipEnd) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
SparseClipEnd(std::numeric_limits<int64_t>::max(),
|
|
/* expected_unsupported = */ false);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleSparseClipEnd) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
SparseClipEnd(std::numeric_limits<int64_t>::max(),
|
|
/* expected_unsupported = */ false);
|
|
}
|
|
|
|
// Tests that corrupt sparse children are removed automatically.
|
|
TEST_F(DiskCacheEntryTest, CleanupSparseEntry) {
|
|
InitCache();
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 4 * 1024;
|
|
scoped_refptr<net::IOBuffer> buf1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf1->data(), kSize, false);
|
|
|
|
const int k1Meg = 1024 * 1024;
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1.get(), kSize));
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
|
|
entry->Close();
|
|
EXPECT_EQ(4, cache_->GetEntryCount());
|
|
|
|
std::unique_ptr<TestIterator> iter = CreateIterator();
|
|
int count = 0;
|
|
std::string child_keys[2];
|
|
while (iter->OpenNextEntry(&entry) == net::OK) {
|
|
ASSERT_TRUE(entry != nullptr);
|
|
// Writing to an entry will alter the LRU list and invalidate the iterator.
|
|
if (entry->GetKey() != key && count < 2)
|
|
child_keys[count++] = entry->GetKey();
|
|
entry->Close();
|
|
}
|
|
for (const auto& child_key : child_keys) {
|
|
ASSERT_THAT(OpenEntry(child_key, &entry), IsOk());
|
|
// Overwrite the header's magic and signature.
|
|
EXPECT_EQ(12, WriteData(entry, 2, 0, buf1.get(), 12, false));
|
|
entry->Close();
|
|
}
|
|
|
|
EXPECT_EQ(4, cache_->GetEntryCount());
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
// Two children should be gone. One while reading and one while writing.
|
|
EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1.get(), kSize));
|
|
EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
|
|
|
|
// We never touched this one.
|
|
EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1.get(), kSize));
|
|
entry->Close();
|
|
|
|
// We re-created one of the corrupt children.
|
|
EXPECT_EQ(3, cache_->GetEntryCount());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, CancelSparseIO) {
|
|
UseCurrentThread();
|
|
InitCache();
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 40 * 1024;
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
// This will open and write two "real" entries.
|
|
net::TestCompletionCallback cb1, cb2, cb3, cb4;
|
|
int rv = entry->WriteSparseData(
|
|
1024 * 1024 - 4096, buf.get(), kSize, cb1.callback());
|
|
EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING));
|
|
|
|
TestRangeResultCompletionCallback cb5;
|
|
RangeResult result =
|
|
cb5.GetResult(entry->GetAvailableRange(0, kSize, cb5.callback()));
|
|
if (!cb1.have_result()) {
|
|
// We may or may not have finished writing to the entry. If we have not,
|
|
// we cannot start another operation at this time.
|
|
EXPECT_THAT(rv, IsError(net::ERR_CACHE_OPERATION_NOT_SUPPORTED));
|
|
}
|
|
|
|
// We cancel the pending operation, and register multiple notifications.
|
|
entry->CancelSparseIO();
|
|
EXPECT_THAT(entry->ReadyForSparseIO(cb2.callback()),
|
|
IsError(net::ERR_IO_PENDING));
|
|
EXPECT_THAT(entry->ReadyForSparseIO(cb3.callback()),
|
|
IsError(net::ERR_IO_PENDING));
|
|
entry->CancelSparseIO(); // Should be a no op at this point.
|
|
EXPECT_THAT(entry->ReadyForSparseIO(cb4.callback()),
|
|
IsError(net::ERR_IO_PENDING));
|
|
|
|
if (!cb1.have_result()) {
|
|
EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
|
|
entry->ReadSparseData(result.start, buf.get(), kSize,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
|
|
entry->WriteSparseData(result.start, buf.get(), kSize,
|
|
net::CompletionOnceCallback()));
|
|
}
|
|
|
|
// Now see if we receive all notifications. Note that we should not be able
|
|
// to write everything (unless the timing of the system is really weird).
|
|
rv = cb1.WaitForResult();
|
|
EXPECT_TRUE(rv == 4096 || rv == kSize);
|
|
EXPECT_THAT(cb2.WaitForResult(), IsOk());
|
|
EXPECT_THAT(cb3.WaitForResult(), IsOk());
|
|
EXPECT_THAT(cb4.WaitForResult(), IsOk());
|
|
|
|
result = cb5.GetResult(
|
|
entry->GetAvailableRange(result.start, kSize, cb5.callback()));
|
|
EXPECT_EQ(net::OK, result.net_error);
|
|
EXPECT_EQ(0, result.available_len);
|
|
entry->Close();
|
|
}
|
|
|
|
// Tests that we perform sanity checks on an entry's key. Note that there are
|
|
// other tests that exercise sanity checks by using saved corrupt files.
|
|
TEST_F(DiskCacheEntryTest, KeySanityCheck) {
|
|
UseCurrentThread();
|
|
InitCache();
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
disk_cache::EntryImpl* entry_impl =
|
|
static_cast<disk_cache::EntryImpl*>(entry);
|
|
disk_cache::EntryStore* store = entry_impl->entry()->Data();
|
|
|
|
// We have reserved space for a short key (one block), let's say that the key
|
|
// takes more than one block, and remove the NULLs after the actual key.
|
|
store->key_len = 800;
|
|
memset(store->key + key.size(), 'k', sizeof(store->key) - key.size());
|
|
entry_impl->entry()->set_modified();
|
|
entry->Close();
|
|
|
|
// We have a corrupt entry. Now reload it. We should NOT read beyond the
|
|
// allocated buffer here.
|
|
ASSERT_NE(net::OK, OpenEntry(key, &entry));
|
|
DisableIntegrityCheck();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, KeySanityCheck2) {
|
|
UseCurrentThread();
|
|
InitCache();
|
|
std::string key("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
disk_cache::EntryImpl* entry_impl =
|
|
static_cast<disk_cache::EntryImpl*>(entry);
|
|
disk_cache::EntryStore* store = entry_impl->entry()->Data();
|
|
|
|
// Fill in the rest of inline key store with non-nulls. Unlike in
|
|
// KeySanityCheck, this does not change the length to identify it as
|
|
// stored under |long_key|.
|
|
memset(store->key + key.size(), 'k', sizeof(store->key) - key.size());
|
|
entry_impl->entry()->set_modified();
|
|
entry->Close();
|
|
|
|
// We have a corrupt entry. Now reload it. We should NOT read beyond the
|
|
// allocated buffer here.
|
|
ASSERT_NE(net::OK, OpenEntry(key, &entry));
|
|
DisableIntegrityCheck();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, KeySanityCheck3) {
|
|
const size_t kVeryLong = 40 * 1024;
|
|
UseCurrentThread();
|
|
InitCache();
|
|
std::string key(kVeryLong, 'a');
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
disk_cache::EntryImpl* entry_impl =
|
|
static_cast<disk_cache::EntryImpl*>(entry);
|
|
disk_cache::EntryStore* store = entry_impl->entry()->Data();
|
|
|
|
// Test meaningful when using long keys; and also want this to be
|
|
// an external file to avoid needing to duplicate offset math here.
|
|
disk_cache::Addr key_addr(store->long_key);
|
|
ASSERT_TRUE(key_addr.is_initialized());
|
|
ASSERT_TRUE(key_addr.is_separate_file());
|
|
|
|
// Close the entry before messing up its files.
|
|
entry->Close();
|
|
|
|
// Mess up the terminating null in the external key file.
|
|
auto key_file =
|
|
base::MakeRefCounted<disk_cache::File>(true /* want sync ops*/);
|
|
ASSERT_TRUE(key_file->Init(cache_impl_->GetFileName(key_addr)));
|
|
|
|
ASSERT_TRUE(key_file->Write("b", 1u, kVeryLong));
|
|
key_file = nullptr;
|
|
|
|
// This case gets graceful recovery.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
// Make sure the key object isn't messed up.
|
|
EXPECT_EQ(kVeryLong, strlen(entry->GetKey().data()));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheInternalAsyncIO) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
InternalAsyncIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheExternalAsyncIO) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
ExternalAsyncIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheReleaseBuffer) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
ReleaseBuffer(i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheStreamAccess) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
StreamAccess();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheGetKey) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
GetKey();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheGetTimes) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
GetTimes(i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheGrowData) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
GrowData(i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheTruncateData) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
TruncateData(i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheZeroLengthIO) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
ZeroLengthIO(i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheSizeAtCreate) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
SizeAtCreate();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheReuseExternalEntry) {
|
|
SetSimpleCacheMode();
|
|
SetMaxSize(200 * 1024);
|
|
InitCache();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
ReuseEntry(20 * 1024, i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheReuseInternalEntry) {
|
|
SetSimpleCacheMode();
|
|
SetMaxSize(100 * 1024);
|
|
InitCache();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
ReuseEntry(10 * 1024, i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheGiantEntry) {
|
|
const int kBufSize = 32 * 1024;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kBufSize);
|
|
CacheTestFillBuffer(buffer->data(), kBufSize, false);
|
|
|
|
// Make sure SimpleCache can write up to 5MiB entry even with a 20MiB cache
|
|
// size that Android WebView uses at the time of this test's writing.
|
|
SetSimpleCacheMode();
|
|
SetMaxSize(20 * 1024 * 1024);
|
|
InitCache();
|
|
|
|
{
|
|
std::string key1("the first key");
|
|
disk_cache::Entry* entry1 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key1, &entry1), IsOk());
|
|
|
|
const int kSize1 = 5 * 1024 * 1024;
|
|
EXPECT_EQ(kBufSize, WriteData(entry1, 1 /* stream */, kSize1 - kBufSize,
|
|
buffer.get(), kBufSize, true /* truncate */));
|
|
entry1->Close();
|
|
}
|
|
|
|
// ... but not bigger than that.
|
|
{
|
|
std::string key2("the second key");
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key2, &entry2), IsOk());
|
|
|
|
const int kSize2 = 5 * 1024 * 1024 + 1;
|
|
EXPECT_EQ(net::ERR_FAILED,
|
|
WriteData(entry2, 1 /* stream */, kSize2 - kBufSize, buffer.get(),
|
|
kBufSize, true /* truncate */));
|
|
entry2->Close();
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheSizeChanges) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
SizeChanges(i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheInvalidData) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
InvalidData(i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheReadWriteDestroyBuffer) {
|
|
// Proving that the test works well with optimistic operations enabled is
|
|
// subtle, instead run only in APP_CACHE mode to disable optimistic
|
|
// operations. Stream 0 always uses optimistic operations, so the test is not
|
|
// run on stream 0.
|
|
SetCacheType(net::APP_CACHE);
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
for (int i = 1; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
ReadWriteDestroyBuffer(i);
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntry) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
DoomNormalEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntryNextToOpenEntry) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
DoomEntryNextToOpenEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomedEntry) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
// Stream 2 is excluded because the implementation does not support writing to
|
|
// it on a doomed entry, if it was previously lazily omitted.
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount - 1; ++i) {
|
|
EXPECT_THAT(DoomAllEntries(), IsOk());
|
|
DoomedEntry(i);
|
|
}
|
|
}
|
|
|
|
// Creates an entry with corrupted last byte in stream 0.
|
|
// Requires SimpleCacheMode.
|
|
bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string& key,
|
|
int data_size) {
|
|
disk_cache::Entry* entry = nullptr;
|
|
|
|
if (CreateEntry(key, &entry) != net::OK || !entry) {
|
|
LOG(ERROR) << "Could not create entry";
|
|
return false;
|
|
}
|
|
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(data_size);
|
|
memset(buffer->data(), 'A', data_size);
|
|
|
|
EXPECT_EQ(data_size, WriteData(entry, 1, 0, buffer.get(), data_size, false));
|
|
entry->Close();
|
|
entry = nullptr;
|
|
|
|
// Corrupt the last byte of the data.
|
|
base::FilePath entry_file0_path = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
|
|
base::File entry_file0(entry_file0_path,
|
|
base::File::FLAG_WRITE | base::File::FLAG_OPEN);
|
|
if (!entry_file0.IsValid())
|
|
return false;
|
|
|
|
int64_t file_offset =
|
|
sizeof(disk_cache::SimpleFileHeader) + key.size() + data_size - 2;
|
|
EXPECT_EQ(1, entry_file0.Write(file_offset, "X", 1));
|
|
return true;
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheBadChecksum) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char key[] = "the first key";
|
|
const int kLargeSize = 50000;
|
|
ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, kLargeSize));
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
|
|
// Open the entry. Can't spot the checksum that quickly with it so
|
|
// huge.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
EXPECT_GE(kLargeSize, entry->GetDataSize(1));
|
|
scoped_refptr<net::IOBuffer> read_buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kLargeSize);
|
|
EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
|
|
ReadData(entry, 1, 0, read_buffer.get(), kLargeSize));
|
|
}
|
|
|
|
// Tests that an entry that has had an IO error occur can still be Doomed().
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheErrorThenDoom) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char key[] = "the first key";
|
|
const int kLargeSize = 50000;
|
|
ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, kLargeSize));
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
|
|
// Open the entry, forcing an IO error.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
EXPECT_GE(kLargeSize, entry->GetDataSize(1));
|
|
scoped_refptr<net::IOBuffer> read_buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kLargeSize);
|
|
EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
|
|
ReadData(entry, 1, 0, read_buffer.get(), kLargeSize));
|
|
entry->Doom(); // Should not crash.
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheCreateAfterDiskLayerDoom) {
|
|
// Code coverage for what happens when a queued create runs after failure
|
|
// was noticed at SimpleSynchronousEntry layer.
|
|
SetSimpleCacheMode();
|
|
// Disable optimistic ops so we can block on CreateEntry and start
|
|
// WriteData off with an empty op queue.
|
|
SetCacheType(net::APP_CACHE);
|
|
InitCache();
|
|
|
|
const char key[] = "the key";
|
|
const int kSize1 = 10;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
|
|
ASSERT_TRUE(entry != nullptr);
|
|
|
|
// Make an empty _1 file, to cause a stream 2 write to fail.
|
|
base::FilePath entry_file1_path = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 1));
|
|
base::File entry_file1(entry_file1_path,
|
|
base::File::FLAG_WRITE | base::File::FLAG_CREATE);
|
|
ASSERT_TRUE(entry_file1.IsValid());
|
|
|
|
entry->WriteData(2, 0, buffer1.get(), kSize1, net::CompletionOnceCallback(),
|
|
/* truncate= */ true);
|
|
entry->Close();
|
|
|
|
// At this point we have put WriteData & Close on the queue, and WriteData
|
|
// started, but we haven't given the event loop control so the failure
|
|
// hasn't been reported and handled here, so the entry is still active
|
|
// for the key. Queue up another create for same key, and run through the
|
|
// events.
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
ASSERT_EQ(net::ERR_FAILED, CreateEntry(key, &entry2));
|
|
ASSERT_TRUE(entry2 == nullptr);
|
|
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
|
|
// Should be able to create properly next time, though.
|
|
disk_cache::Entry* entry3 = nullptr;
|
|
ASSERT_EQ(net::OK, CreateEntry(key, &entry3));
|
|
ASSERT_TRUE(entry3 != nullptr);
|
|
entry3->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheQueuedOpenOnDoomedEntry) {
|
|
// This tests the following sequence of ops:
|
|
// A = Create(K);
|
|
// Close(A);
|
|
// B = Open(K);
|
|
// Doom(K);
|
|
// Close(B);
|
|
//
|
|
// ... where the execution of the Open sits on the queue all the way till
|
|
// Doom. This now succeeds, as the doom is merely queued at time of Open,
|
|
// rather than completed.
|
|
|
|
SetSimpleCacheMode();
|
|
// Disable optimistic ops so we can block on CreateEntry and start
|
|
// WriteData off with an empty op queue.
|
|
SetCacheType(net::APP_CACHE);
|
|
InitCache();
|
|
|
|
const char key[] = "the key";
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_EQ(net::OK, CreateEntry(key, &entry)); // event loop!
|
|
ASSERT_TRUE(entry != nullptr);
|
|
|
|
entry->Close();
|
|
|
|
// Done via cache_ -> no event loop.
|
|
TestEntryResultCompletionCallback cb;
|
|
EntryResult result = cache_->OpenEntry(key, net::HIGHEST, cb.callback());
|
|
ASSERT_EQ(net::ERR_IO_PENDING, result.net_error());
|
|
|
|
net::TestCompletionCallback cb2;
|
|
cache_->DoomEntry(key, net::HIGHEST, cb2.callback());
|
|
// Now event loop.
|
|
result = cb.WaitForResult();
|
|
EXPECT_EQ(net::OK, result.net_error());
|
|
result.ReleaseEntry()->Close();
|
|
|
|
EXPECT_EQ(net::OK, cb2.WaitForResult());
|
|
EXPECT_EQ(0, cache_->GetEntryCount());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomErrorRace) {
|
|
// Code coverage for a doom racing with a doom induced by a failure.
|
|
SetSimpleCacheMode();
|
|
// Disable optimistic ops so we can block on CreateEntry and start
|
|
// WriteData off with an empty op queue.
|
|
SetCacheType(net::APP_CACHE);
|
|
InitCache();
|
|
|
|
const char kKey[] = "the first key";
|
|
const int kSize1 = 10;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_EQ(net::OK, CreateEntry(kKey, &entry));
|
|
ASSERT_TRUE(entry != nullptr);
|
|
|
|
// Now an empty _1 file, to cause a stream 2 write to fail.
|
|
base::FilePath entry_file1_path = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(kKey, 1));
|
|
base::File entry_file1(entry_file1_path,
|
|
base::File::FLAG_WRITE | base::File::FLAG_CREATE);
|
|
ASSERT_TRUE(entry_file1.IsValid());
|
|
|
|
entry->WriteData(2, 0, buffer1.get(), kSize1, net::CompletionOnceCallback(),
|
|
/* truncate= */ true);
|
|
|
|
net::TestCompletionCallback cb;
|
|
cache_->DoomEntry(kKey, net::HIGHEST, cb.callback());
|
|
entry->Close();
|
|
EXPECT_EQ(0, cb.WaitForResult());
|
|
}
|
|
|
|
bool TruncatePath(const base::FilePath& file_path, int64_t length) {
|
|
base::File file(file_path, base::File::FLAG_WRITE | base::File::FLAG_OPEN);
|
|
if (!file.IsValid())
|
|
return false;
|
|
return file.SetLength(length);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheNoEOF) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const std::string key("the first key");
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
disk_cache::Entry* null = nullptr;
|
|
EXPECT_NE(null, entry);
|
|
entry->Close();
|
|
entry = nullptr;
|
|
|
|
// Force the entry to flush to disk, so subsequent platform file operations
|
|
// succed.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
entry = nullptr;
|
|
|
|
// Truncate the file such that the length isn't sufficient to have an EOF
|
|
// record.
|
|
int kTruncationBytes = -static_cast<int>(sizeof(disk_cache::SimpleFileEOF));
|
|
const base::FilePath entry_path = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
|
|
const int64_t invalid_size = disk_cache::simple_util::GetFileSizeFromDataSize(
|
|
key.size(), kTruncationBytes);
|
|
EXPECT_TRUE(TruncatePath(entry_path, invalid_size));
|
|
EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED));
|
|
DisableIntegrityCheck();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsBasic) {
|
|
// Test sequence:
|
|
// Create, Write, Read, Close.
|
|
SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* const null_entry = nullptr;
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
EXPECT_THAT(CreateEntry("my key", &entry), IsOk());
|
|
ASSERT_NE(null_entry, entry);
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
const int kBufferSize = 10;
|
|
scoped_refptr<net::IOBufferWithSize> write_buffer =
|
|
base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
|
|
CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
|
|
EXPECT_EQ(
|
|
write_buffer->size(),
|
|
WriteData(entry, 1, 0, write_buffer.get(), write_buffer->size(), false));
|
|
|
|
scoped_refptr<net::IOBufferWithSize> read_buffer =
|
|
base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
|
|
EXPECT_EQ(read_buffer->size(),
|
|
ReadData(entry, 1, 0, read_buffer.get(), read_buffer->size()));
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsDontBlock) {
|
|
// Test sequence:
|
|
// Create, Write, Close.
|
|
SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* const null_entry = nullptr;
|
|
|
|
MessageLoopHelper helper;
|
|
CallbackTest create_callback(&helper, false);
|
|
|
|
int expected_callback_runs = 0;
|
|
const int kBufferSize = 10;
|
|
scoped_refptr<net::IOBufferWithSize> write_buffer =
|
|
base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
EXPECT_THAT(CreateEntry("my key", &entry), IsOk());
|
|
ASSERT_NE(null_entry, entry);
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
|
|
CallbackTest write_callback(&helper, false);
|
|
int ret = entry->WriteData(
|
|
1, 0, write_buffer.get(), write_buffer->size(),
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&write_callback)),
|
|
false);
|
|
ASSERT_THAT(ret, IsError(net::ERR_IO_PENDING));
|
|
helper.WaitUntilCacheIoFinished(++expected_callback_runs);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest,
|
|
SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting) {
|
|
// Test sequence:
|
|
// Create, Write, Read, Close.
|
|
SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* const null_entry = nullptr;
|
|
MessageLoopHelper helper;
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
// Note that |entry| is only set once CreateEntry() completed which is why we
|
|
// have to wait (i.e. use the helper CreateEntry() function).
|
|
EXPECT_THAT(CreateEntry("my key", &entry), IsOk());
|
|
ASSERT_NE(null_entry, entry);
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
const int kBufferSize = 10;
|
|
scoped_refptr<net::IOBufferWithSize> write_buffer =
|
|
base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
|
|
CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
|
|
CallbackTest write_callback(&helper, false);
|
|
int ret = entry->WriteData(
|
|
1, 0, write_buffer.get(), write_buffer->size(),
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&write_callback)),
|
|
false);
|
|
EXPECT_THAT(ret, IsError(net::ERR_IO_PENDING));
|
|
int expected_callback_runs = 1;
|
|
|
|
scoped_refptr<net::IOBufferWithSize> read_buffer =
|
|
base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
|
|
CallbackTest read_callback(&helper, false);
|
|
ret = entry->ReadData(
|
|
1, 0, read_buffer.get(), read_buffer->size(),
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&read_callback)));
|
|
EXPECT_THAT(ret, IsError(net::ERR_IO_PENDING));
|
|
++expected_callback_runs;
|
|
|
|
helper.WaitUntilCacheIoFinished(expected_callback_runs);
|
|
ASSERT_EQ(read_buffer->size(), write_buffer->size());
|
|
EXPECT_EQ(
|
|
0,
|
|
memcmp(read_buffer->data(), write_buffer->data(), read_buffer->size()));
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic) {
|
|
// Test sequence:
|
|
// Create, Write, Read, Write, Read, Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* null = nullptr;
|
|
const char key[] = "the first key";
|
|
|
|
MessageLoopHelper helper;
|
|
CallbackTest callback1(&helper, false);
|
|
CallbackTest callback2(&helper, false);
|
|
CallbackTest callback3(&helper, false);
|
|
CallbackTest callback4(&helper, false);
|
|
CallbackTest callback5(&helper, false);
|
|
|
|
int expected = 0;
|
|
const int kSize1 = 10;
|
|
const int kSize2 = 20;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
scoped_refptr<net::IOBuffer> buffer1_read =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize2);
|
|
scoped_refptr<net::IOBuffer> buffer2_read =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize2);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
CacheTestFillBuffer(buffer2->data(), kSize2, false);
|
|
|
|
// Create is optimistic, must return OK.
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST,
|
|
base::BindOnce(&CallbackTest::RunWithEntry,
|
|
base::Unretained(&callback1)));
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry = result.ReleaseEntry();
|
|
ASSERT_NE(null, entry);
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
// This write may or may not be optimistic (it depends if the previous
|
|
// optimistic create already finished by the time we call the write here).
|
|
int ret = entry->WriteData(
|
|
1, 0, buffer1.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run, base::Unretained(&callback2)), false);
|
|
EXPECT_TRUE(kSize1 == ret || net::ERR_IO_PENDING == ret);
|
|
if (net::ERR_IO_PENDING == ret)
|
|
expected++;
|
|
|
|
// This Read must not be optimistic, since we don't support that yet.
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry->ReadData(1, 0, buffer1_read.get(), kSize1,
|
|
base::BindOnce(&CallbackTest::Run,
|
|
base::Unretained(&callback3))));
|
|
expected++;
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
|
|
|
|
// At this point after waiting, the pending operations queue on the entry
|
|
// should be empty, so the next Write operation must run as optimistic.
|
|
EXPECT_EQ(kSize2,
|
|
entry->WriteData(1, 0, buffer2.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run,
|
|
base::Unretained(&callback4)),
|
|
false));
|
|
|
|
// Lets do another read so we block until both the write and the read
|
|
// operation finishes and we can then test for HasOneRef() below.
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry->ReadData(1, 0, buffer2_read.get(), kSize2,
|
|
base::BindOnce(&CallbackTest::Run,
|
|
base::Unretained(&callback5))));
|
|
expected++;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_EQ(0, memcmp(buffer2->data(), buffer2_read->data(), kSize2));
|
|
|
|
// Check that we are not leaking.
|
|
EXPECT_NE(entry, null);
|
|
EXPECT_TRUE(
|
|
static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic2) {
|
|
// Test sequence:
|
|
// Create, Open, Close, Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char key[] = "the first key";
|
|
|
|
MessageLoopHelper helper;
|
|
CallbackTest callback1(&helper, false);
|
|
CallbackTest callback2(&helper, false);
|
|
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST,
|
|
base::BindOnce(&CallbackTest::RunWithEntry,
|
|
base::Unretained(&callback1)));
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry = result.ReleaseEntry();
|
|
ASSERT_NE(nullptr, entry);
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
EntryResult result2 =
|
|
cache_->OpenEntry(key, net::HIGHEST,
|
|
base::BindOnce(&CallbackTest::RunWithEntry,
|
|
base::Unretained(&callback2)));
|
|
ASSERT_EQ(net::ERR_IO_PENDING, result2.net_error());
|
|
ASSERT_TRUE(helper.WaitUntilCacheIoFinished(1));
|
|
result2 = callback2.ReleaseLastEntryResult();
|
|
EXPECT_EQ(net::OK, result2.net_error());
|
|
disk_cache::Entry* entry2 = result2.ReleaseEntry();
|
|
EXPECT_NE(nullptr, entry2);
|
|
EXPECT_EQ(entry, entry2);
|
|
|
|
// We have to call close twice, since we called create and open above.
|
|
// (the other closes is from |entry_closer|).
|
|
entry->Close();
|
|
|
|
// Check that we are not leaking.
|
|
EXPECT_TRUE(
|
|
static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic3) {
|
|
// Test sequence:
|
|
// Create, Close, Open, Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char key[] = "the first key";
|
|
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry = result.ReleaseEntry();
|
|
ASSERT_NE(nullptr, entry);
|
|
entry->Close();
|
|
|
|
TestEntryResultCompletionCallback cb;
|
|
EntryResult result2 = cache_->OpenEntry(key, net::HIGHEST, cb.callback());
|
|
ASSERT_EQ(net::ERR_IO_PENDING, result2.net_error());
|
|
result2 = cb.WaitForResult();
|
|
ASSERT_THAT(result2.net_error(), IsOk());
|
|
disk_cache::Entry* entry2 = result2.ReleaseEntry();
|
|
ScopedEntryPtr entry_closer(entry2);
|
|
|
|
EXPECT_NE(nullptr, entry2);
|
|
EXPECT_EQ(entry, entry2);
|
|
|
|
// Check that we are not leaking.
|
|
EXPECT_TRUE(
|
|
static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic4) {
|
|
// Test sequence:
|
|
// Create, Close, Write, Open, Open, Close, Write, Read, Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char key[] = "the first key";
|
|
|
|
net::TestCompletionCallback cb;
|
|
const int kSize1 = 10;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry = result.ReleaseEntry();
|
|
ASSERT_NE(nullptr, entry);
|
|
entry->Close();
|
|
|
|
// Lets do a Write so we block until both the Close and the Write
|
|
// operation finishes. Write must fail since we are writing in a closed entry.
|
|
EXPECT_EQ(
|
|
net::ERR_IO_PENDING,
|
|
entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
|
|
EXPECT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsError(net::ERR_FAILED));
|
|
|
|
// Finish running the pending tasks so that we fully complete the close
|
|
// operation and destroy the entry object.
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
// At this point the |entry| must have been destroyed, and called
|
|
// RemoveSelfFromBackend().
|
|
TestEntryResultCompletionCallback cb2;
|
|
EntryResult result2 = cache_->OpenEntry(key, net::HIGHEST, cb2.callback());
|
|
ASSERT_EQ(net::ERR_IO_PENDING, result2.net_error());
|
|
result2 = cb2.WaitForResult();
|
|
ASSERT_THAT(result2.net_error(), IsOk());
|
|
disk_cache::Entry* entry2 = result2.ReleaseEntry();
|
|
EXPECT_NE(nullptr, entry2);
|
|
|
|
EntryResult result3 = cache_->OpenEntry(key, net::HIGHEST, cb2.callback());
|
|
ASSERT_EQ(net::ERR_IO_PENDING, result3.net_error());
|
|
result3 = cb2.WaitForResult();
|
|
ASSERT_THAT(result3.net_error(), IsOk());
|
|
disk_cache::Entry* entry3 = result3.ReleaseEntry();
|
|
EXPECT_NE(nullptr, entry3);
|
|
EXPECT_EQ(entry2, entry3);
|
|
entry3->Close();
|
|
|
|
// The previous Close doesn't actually closes the entry since we opened it
|
|
// twice, so the next Write operation must succeed and it must be able to
|
|
// perform it optimistically, since there is no operation running on this
|
|
// entry.
|
|
EXPECT_EQ(kSize1, entry2->WriteData(1, 0, buffer1.get(), kSize1,
|
|
net::CompletionOnceCallback(), false));
|
|
|
|
// Lets do another read so we block until both the write and the read
|
|
// operation finishes and we can then test for HasOneRef() below.
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry2->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
|
|
EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
|
|
|
|
// Check that we are not leaking.
|
|
EXPECT_TRUE(
|
|
static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
|
|
entry2->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic5) {
|
|
// Test sequence:
|
|
// Create, Doom, Write, Read, Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char key[] = "the first key";
|
|
|
|
net::TestCompletionCallback cb;
|
|
const int kSize1 = 10;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry = result.ReleaseEntry();
|
|
ASSERT_NE(nullptr, entry);
|
|
ScopedEntryPtr entry_closer(entry);
|
|
entry->Doom();
|
|
|
|
EXPECT_EQ(
|
|
net::ERR_IO_PENDING,
|
|
entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
|
|
EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
|
|
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
|
|
EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
|
|
|
|
// Check that we are not leaking.
|
|
EXPECT_TRUE(
|
|
static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic6) {
|
|
// Test sequence:
|
|
// Create, Write, Doom, Doom, Read, Doom, Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char key[] = "the first key";
|
|
|
|
net::TestCompletionCallback cb;
|
|
const int kSize1 = 10;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
scoped_refptr<net::IOBuffer> buffer1_read =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry = result.ReleaseEntry();
|
|
EXPECT_NE(nullptr, entry);
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
EXPECT_EQ(
|
|
net::ERR_IO_PENDING,
|
|
entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
|
|
EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
|
|
|
|
entry->Doom();
|
|
entry->Doom();
|
|
|
|
// This Read must not be optimistic, since we don't support that yet.
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry->ReadData(1, 0, buffer1_read.get(), kSize1, cb.callback()));
|
|
EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
|
|
EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
|
|
|
|
entry->Doom();
|
|
}
|
|
|
|
// Confirm that IO buffers are not referenced by the Simple Cache after a write
|
|
// completes.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticWriteReleases) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char key[] = "the first key";
|
|
|
|
// First, an optimistic create.
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry = result.ReleaseEntry();
|
|
ASSERT_TRUE(entry);
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
const int kWriteSize = 512;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kWriteSize);
|
|
EXPECT_TRUE(buffer1->HasOneRef());
|
|
CacheTestFillBuffer(buffer1->data(), kWriteSize, false);
|
|
|
|
// An optimistic write happens only when there is an empty queue of pending
|
|
// operations. To ensure the queue is empty, we issue a write and wait until
|
|
// it completes.
|
|
EXPECT_EQ(kWriteSize,
|
|
WriteData(entry, 1, 0, buffer1.get(), kWriteSize, false));
|
|
EXPECT_TRUE(buffer1->HasOneRef());
|
|
|
|
// Finally, we should perform an optimistic write and confirm that all
|
|
// references to the IO buffer have been released.
|
|
EXPECT_EQ(kWriteSize, entry->WriteData(1, 0, buffer1.get(), kWriteSize,
|
|
net::CompletionOnceCallback(), false));
|
|
EXPECT_TRUE(buffer1->HasOneRef());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheCreateDoomRace) {
|
|
// Test sequence:
|
|
// Create, Doom, Write, Close, Check files are not on disk anymore.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char key[] = "the first key";
|
|
|
|
net::TestCompletionCallback cb;
|
|
const int kSize1 = 10;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize1);
|
|
CacheTestFillBuffer(buffer1->data(), kSize1, false);
|
|
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry = result.ReleaseEntry();
|
|
EXPECT_NE(nullptr, entry);
|
|
|
|
EXPECT_THAT(cache_->DoomEntry(key, net::HIGHEST, cb.callback()),
|
|
IsError(net::ERR_IO_PENDING));
|
|
EXPECT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsOk());
|
|
|
|
EXPECT_EQ(
|
|
kSize1,
|
|
entry->WriteData(0, 0, buffer1.get(), kSize1, cb.callback(), false));
|
|
|
|
entry->Close();
|
|
|
|
// Finish running the pending tasks so that we fully complete the close
|
|
// operation and destroy the entry object.
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
for (int i = 0; i < disk_cache::kSimpleEntryNormalFileCount; ++i) {
|
|
base::FilePath entry_file_path = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, i));
|
|
base::File::Info info;
|
|
EXPECT_FALSE(base::GetFileInfo(entry_file_path, &info));
|
|
}
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateRace) {
|
|
// This test runs as APP_CACHE to make operations more synchronous. Test
|
|
// sequence:
|
|
// Create, Doom, Create.
|
|
SetCacheType(net::APP_CACHE);
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char key[] = "the first key";
|
|
|
|
TestEntryResultCompletionCallback create_callback;
|
|
|
|
EntryResult result1 = create_callback.GetResult(
|
|
cache_->CreateEntry(key, net::HIGHEST, create_callback.callback()));
|
|
ASSERT_EQ(net::OK, result1.net_error());
|
|
disk_cache::Entry* entry1 = result1.ReleaseEntry();
|
|
ScopedEntryPtr entry1_closer(entry1);
|
|
EXPECT_NE(nullptr, entry1);
|
|
|
|
net::TestCompletionCallback doom_callback;
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
cache_->DoomEntry(key, net::HIGHEST, doom_callback.callback()));
|
|
|
|
EntryResult result2 = create_callback.GetResult(
|
|
cache_->CreateEntry(key, net::HIGHEST, create_callback.callback()));
|
|
ASSERT_EQ(net::OK, result2.net_error());
|
|
disk_cache::Entry* entry2 = result2.ReleaseEntry();
|
|
ScopedEntryPtr entry2_closer(entry2);
|
|
EXPECT_THAT(doom_callback.GetResult(net::ERR_IO_PENDING), IsOk());
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateOptimistic) {
|
|
// Test that we optimize the doom -> create sequence when optimistic ops
|
|
// are on.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char kKey[] = "the key";
|
|
|
|
// Create entry and initiate its Doom.
|
|
disk_cache::Entry* entry1 = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
|
|
ASSERT_TRUE(entry1 != nullptr);
|
|
|
|
net::TestCompletionCallback doom_callback;
|
|
cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback());
|
|
|
|
TestEntryResultCompletionCallback create_callback;
|
|
// Open entry2, with same key. With optimistic ops, this should succeed
|
|
// immediately, hence us using cache_->CreateEntry directly rather than using
|
|
// the DiskCacheTestWithCache::CreateEntry wrapper which blocks when needed.
|
|
EntryResult result2 =
|
|
cache_->CreateEntry(kKey, net::HIGHEST, create_callback.callback());
|
|
ASSERT_EQ(net::OK, result2.net_error());
|
|
disk_cache::Entry* entry2 = result2.ReleaseEntry();
|
|
ASSERT_NE(nullptr, entry2);
|
|
|
|
// Do some I/O to make sure it's alive.
|
|
const int kSize = 2048;
|
|
scoped_refptr<net::IOBuffer> buf_1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buf_2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf_1->data(), kSize, false);
|
|
|
|
EXPECT_EQ(kSize, WriteData(entry2, /* index = */ 1, /* offset = */ 0,
|
|
buf_1.get(), kSize, /* truncate = */ false));
|
|
EXPECT_EQ(kSize, ReadData(entry2, /* index = */ 1, /* offset = */ 0,
|
|
buf_2.get(), kSize));
|
|
|
|
doom_callback.WaitForResult();
|
|
|
|
entry1->Close();
|
|
entry2->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateOptimisticMassDoom) {
|
|
// Test that shows that a certain DCHECK in mass doom code had to be removed
|
|
// once optimistic doom -> create was added.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char kKey[] = "the key";
|
|
|
|
// Create entry and initiate its Doom.
|
|
disk_cache::Entry* entry1 = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
|
|
ASSERT_TRUE(entry1 != nullptr);
|
|
|
|
net::TestCompletionCallback doom_callback;
|
|
cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback());
|
|
|
|
TestEntryResultCompletionCallback create_callback;
|
|
// Open entry2, with same key. With optimistic ops, this should succeed
|
|
// immediately, hence us using cache_->CreateEntry directly rather than using
|
|
// the DiskCacheTestWithCache::CreateEntry wrapper which blocks when needed.
|
|
EntryResult result =
|
|
cache_->CreateEntry(kKey, net::HIGHEST, create_callback.callback());
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry2 = result.ReleaseEntry();
|
|
ASSERT_NE(nullptr, entry2);
|
|
|
|
net::TestCompletionCallback doomall_callback;
|
|
|
|
// This is what had code that had a no-longer valid DCHECK.
|
|
cache_->DoomAllEntries(doomall_callback.callback());
|
|
|
|
doom_callback.WaitForResult();
|
|
doomall_callback.WaitForResult();
|
|
|
|
entry1->Close();
|
|
entry2->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomOpenOptimistic) {
|
|
// Test that we optimize the doom -> optimize sequence when optimistic ops
|
|
// are on.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
const char kKey[] = "the key";
|
|
|
|
// Create entry and initiate its Doom.
|
|
disk_cache::Entry* entry1 = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
|
|
ASSERT_TRUE(entry1 != nullptr);
|
|
entry1->Close();
|
|
|
|
net::TestCompletionCallback doom_callback;
|
|
cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback());
|
|
|
|
// Try to open entry. This should detect a miss immediately, since it's
|
|
// the only thing after a doom.
|
|
|
|
EntryResult result2 =
|
|
cache_->OpenEntry(kKey, net::HIGHEST, EntryResultCallback());
|
|
EXPECT_EQ(net::ERR_FAILED, result2.net_error());
|
|
EXPECT_EQ(nullptr, result2.ReleaseEntry());
|
|
doom_callback.WaitForResult();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomDoom) {
|
|
// Test sequence:
|
|
// Create, Doom, Create, Doom (1st entry), Open.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* null = nullptr;
|
|
|
|
const char key[] = "the first key";
|
|
|
|
disk_cache::Entry* entry1 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
|
|
ScopedEntryPtr entry1_closer(entry1);
|
|
EXPECT_NE(null, entry1);
|
|
|
|
EXPECT_THAT(DoomEntry(key), IsOk());
|
|
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
|
|
ScopedEntryPtr entry2_closer(entry2);
|
|
EXPECT_NE(null, entry2);
|
|
|
|
// Redundantly dooming entry1 should not delete entry2.
|
|
disk_cache::SimpleEntryImpl* simple_entry1 =
|
|
static_cast<disk_cache::SimpleEntryImpl*>(entry1);
|
|
net::TestCompletionCallback cb;
|
|
EXPECT_EQ(net::OK,
|
|
cb.GetResult(simple_entry1->DoomEntry(cb.callback())));
|
|
|
|
disk_cache::Entry* entry3 = nullptr;
|
|
ASSERT_THAT(OpenEntry(key, &entry3), IsOk());
|
|
ScopedEntryPtr entry3_closer(entry3);
|
|
EXPECT_NE(null, entry3);
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateDoom) {
|
|
// Test sequence:
|
|
// Create, Doom, Create, Doom.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
disk_cache::Entry* null = nullptr;
|
|
|
|
const char key[] = "the first key";
|
|
|
|
disk_cache::Entry* entry1 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
|
|
ScopedEntryPtr entry1_closer(entry1);
|
|
EXPECT_NE(null, entry1);
|
|
|
|
entry1->Doom();
|
|
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
|
|
ScopedEntryPtr entry2_closer(entry2);
|
|
EXPECT_NE(null, entry2);
|
|
|
|
entry2->Doom();
|
|
|
|
// This test passes if it doesn't crash.
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomCloseCreateCloseOpen) {
|
|
// Test sequence: Create, Doom, Close, Create, Close, Open.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
disk_cache::Entry* null = nullptr;
|
|
|
|
const char key[] = "this is a key";
|
|
|
|
disk_cache::Entry* entry1 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
|
|
ScopedEntryPtr entry1_closer(entry1);
|
|
EXPECT_NE(null, entry1);
|
|
|
|
entry1->Doom();
|
|
entry1_closer.reset();
|
|
entry1 = nullptr;
|
|
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
|
|
ScopedEntryPtr entry2_closer(entry2);
|
|
EXPECT_NE(null, entry2);
|
|
|
|
entry2_closer.reset();
|
|
entry2 = nullptr;
|
|
|
|
disk_cache::Entry* entry3 = nullptr;
|
|
ASSERT_THAT(OpenEntry(key, &entry3), IsOk());
|
|
ScopedEntryPtr entry3_closer(entry3);
|
|
EXPECT_NE(null, entry3);
|
|
}
|
|
|
|
// Checks that an optimistic Create would fail later on a racing Open.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticCreateFailsOnOpen) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
// Create a corrupt file in place of a future entry. Optimistic create should
|
|
// initially succeed, but realize later that creation failed.
|
|
const std::string key = "the key";
|
|
disk_cache::Entry* entry = nullptr;
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
|
|
EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests(
|
|
key, cache_path_));
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
|
|
EXPECT_THAT(result.net_error(), IsOk());
|
|
entry = result.ReleaseEntry();
|
|
ASSERT_TRUE(entry);
|
|
ScopedEntryPtr entry_closer(entry);
|
|
ASSERT_NE(net::OK, OpenEntry(key, &entry2));
|
|
|
|
// Check that we are not leaking.
|
|
EXPECT_TRUE(
|
|
static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
|
|
|
|
DisableIntegrityCheck();
|
|
}
|
|
|
|
// Tests that old entries are evicted while new entries remain in the index.
|
|
// This test relies on non-mandatory properties of the simple Cache Backend:
|
|
// LRU eviction, specific values of high-watermark and low-watermark etc.
|
|
// When changing the eviction algorithm, the test will have to be re-engineered.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheEvictOldEntries) {
|
|
const int kMaxSize = 200 * 1024;
|
|
const int kWriteSize = kMaxSize / 10;
|
|
const int kNumExtraEntries = 12;
|
|
SetSimpleCacheMode();
|
|
SetMaxSize(kMaxSize);
|
|
InitCache();
|
|
|
|
std::string key1("the first key");
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kWriteSize);
|
|
CacheTestFillBuffer(buffer->data(), kWriteSize, false);
|
|
EXPECT_EQ(kWriteSize,
|
|
WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
|
|
entry->Close();
|
|
AddDelay();
|
|
|
|
std::string key2("the key prefix");
|
|
for (int i = 0; i < kNumExtraEntries; i++) {
|
|
if (i == kNumExtraEntries - 2) {
|
|
// Create a distinct timestamp for the last two entries. These entries
|
|
// will be checked for outliving the eviction.
|
|
AddDelay();
|
|
}
|
|
ASSERT_THAT(CreateEntry(key2 + base::NumberToString(i), &entry), IsOk());
|
|
ScopedEntryPtr entry_closer(entry);
|
|
EXPECT_EQ(kWriteSize,
|
|
WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
|
|
}
|
|
|
|
// TODO(pasko): Find a way to wait for the eviction task(s) to finish by using
|
|
// the internal knowledge about |SimpleBackendImpl|.
|
|
ASSERT_NE(net::OK, OpenEntry(key1, &entry))
|
|
<< "Should have evicted the old entry";
|
|
for (int i = 0; i < 2; i++) {
|
|
int entry_no = kNumExtraEntries - i - 1;
|
|
// Generally there is no guarantee that at this point the backround eviction
|
|
// is finished. We are testing the positive case, i.e. when the eviction
|
|
// never reaches this entry, should be non-flaky.
|
|
ASSERT_EQ(net::OK, OpenEntry(key2 + base::NumberToString(entry_no), &entry))
|
|
<< "Should not have evicted fresh entry " << entry_no;
|
|
entry->Close();
|
|
}
|
|
}
|
|
|
|
// Tests that if a read and a following in-flight truncate are both in progress
|
|
// simultaniously that they both can occur successfully. See
|
|
// http://crbug.com/239223
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheInFlightTruncate) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char key[] = "the first key";
|
|
|
|
// We use a very large entry size here to make sure this doesn't hit
|
|
// the prefetch path for any concievable setting. Hitting prefetch would
|
|
// make us serve the read below from memory entirely on I/O thread, missing
|
|
// the point of the test which coverred two concurrent disk ops, with
|
|
// portions of work happening on the workpool.
|
|
const int kBufferSize = 50000;
|
|
scoped_refptr<net::IOBuffer> write_buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kBufferSize);
|
|
CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
EXPECT_EQ(kBufferSize,
|
|
WriteData(entry, 1, 0, write_buffer.get(), kBufferSize, false));
|
|
entry->Close();
|
|
entry = nullptr;
|
|
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
MessageLoopHelper helper;
|
|
int expected = 0;
|
|
|
|
// Make a short read.
|
|
const int kReadBufferSize = 512;
|
|
scoped_refptr<net::IOBuffer> read_buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kReadBufferSize);
|
|
CallbackTest read_callback(&helper, false);
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry->ReadData(1, 0, read_buffer.get(), kReadBufferSize,
|
|
base::BindOnce(&CallbackTest::Run,
|
|
base::Unretained(&read_callback))));
|
|
++expected;
|
|
|
|
// Truncate the entry to the length of that read.
|
|
scoped_refptr<net::IOBuffer> truncate_buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kReadBufferSize);
|
|
CacheTestFillBuffer(truncate_buffer->data(), kReadBufferSize, false);
|
|
CallbackTest truncate_callback(&helper, false);
|
|
EXPECT_EQ(
|
|
net::ERR_IO_PENDING,
|
|
entry->WriteData(1, 0, truncate_buffer.get(), kReadBufferSize,
|
|
base::BindOnce(&CallbackTest::Run,
|
|
base::Unretained(&truncate_callback)),
|
|
true));
|
|
++expected;
|
|
|
|
// Wait for both the read and truncation to finish, and confirm that both
|
|
// succeeded.
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_EQ(kReadBufferSize, read_callback.last_result());
|
|
EXPECT_EQ(kReadBufferSize, truncate_callback.last_result());
|
|
EXPECT_EQ(0,
|
|
memcmp(write_buffer->data(), read_buffer->data(), kReadBufferSize));
|
|
}
|
|
|
|
// Tests that if a write and a read dependant on it are both in flight
|
|
// simultaneiously that they both can complete successfully without erroneous
|
|
// early returns. See http://crbug.com/239223
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheInFlightRead) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char key[] = "the first key";
|
|
EntryResult result =
|
|
cache_->CreateEntry(key, net::HIGHEST, EntryResultCallback());
|
|
ASSERT_EQ(net::OK, result.net_error());
|
|
disk_cache::Entry* entry = result.ReleaseEntry();
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
const int kBufferSize = 1024;
|
|
scoped_refptr<net::IOBuffer> write_buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kBufferSize);
|
|
CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
|
|
|
|
MessageLoopHelper helper;
|
|
int expected = 0;
|
|
|
|
CallbackTest write_callback(&helper, false);
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry->WriteData(1, 0, write_buffer.get(), kBufferSize,
|
|
base::BindOnce(&CallbackTest::Run,
|
|
base::Unretained(&write_callback)),
|
|
true));
|
|
++expected;
|
|
|
|
scoped_refptr<net::IOBuffer> read_buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kBufferSize);
|
|
CallbackTest read_callback(&helper, false);
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry->ReadData(1, 0, read_buffer.get(), kBufferSize,
|
|
base::BindOnce(&CallbackTest::Run,
|
|
base::Unretained(&read_callback))));
|
|
++expected;
|
|
|
|
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
|
|
EXPECT_EQ(kBufferSize, write_callback.last_result());
|
|
EXPECT_EQ(kBufferSize, read_callback.last_result());
|
|
EXPECT_EQ(0, memcmp(write_buffer->data(), read_buffer->data(), kBufferSize));
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOpenCreateRaceWithNoIndex) {
|
|
SetSimpleCacheMode();
|
|
DisableSimpleCacheWaitForIndex();
|
|
DisableIntegrityCheck();
|
|
InitCache();
|
|
|
|
// Assume the index is not initialized, which is likely, since we are blocking
|
|
// the IO thread from executing the index finalization step.
|
|
TestEntryResultCompletionCallback cb1;
|
|
TestEntryResultCompletionCallback cb2;
|
|
EntryResult rv1 = cache_->OpenEntry("key", net::HIGHEST, cb1.callback());
|
|
EntryResult rv2 = cache_->CreateEntry("key", net::HIGHEST, cb2.callback());
|
|
|
|
rv1 = cb1.GetResult(std::move(rv1));
|
|
EXPECT_THAT(rv1.net_error(), IsError(net::ERR_FAILED));
|
|
rv2 = cb2.GetResult(std::move(rv2));
|
|
ASSERT_THAT(rv2.net_error(), IsOk());
|
|
disk_cache::Entry* entry2 = rv2.ReleaseEntry();
|
|
|
|
// Try to get an alias for entry2. Open should succeed, and return the same
|
|
// pointer.
|
|
disk_cache::Entry* entry3 = nullptr;
|
|
ASSERT_EQ(net::OK, OpenEntry("key", &entry3));
|
|
EXPECT_EQ(entry3, entry2);
|
|
|
|
entry2->Close();
|
|
entry3->Close();
|
|
}
|
|
|
|
// Checking one more scenario of overlapped reading of a bad entry.
|
|
// Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of
|
|
// last two reads.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheMultipleReadersCheckCRC2) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char key[] = "key";
|
|
int size = 50000;
|
|
ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, size));
|
|
|
|
scoped_refptr<net::IOBuffer> read_buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(size);
|
|
scoped_refptr<net::IOBuffer> read_buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(size);
|
|
|
|
// Advance the first reader a little.
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
ScopedEntryPtr entry_closer(entry);
|
|
EXPECT_EQ(1, ReadData(entry, 1, 0, read_buffer1.get(), 1));
|
|
|
|
// Advance the 2nd reader by the same amount.
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
EXPECT_THAT(OpenEntry(key, &entry2), IsOk());
|
|
ScopedEntryPtr entry2_closer(entry2);
|
|
EXPECT_EQ(1, ReadData(entry2, 1, 0, read_buffer2.get(), 1));
|
|
|
|
// Continue reading 1st.
|
|
EXPECT_GT(0, ReadData(entry, 1, 1, read_buffer1.get(), size));
|
|
|
|
// This read should fail as well because we have previous read failures.
|
|
EXPECT_GT(0, ReadData(entry2, 1, 1, read_buffer2.get(), 1));
|
|
DisableIntegrityCheck();
|
|
}
|
|
|
|
// Test if we can sequentially read each subset of the data until all the data
|
|
// is read, then the CRC is calculated correctly and the reads are successful.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheReadCombineCRC) {
|
|
// Test sequence:
|
|
// Create, Write, Read (first half of data), Read (second half of data),
|
|
// Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* null = nullptr;
|
|
const char key[] = "the first key";
|
|
|
|
const int kHalfSize = 200;
|
|
const int kSize = 2 * kHalfSize;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer1->data(), kSize, false);
|
|
disk_cache::Entry* entry = nullptr;
|
|
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_NE(null, entry);
|
|
|
|
EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
|
|
entry->Close();
|
|
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
ASSERT_THAT(OpenEntry(key, &entry2), IsOk());
|
|
EXPECT_EQ(entry, entry2);
|
|
|
|
// Read the first half of the data.
|
|
int offset = 0;
|
|
int buf_len = kHalfSize;
|
|
scoped_refptr<net::IOBuffer> buffer1_read1 =
|
|
base::MakeRefCounted<net::IOBuffer>(buf_len);
|
|
EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read1.get(), buf_len));
|
|
EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), buf_len));
|
|
|
|
// Read the second half of the data.
|
|
offset = buf_len;
|
|
buf_len = kHalfSize;
|
|
scoped_refptr<net::IOBuffer> buffer1_read2 =
|
|
base::MakeRefCounted<net::IOBuffer>(buf_len);
|
|
EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read2.get(), buf_len));
|
|
char* buffer1_data = buffer1->data() + offset;
|
|
EXPECT_EQ(0, memcmp(buffer1_data, buffer1_read2->data(), buf_len));
|
|
|
|
// Check that we are not leaking.
|
|
EXPECT_NE(entry, null);
|
|
EXPECT_TRUE(
|
|
static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
|
|
entry->Close();
|
|
entry = nullptr;
|
|
}
|
|
|
|
// Test if we can write the data not in sequence and read correctly. In
|
|
// this case the CRC will not be present.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheNonSequentialWrite) {
|
|
// Test sequence:
|
|
// Create, Write (second half of data), Write (first half of data), Read,
|
|
// Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* null = nullptr;
|
|
const char key[] = "the first key";
|
|
|
|
const int kHalfSize = 200;
|
|
const int kSize = 2 * kHalfSize;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer1->data(), kSize, false);
|
|
char* buffer1_data = buffer1->data() + kHalfSize;
|
|
memcpy(buffer2->data(), buffer1_data, kHalfSize);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_NE(null, entry);
|
|
|
|
int offset = kHalfSize;
|
|
int buf_len = kHalfSize;
|
|
|
|
EXPECT_EQ(buf_len,
|
|
WriteData(entry, i, offset, buffer2.get(), buf_len, false));
|
|
offset = 0;
|
|
buf_len = kHalfSize;
|
|
EXPECT_EQ(buf_len,
|
|
WriteData(entry, i, offset, buffer1.get(), buf_len, false));
|
|
entry->Close();
|
|
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
scoped_refptr<net::IOBuffer> buffer1_read1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kSize));
|
|
// Check that we are not leaking.
|
|
ASSERT_NE(entry, null);
|
|
EXPECT_TRUE(static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
|
|
entry->Close();
|
|
}
|
|
}
|
|
|
|
// Test that changing stream1 size does not affect stream0 (stream0 and stream1
|
|
// are stored in the same file in Simple Cache).
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheStream1SizeChanges) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* entry = nullptr;
|
|
const std::string key("the key");
|
|
const int kSize = 100;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer_read =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_TRUE(entry);
|
|
|
|
// Write something into stream0.
|
|
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
|
|
EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
|
|
entry->Close();
|
|
|
|
// Extend stream1.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
int stream1_size = 100;
|
|
EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, false));
|
|
EXPECT_EQ(stream1_size, entry->GetDataSize(1));
|
|
entry->Close();
|
|
|
|
// Check that stream0 data has not been modified and that the EOF record for
|
|
// stream 0 contains a crc.
|
|
// The entry needs to be reopened before checking the crc: Open will perform
|
|
// the synchronization with the previous Close. This ensures the EOF records
|
|
// have been written to disk before we attempt to read them independently.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
base::FilePath entry_file0_path = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
|
|
base::File entry_file0(entry_file0_path,
|
|
base::File::FLAG_READ | base::File::FLAG_OPEN);
|
|
ASSERT_TRUE(entry_file0.IsValid());
|
|
|
|
int data_size[disk_cache::kSimpleEntryStreamCount] = {kSize, stream1_size, 0};
|
|
int sparse_data_size = 0;
|
|
disk_cache::SimpleEntryStat entry_stat(
|
|
base::Time::Now(), base::Time::Now(), data_size, sparse_data_size);
|
|
int eof_offset = entry_stat.GetEOFOffsetInFile(key.size(), 0);
|
|
disk_cache::SimpleFileEOF eof_record;
|
|
ASSERT_EQ(static_cast<int>(sizeof(eof_record)),
|
|
entry_file0.Read(eof_offset, reinterpret_cast<char*>(&eof_record),
|
|
sizeof(eof_record)));
|
|
EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber, eof_record.final_magic_number);
|
|
EXPECT_TRUE((eof_record.flags & disk_cache::SimpleFileEOF::FLAG_HAS_CRC32) ==
|
|
disk_cache::SimpleFileEOF::FLAG_HAS_CRC32);
|
|
|
|
buffer_read = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
|
|
|
|
// Shrink stream1.
|
|
stream1_size = 50;
|
|
EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, true));
|
|
EXPECT_EQ(stream1_size, entry->GetDataSize(1));
|
|
entry->Close();
|
|
|
|
// Check that stream0 data has not been modified.
|
|
buffer_read = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
|
|
entry->Close();
|
|
entry = nullptr;
|
|
}
|
|
|
|
// Test that writing within the range for which the crc has already been
|
|
// computed will properly invalidate the computed crc.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheCRCRewrite) {
|
|
// Test sequence:
|
|
// Create, Write (big data), Write (small data in the middle), Close.
|
|
// Open, Read (all), Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* null = nullptr;
|
|
const char key[] = "the first key";
|
|
|
|
const int kHalfSize = 200;
|
|
const int kSize = 2 * kHalfSize;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kHalfSize);
|
|
CacheTestFillBuffer(buffer1->data(), kSize, false);
|
|
CacheTestFillBuffer(buffer2->data(), kHalfSize, false);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_NE(null, entry);
|
|
entry->Close();
|
|
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
int offset = 0;
|
|
int buf_len = kSize;
|
|
|
|
EXPECT_EQ(buf_len,
|
|
WriteData(entry, i, offset, buffer1.get(), buf_len, false));
|
|
offset = kHalfSize;
|
|
buf_len = kHalfSize;
|
|
EXPECT_EQ(buf_len,
|
|
WriteData(entry, i, offset, buffer2.get(), buf_len, false));
|
|
entry->Close();
|
|
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
scoped_refptr<net::IOBuffer> buffer1_read1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kHalfSize));
|
|
EXPECT_EQ(
|
|
0,
|
|
memcmp(buffer2->data(), buffer1_read1->data() + kHalfSize, kHalfSize));
|
|
|
|
entry->Close();
|
|
}
|
|
}
|
|
|
|
bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key) {
|
|
int third_stream_file_index =
|
|
disk_cache::simple_util::GetFileIndexFromStreamIndex(2);
|
|
base::FilePath third_stream_file_path = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(
|
|
key, third_stream_file_index));
|
|
return PathExists(third_stream_file_path);
|
|
}
|
|
|
|
void DiskCacheEntryTest::SyncDoomEntry(const char* key) {
|
|
net::TestCompletionCallback callback;
|
|
cache_->DoomEntry(key, net::HIGHEST, callback.callback());
|
|
callback.WaitForResult();
|
|
}
|
|
|
|
void DiskCacheEntryTest::CreateEntryWithHeaderBodyAndSideData(
|
|
const std::string& key,
|
|
int data_size) {
|
|
// Use one buffer for simplicity.
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(data_size);
|
|
CacheTestFillBuffer(buffer->data(), data_size, false);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
EXPECT_EQ(data_size, WriteData(entry, i, /* offset */ 0, buffer.get(),
|
|
data_size, false));
|
|
}
|
|
entry->Close();
|
|
}
|
|
|
|
void DiskCacheEntryTest::TruncateFileFromEnd(int file_index,
|
|
const std::string& key,
|
|
int data_size,
|
|
int truncate_size) {
|
|
// Remove last eof bytes from cache file.
|
|
ASSERT_GT(data_size, truncate_size);
|
|
const int64_t new_size =
|
|
disk_cache::simple_util::GetFileSizeFromDataSize(key.size(), data_size) -
|
|
truncate_size;
|
|
const base::FilePath entry_path = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, file_index));
|
|
EXPECT_TRUE(TruncatePath(entry_path, new_size));
|
|
}
|
|
|
|
void DiskCacheEntryTest::UseAfterBackendDestruction() {
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
|
|
ResetCaches();
|
|
|
|
const int kSize = 100;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
// Do some writes and reads, but don't change the result. We're OK
|
|
// with them failing, just not them crashing.
|
|
WriteData(entry, 1, 0, buffer.get(), kSize, false);
|
|
ReadData(entry, 1, 0, buffer.get(), kSize);
|
|
WriteSparseData(entry, 20000, buffer.get(), kSize);
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
void DiskCacheEntryTest::CloseSparseAfterBackendDestruction() {
|
|
const int kSize = 100;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
|
|
WriteSparseData(entry, 20000, buffer.get(), kSize);
|
|
|
|
ResetCaches();
|
|
|
|
// This call shouldn't DCHECK or crash.
|
|
entry->Close();
|
|
}
|
|
|
|
// Check that a newly-created entry with no third-stream writes omits the
|
|
// third stream file.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream1) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char key[] = "key";
|
|
|
|
disk_cache::Entry* entry;
|
|
|
|
// Create entry and close without writing: third stream file should be
|
|
// omitted, since the stream is empty.
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
|
|
SyncDoomEntry(key);
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
}
|
|
|
|
// Check that a newly-created entry with only a single zero-offset, zero-length
|
|
// write omits the third stream file.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream2) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const int kHalfSize = 8;
|
|
const int kSize = kHalfSize * 2;
|
|
const char key[] = "key";
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kHalfSize, false);
|
|
|
|
disk_cache::Entry* entry;
|
|
|
|
// Create entry, write empty buffer to third stream, and close: third stream
|
|
// should still be omitted, since the entry ignores writes that don't modify
|
|
// data or change the length.
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(0, WriteData(entry, 2, 0, buffer.get(), 0, true));
|
|
entry->Close();
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
|
|
SyncDoomEntry(key);
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
}
|
|
|
|
// Check that we can read back data written to the third stream.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream3) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const int kHalfSize = 8;
|
|
const int kSize = kHalfSize * 2;
|
|
const char key[] = "key";
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
|
|
|
|
disk_cache::Entry* entry;
|
|
|
|
// Create entry, write data to third stream, and close: third stream should
|
|
// not be omitted, since it contains data. Re-open entry and ensure there
|
|
// are that many bytes in the third stream.
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true));
|
|
entry->Close();
|
|
EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
|
|
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(kHalfSize, ReadData(entry, 2, 0, buffer2.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kHalfSize));
|
|
entry->Close();
|
|
EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
|
|
|
|
SyncDoomEntry(key);
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
}
|
|
|
|
// Check that we remove the third stream file upon opening an entry and finding
|
|
// the third stream empty. (This is the upgrade path for entries written
|
|
// before the third stream was optional.)
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream4) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const int kHalfSize = 8;
|
|
const int kSize = kHalfSize * 2;
|
|
const char key[] = "key";
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
|
|
|
|
disk_cache::Entry* entry;
|
|
|
|
// Create entry, write data to third stream, truncate third stream back to
|
|
// empty, and close: third stream will not initially be omitted, since entry
|
|
// creates the file when the first significant write comes in, and only
|
|
// removes it on open if it is empty. Reopen, ensure that the file is
|
|
// deleted, and that there's no data in the third stream.
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true));
|
|
EXPECT_EQ(0, WriteData(entry, 2, 0, buffer1.get(), 0, true));
|
|
entry->Close();
|
|
EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
|
|
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
EXPECT_EQ(0, ReadData(entry, 2, 0, buffer2.get(), kSize));
|
|
entry->Close();
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
|
|
SyncDoomEntry(key);
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
}
|
|
|
|
// Check that we don't accidentally create the third stream file once the entry
|
|
// has been doomed.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream5) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const int kHalfSize = 8;
|
|
const int kSize = kHalfSize * 2;
|
|
const char key[] = "key";
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kHalfSize, false);
|
|
|
|
disk_cache::Entry* entry;
|
|
|
|
// Create entry, doom entry, write data to third stream, and close: third
|
|
// stream should not exist. (Note: We don't care if the write fails, just
|
|
// that it doesn't cause the file to be created on disk.)
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
entry->Doom();
|
|
WriteData(entry, 2, 0, buffer.get(), kHalfSize, true);
|
|
entry->Close();
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
}
|
|
|
|
// There could be a race between Doom and an optimistic write.
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomOptimisticWritesRace) {
|
|
// Test sequence:
|
|
// Create, first Write, second Write, Close.
|
|
// Open, Close.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* null = nullptr;
|
|
const char key[] = "the first key";
|
|
|
|
const int kSize = 200;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer1->data(), kSize, false);
|
|
CacheTestFillBuffer(buffer2->data(), kSize, false);
|
|
|
|
// The race only happens on stream 1 and stream 2.
|
|
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
|
|
ASSERT_THAT(DoomAllEntries(), IsOk());
|
|
disk_cache::Entry* entry = nullptr;
|
|
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_NE(null, entry);
|
|
entry->Close();
|
|
entry = nullptr;
|
|
|
|
ASSERT_THAT(DoomAllEntries(), IsOk());
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_NE(null, entry);
|
|
|
|
int offset = 0;
|
|
int buf_len = kSize;
|
|
// This write should not be optimistic (since create is).
|
|
EXPECT_EQ(buf_len,
|
|
WriteData(entry, i, offset, buffer1.get(), buf_len, false));
|
|
|
|
offset = kSize;
|
|
// This write should be optimistic.
|
|
EXPECT_EQ(buf_len,
|
|
WriteData(entry, i, offset, buffer2.get(), buf_len, false));
|
|
entry->Close();
|
|
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
EXPECT_NE(null, entry);
|
|
|
|
entry->Close();
|
|
entry = nullptr;
|
|
}
|
|
}
|
|
|
|
// Tests for a regression in crbug.com/317138 , in which deleting an already
|
|
// doomed entry was removing the active entry from the index.
|
|
TEST_F(DiskCacheEntryTest, SimpleCachePreserveActiveEntries) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
disk_cache::Entry* null = nullptr;
|
|
|
|
const char key[] = "this is a key";
|
|
|
|
disk_cache::Entry* entry1 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
|
|
ScopedEntryPtr entry1_closer(entry1);
|
|
EXPECT_NE(null, entry1);
|
|
entry1->Doom();
|
|
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry2), IsOk());
|
|
ScopedEntryPtr entry2_closer(entry2);
|
|
EXPECT_NE(null, entry2);
|
|
entry2_closer.reset();
|
|
|
|
// Closing then reopening entry2 insures that entry2 is serialized, and so
|
|
// it can be opened from files without error.
|
|
entry2 = nullptr;
|
|
ASSERT_THAT(OpenEntry(key, &entry2), IsOk());
|
|
EXPECT_NE(null, entry2);
|
|
entry2_closer.reset(entry2);
|
|
|
|
scoped_refptr<disk_cache::SimpleEntryImpl>
|
|
entry1_refptr = static_cast<disk_cache::SimpleEntryImpl*>(entry1);
|
|
|
|
// If crbug.com/317138 has regressed, this will remove |entry2| from
|
|
// the backend's |active_entries_| while |entry2| is still alive and its
|
|
// files are still on disk.
|
|
entry1_closer.reset();
|
|
entry1 = nullptr;
|
|
|
|
// Close does not have a callback. However, we need to be sure the close is
|
|
// finished before we continue the test. We can take advantage of how the ref
|
|
// counting of a SimpleEntryImpl works to fake out a callback: When the
|
|
// last Close() call is made to an entry, an IO operation is sent to the
|
|
// synchronous entry to close the platform files. This IO operation holds a
|
|
// ref pointer to the entry, which expires when the operation is done. So,
|
|
// we take a refpointer, and watch the SimpleEntry object until it has only
|
|
// one ref; this indicates the IO operation is complete.
|
|
while (!entry1_refptr->HasOneRef()) {
|
|
base::PlatformThread::YieldCurrentThread();
|
|
base::RunLoop().RunUntilIdle();
|
|
}
|
|
entry1_refptr = nullptr;
|
|
|
|
// In the bug case, this new entry ends up being a duplicate object pointing
|
|
// at the same underlying files.
|
|
disk_cache::Entry* entry3 = nullptr;
|
|
EXPECT_THAT(OpenEntry(key, &entry3), IsOk());
|
|
ScopedEntryPtr entry3_closer(entry3);
|
|
EXPECT_NE(null, entry3);
|
|
|
|
// The test passes if these two dooms do not crash.
|
|
entry2->Doom();
|
|
entry3->Doom();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheBasicSparseIO) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
BasicSparseIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheHugeSparseIO) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
HugeSparseIO();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheGetAvailableRange) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
GetAvailableRangeTest();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheUpdateSparseEntry) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
UpdateSparseEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoomSparseEntry) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
DoomSparseEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCachePartialSparseEntry) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
PartialSparseEntry();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheTruncateLargeSparseFile) {
|
|
const int kSize = 1024;
|
|
|
|
SetSimpleCacheMode();
|
|
// An entry is allowed sparse data 1/10 the size of the cache, so this size
|
|
// allows for one |kSize|-sized range plus overhead, but not two ranges.
|
|
SetMaxSize(kSize * 15);
|
|
InitCache();
|
|
|
|
const char key[] = "key";
|
|
disk_cache::Entry* null = nullptr;
|
|
disk_cache::Entry* entry;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
EXPECT_NE(null, entry);
|
|
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
net::TestCompletionCallback callback;
|
|
int ret;
|
|
|
|
// Verify initial conditions.
|
|
ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
|
|
EXPECT_EQ(0, callback.GetResult(ret));
|
|
|
|
ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
|
|
EXPECT_EQ(0, callback.GetResult(ret));
|
|
|
|
// Write a range and make sure it reads back.
|
|
ret = entry->WriteSparseData(0, buffer.get(), kSize, callback.callback());
|
|
EXPECT_EQ(kSize, callback.GetResult(ret));
|
|
|
|
ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
|
|
EXPECT_EQ(kSize, callback.GetResult(ret));
|
|
|
|
// Write another range and make sure it reads back.
|
|
ret = entry->WriteSparseData(kSize, buffer.get(), kSize, callback.callback());
|
|
EXPECT_EQ(kSize, callback.GetResult(ret));
|
|
|
|
ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
|
|
EXPECT_EQ(kSize, callback.GetResult(ret));
|
|
|
|
// Make sure the first range was removed when the second was written.
|
|
ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
|
|
EXPECT_EQ(0, callback.GetResult(ret));
|
|
|
|
// Close and reopen the entry and make sure the first entry is still absent
|
|
// and the second entry is still present.
|
|
entry->Close();
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
|
|
EXPECT_EQ(0, callback.GetResult(ret));
|
|
|
|
ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
|
|
EXPECT_EQ(kSize, callback.GetResult(ret));
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheNoBodyEOF) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const std::string key("the first key");
|
|
const int kSize = 1024;
|
|
CreateEntryWithHeaderBodyAndSideData(key, kSize);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
|
|
TruncateFileFromEnd(0 /*header and body file index*/, key, kSize,
|
|
static_cast<int>(sizeof(disk_cache::SimpleFileEOF)));
|
|
EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED));
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheNoSideDataEOF) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char key[] = "the first key";
|
|
const int kSize = 1024;
|
|
CreateEntryWithHeaderBodyAndSideData(key, kSize);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
|
|
TruncateFileFromEnd(1 /*side data file_index*/, key, kSize,
|
|
static_cast<int>(sizeof(disk_cache::SimpleFileEOF)));
|
|
EXPECT_THAT(OpenEntry(key, &entry), IsOk());
|
|
// The corrupted stream should have been deleted.
|
|
EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
|
|
// _0 should still exist.
|
|
base::FilePath path_0 = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
|
|
EXPECT_TRUE(base::PathExists(path_0));
|
|
|
|
scoped_refptr<net::IOBuffer> check_stream_data =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
EXPECT_EQ(kSize, ReadData(entry, 0, 0, check_stream_data.get(), kSize));
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 0, check_stream_data.get(), kSize));
|
|
EXPECT_EQ(0, entry->GetDataSize(2));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheReadWithoutKeySHA256) {
|
|
// This test runs as APP_CACHE to make operations more synchronous.
|
|
SetCacheType(net::APP_CACHE);
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* entry;
|
|
std::string key("a key");
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const std::string stream_0_data = "data for stream zero";
|
|
scoped_refptr<net::IOBuffer> stream_0_iobuffer =
|
|
base::MakeRefCounted<net::StringIOBuffer>(stream_0_data);
|
|
EXPECT_EQ(static_cast<int>(stream_0_data.size()),
|
|
WriteData(entry, 0, 0, stream_0_iobuffer.get(),
|
|
stream_0_data.size(), false));
|
|
const std::string stream_1_data = "FOR STREAM ONE, QUITE DIFFERENT THINGS";
|
|
scoped_refptr<net::IOBuffer> stream_1_iobuffer =
|
|
base::MakeRefCounted<net::StringIOBuffer>(stream_1_data);
|
|
EXPECT_EQ(static_cast<int>(stream_1_data.size()),
|
|
WriteData(entry, 1, 0, stream_1_iobuffer.get(),
|
|
stream_1_data.size(), false));
|
|
entry->Close();
|
|
|
|
base::RunLoop().RunUntilIdle();
|
|
disk_cache::FlushCacheThreadForTesting();
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
EXPECT_TRUE(
|
|
disk_cache::simple_util::RemoveKeySHA256FromEntry(key, cache_path_));
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
ScopedEntryPtr entry_closer(entry);
|
|
|
|
EXPECT_EQ(static_cast<int>(stream_0_data.size()), entry->GetDataSize(0));
|
|
scoped_refptr<net::IOBuffer> check_stream_0_data =
|
|
base::MakeRefCounted<net::IOBuffer>(stream_0_data.size());
|
|
EXPECT_EQ(
|
|
static_cast<int>(stream_0_data.size()),
|
|
ReadData(entry, 0, 0, check_stream_0_data.get(), stream_0_data.size()));
|
|
EXPECT_EQ(0, stream_0_data.compare(0, std::string::npos,
|
|
check_stream_0_data->data(),
|
|
stream_0_data.size()));
|
|
|
|
EXPECT_EQ(static_cast<int>(stream_1_data.size()), entry->GetDataSize(1));
|
|
scoped_refptr<net::IOBuffer> check_stream_1_data =
|
|
base::MakeRefCounted<net::IOBuffer>(stream_1_data.size());
|
|
EXPECT_EQ(
|
|
static_cast<int>(stream_1_data.size()),
|
|
ReadData(entry, 1, 0, check_stream_1_data.get(), stream_1_data.size()));
|
|
EXPECT_EQ(0, stream_1_data.compare(0, std::string::npos,
|
|
check_stream_1_data->data(),
|
|
stream_1_data.size()));
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheDoubleOpenWithoutKeySHA256) {
|
|
// This test runs as APP_CACHE to make operations more synchronous.
|
|
SetCacheType(net::APP_CACHE);
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* entry;
|
|
std::string key("a key");
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
|
|
base::RunLoop().RunUntilIdle();
|
|
disk_cache::FlushCacheThreadForTesting();
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
EXPECT_TRUE(
|
|
disk_cache::simple_util::RemoveKeySHA256FromEntry(key, cache_path_));
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
|
|
base::RunLoop().RunUntilIdle();
|
|
disk_cache::FlushCacheThreadForTesting();
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheReadCorruptKeySHA256) {
|
|
// This test runs as APP_CACHE to make operations more synchronous.
|
|
SetCacheType(net::APP_CACHE);
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* entry;
|
|
std::string key("a key");
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
|
|
base::RunLoop().RunUntilIdle();
|
|
disk_cache::FlushCacheThreadForTesting();
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
EXPECT_TRUE(
|
|
disk_cache::simple_util::CorruptKeySHA256FromEntry(key, cache_path_));
|
|
EXPECT_NE(net::OK, OpenEntry(key, &entry));
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheReadCorruptLength) {
|
|
SetCacheType(net::APP_CACHE);
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* entry;
|
|
std::string key("a key");
|
|
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
|
|
entry->Close();
|
|
|
|
base::RunLoop().RunUntilIdle();
|
|
disk_cache::FlushCacheThreadForTesting();
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
EXPECT_TRUE(
|
|
disk_cache::simple_util::CorruptStream0LengthFromEntry(key, cache_path_));
|
|
EXPECT_NE(net::OK, OpenEntry(key, &entry));
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheCreateRecoverFromRmdir) {
|
|
// This test runs as APP_CACHE to make operations more synchronous.
|
|
// (in particular we want to see if create succeeded or not, so we don't
|
|
// want an optimistic one).
|
|
SetCacheType(net::APP_CACHE);
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
// Pretend someone deleted the cache dir. This shouldn't be too scary in
|
|
// the test since cache_path_ is set as:
|
|
// CHECK(temp_dir_.CreateUniqueTempDir());
|
|
// cache_path_ = temp_dir_.GetPath().AppendASCII("cache");
|
|
disk_cache::DeleteCache(cache_path_,
|
|
true /* delete the dir, what we really want*/);
|
|
|
|
disk_cache::Entry* entry;
|
|
std::string key("a key");
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheSparseErrorHandling) {
|
|
// If there is corruption in sparse file, we should delete all the files
|
|
// before returning the failure. Further additional sparse operations in
|
|
// failure state should fail gracefully.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
std::string key("a key");
|
|
|
|
disk_cache::SimpleFileTracker::EntryFileKey num_key(
|
|
disk_cache::simple_util::GetEntryHashKey(key));
|
|
base::FilePath path_0 = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromEntryFileKeyAndFileIndex(num_key,
|
|
0));
|
|
base::FilePath path_s = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetSparseFilenameFromEntryFileKey(num_key));
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
|
|
const int kSize = 1024;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 0, buffer.get(), kSize));
|
|
entry->Close();
|
|
|
|
disk_cache::FlushCacheThreadForTesting();
|
|
EXPECT_TRUE(base::PathExists(path_0));
|
|
EXPECT_TRUE(base::PathExists(path_s));
|
|
|
|
// Now corrupt the _s file in a way that makes it look OK on open, but not on
|
|
// read.
|
|
base::File file_s(path_s, base::File::FLAG_OPEN | base::File::FLAG_READ |
|
|
base::File::FLAG_WRITE);
|
|
ASSERT_TRUE(file_s.IsValid());
|
|
file_s.SetLength(sizeof(disk_cache::SimpleFileHeader) +
|
|
sizeof(disk_cache::SimpleFileSparseRangeHeader) +
|
|
key.size());
|
|
file_s.Close();
|
|
|
|
// Re-open, it should still be fine.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
|
|
// Read should fail though.
|
|
EXPECT_EQ(net::ERR_CACHE_READ_FAILURE,
|
|
ReadSparseData(entry, 0, buffer.get(), kSize));
|
|
|
|
// At the point read returns to us, the files should already been gone.
|
|
EXPECT_FALSE(base::PathExists(path_0));
|
|
EXPECT_FALSE(base::PathExists(path_s));
|
|
|
|
// Re-trying should still fail. Not DCHECK-fail.
|
|
EXPECT_EQ(net::ERR_FAILED, ReadSparseData(entry, 0, buffer.get(), kSize));
|
|
|
|
// Similarly for other ops.
|
|
EXPECT_EQ(net::ERR_FAILED, WriteSparseData(entry, 0, buffer.get(), kSize));
|
|
net::TestCompletionCallback cb;
|
|
|
|
TestRangeResultCompletionCallback range_cb;
|
|
RangeResult result = range_cb.GetResult(
|
|
entry->GetAvailableRange(0, 1024, range_cb.callback()));
|
|
EXPECT_EQ(net::ERR_FAILED, result.net_error);
|
|
|
|
entry->Close();
|
|
disk_cache::FlushCacheThreadForTesting();
|
|
|
|
// Closing shouldn't resurrect files, either.
|
|
EXPECT_FALSE(base::PathExists(path_0));
|
|
EXPECT_FALSE(base::PathExists(path_s));
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheCreateCollision) {
|
|
// These two keys collide; this test is that we properly handled creation
|
|
// of both.
|
|
const char kCollKey1[] =
|
|
"\xfb\x4e\x9c\x1d\x66\x71\xf7\x54\xa3\x11\xa0\x7e\x16\xa5\x68\xf6";
|
|
const char kCollKey2[] =
|
|
"\xbc\x60\x64\x92\xbc\xa0\x5c\x15\x17\x93\x29\x2d\xe4\x21\xbd\x03";
|
|
|
|
const int kSize = 256;
|
|
scoped_refptr<net::IOBuffer> buffer1 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
scoped_refptr<net::IOBuffer> read_buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer1->data(), kSize, false);
|
|
CacheTestFillBuffer(buffer2->data(), kSize, false);
|
|
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
disk_cache::Entry* entry1;
|
|
ASSERT_THAT(CreateEntry(kCollKey1, &entry1), IsOk());
|
|
|
|
disk_cache::Entry* entry2;
|
|
ASSERT_THAT(CreateEntry(kCollKey2, &entry2), IsOk());
|
|
|
|
// Make sure that entry was actually created and we didn't just succeed
|
|
// optimistically. (Oddly I can't seem to hit the sequence of events required
|
|
// for the bug that used to be here if I just set this to APP_CACHE).
|
|
EXPECT_EQ(kSize, WriteData(entry2, 0, 0, buffer2.get(), kSize, false));
|
|
|
|
// entry1 is still usable, though, and distinct (we just won't be able to
|
|
// re-open it).
|
|
EXPECT_EQ(kSize, WriteData(entry1, 0, 0, buffer1.get(), kSize, false));
|
|
EXPECT_EQ(kSize, ReadData(entry1, 0, 0, read_buffer.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer1->data(), read_buffer->data(), kSize));
|
|
|
|
EXPECT_EQ(kSize, ReadData(entry2, 0, 0, read_buffer.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer2->data(), read_buffer->data(), kSize));
|
|
|
|
entry1->Close();
|
|
entry2->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheConvertToSparseStream2LeftOver) {
|
|
// Testcase for what happens when we have a sparse stream and a left over
|
|
// empty stream 2 file.
|
|
const int kSize = 10;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
disk_cache::Entry* entry;
|
|
std::string key("a key");
|
|
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
|
|
// Create an empty stream 2. To do that, we first make a non-empty one, then
|
|
// truncate it (since otherwise the write would just get ignored).
|
|
EXPECT_EQ(kSize, WriteData(entry, /* stream = */ 2, /* offset = */ 0,
|
|
buffer.get(), kSize, false));
|
|
EXPECT_EQ(0, WriteData(entry, /* stream = */ 2, /* offset = */ 0,
|
|
buffer.get(), 0, true));
|
|
|
|
EXPECT_EQ(kSize, WriteSparseData(entry, 5, buffer.get(), kSize));
|
|
entry->Close();
|
|
|
|
// Reopen, and try to get the sparse data back.
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
EXPECT_EQ(kSize, ReadSparseData(entry, 5, buffer2.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheLazyStream2CreateFailure) {
|
|
// Testcase for what happens when lazy-creation of stream 2 fails.
|
|
const int kSize = 10;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
// Synchronous ops, for ease of disk state;
|
|
SetCacheType(net::APP_CACHE);
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char kKey[] = "a key";
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
|
|
|
|
// Create _1 file for stream 2; this should inject a failure when the cache
|
|
// tries to create it itself.
|
|
base::FilePath entry_file1_path = cache_path_.AppendASCII(
|
|
disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(kKey, 1));
|
|
base::File entry_file1(entry_file1_path,
|
|
base::File::FLAG_WRITE | base::File::FLAG_CREATE);
|
|
ASSERT_TRUE(entry_file1.IsValid());
|
|
entry_file1.Close();
|
|
|
|
EXPECT_EQ(net::ERR_CACHE_WRITE_FAILURE,
|
|
WriteData(entry, /* index = */ 2, /* offset = */ 0, buffer.get(),
|
|
kSize, /* truncate = */ false));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheChecksumpScrewUp) {
|
|
// Test for a bug that occurred during development of movement of CRC
|
|
// computation off I/O thread.
|
|
const int kSize = 10;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
const int kDoubleSize = kSize * 2;
|
|
scoped_refptr<net::IOBuffer> big_buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kDoubleSize);
|
|
CacheTestFillBuffer(big_buffer->data(), kDoubleSize, false);
|
|
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char kKey[] = "a key";
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
|
|
|
|
// Write out big_buffer for the double range. Checksum will be set to this.
|
|
ASSERT_EQ(kDoubleSize,
|
|
WriteData(entry, 1, 0, big_buffer.get(), kDoubleSize, false));
|
|
|
|
// Reset remembered position to 0 by writing at an earlier non-zero offset.
|
|
ASSERT_EQ(1, WriteData(entry, /* stream = */ 1, /* offset = */ 1,
|
|
big_buffer.get(), /* len = */ 1, false));
|
|
|
|
// Now write out the half-range twice. An intermediate revision would
|
|
// incorrectly compute checksum as if payload was buffer followed by buffer
|
|
// rather than buffer followed by end of big_buffer.
|
|
ASSERT_EQ(kSize, WriteData(entry, 1, 0, buffer.get(), kSize, false));
|
|
ASSERT_EQ(kSize, WriteData(entry, 1, 0, buffer.get(), kSize, false));
|
|
entry->Close();
|
|
|
|
ASSERT_THAT(OpenEntry(kKey, &entry), IsOk());
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize));
|
|
EXPECT_EQ(kSize, ReadData(entry, 1, kSize, buffer2.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(big_buffer->data() + kSize, buffer2->data(), kSize));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleUseAfterBackendDestruction) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
UseAfterBackendDestruction();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyUseAfterBackendDestruction) {
|
|
// https://crbug.com/741620
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
UseAfterBackendDestruction();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCloseSparseAfterBackendDestruction) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
CloseSparseAfterBackendDestruction();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyCloseSparseAfterBackendDestruction) {
|
|
// https://crbug.com/946434
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
CloseSparseAfterBackendDestruction();
|
|
}
|
|
|
|
void DiskCacheEntryTest::LastUsedTimePersists() {
|
|
// Make sure that SetLastUsedTimeForTest persists. When used with SimpleCache,
|
|
// this also checks that Entry::GetLastUsed is based on information in index,
|
|
// when available, not atime on disk, which can be inaccurate.
|
|
const char kKey[] = "a key";
|
|
InitCache();
|
|
|
|
disk_cache::Entry* entry1 = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk());
|
|
ASSERT_TRUE(nullptr != entry1);
|
|
base::Time modified_last_used = entry1->GetLastUsed() - base::Minutes(5);
|
|
entry1->SetLastUsedTimeForTest(modified_last_used);
|
|
entry1->Close();
|
|
|
|
disk_cache::Entry* entry2 = nullptr;
|
|
ASSERT_THAT(OpenEntry(kKey, &entry2), IsOk());
|
|
ASSERT_TRUE(nullptr != entry2);
|
|
|
|
base::TimeDelta diff = modified_last_used - entry2->GetLastUsed();
|
|
EXPECT_LT(diff, base::Seconds(2));
|
|
EXPECT_GT(diff, -base::Seconds(2));
|
|
entry2->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, LastUsedTimePersists) {
|
|
LastUsedTimePersists();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleLastUsedTimePersists) {
|
|
SetSimpleCacheMode();
|
|
LastUsedTimePersists();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyLastUsedTimePersists) {
|
|
SetMemoryOnlyMode();
|
|
LastUsedTimePersists();
|
|
}
|
|
|
|
void DiskCacheEntryTest::TruncateBackwards() {
|
|
const char kKey[] = "a key";
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
|
|
ASSERT_TRUE(entry != nullptr);
|
|
|
|
const int kBigSize = 40 * 1024;
|
|
const int kSmallSize = 9727;
|
|
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kBigSize);
|
|
CacheTestFillBuffer(buffer->data(), kBigSize, false);
|
|
scoped_refptr<net::IOBuffer> read_buf =
|
|
base::MakeRefCounted<net::IOBuffer>(kBigSize);
|
|
|
|
ASSERT_EQ(kSmallSize, WriteData(entry, /* index = */ 0,
|
|
/* offset = */ kBigSize, buffer.get(),
|
|
/* size = */ kSmallSize,
|
|
/* truncate = */ false));
|
|
memset(read_buf->data(), 0, kBigSize);
|
|
ASSERT_EQ(kSmallSize, ReadData(entry, /* index = */ 0,
|
|
/* offset = */ kBigSize, read_buf.get(),
|
|
/* size = */ kSmallSize));
|
|
EXPECT_EQ(0, memcmp(read_buf->data(), buffer->data(), kSmallSize));
|
|
|
|
// A partly overlapping truncate before the previous write.
|
|
ASSERT_EQ(kBigSize,
|
|
WriteData(entry, /* index = */ 0,
|
|
/* offset = */ 3, buffer.get(), /* size = */ kBigSize,
|
|
/* truncate = */ true));
|
|
memset(read_buf->data(), 0, kBigSize);
|
|
ASSERT_EQ(kBigSize,
|
|
ReadData(entry, /* index = */ 0,
|
|
/* offset = */ 3, read_buf.get(), /* size = */ kBigSize));
|
|
EXPECT_EQ(0, memcmp(read_buf->data(), buffer->data(), kBigSize));
|
|
EXPECT_EQ(kBigSize + 3, entry->GetDataSize(0));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, TruncateBackwards) {
|
|
// https://crbug.com/946539/
|
|
InitCache();
|
|
TruncateBackwards();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleTruncateBackwards) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
TruncateBackwards();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateBackwards) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
TruncateBackwards();
|
|
}
|
|
|
|
void DiskCacheEntryTest::ZeroWriteBackwards() {
|
|
const char kKey[] = "a key";
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
|
|
ASSERT_TRUE(entry != nullptr);
|
|
|
|
const int kSize = 1024;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
// Offset here needs to be > blockfile's kMaxBlockSize to hit
|
|
// https://crbug.com/946538, as writes close to beginning are handled
|
|
// specially.
|
|
EXPECT_EQ(0, WriteData(entry, /* index = */ 0,
|
|
/* offset = */ 17000, buffer.get(),
|
|
/* size = */ 0, /* truncate = */ true));
|
|
|
|
EXPECT_EQ(0, WriteData(entry, /* index = */ 0,
|
|
/* offset = */ 0, buffer.get(),
|
|
/* size = */ 0, /* truncate = */ false));
|
|
|
|
EXPECT_EQ(kSize, ReadData(entry, /* index = */ 0,
|
|
/* offset = */ 0, buffer.get(),
|
|
/* size = */ kSize));
|
|
for (int i = 0; i < kSize; ++i) {
|
|
EXPECT_EQ(0, buffer->data()[i]) << i;
|
|
}
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, ZeroWriteBackwards) {
|
|
// https://crbug.com/946538/
|
|
InitCache();
|
|
ZeroWriteBackwards();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleZeroWriteBackwards) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
ZeroWriteBackwards();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlyZeroWriteBackwards) {
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
ZeroWriteBackwards();
|
|
}
|
|
|
|
void DiskCacheEntryTest::SparseOffset64Bit() {
|
|
// Offsets to sparse ops are 64-bit, make sure we keep track of all of them.
|
|
// (Or, as at least in case of blockfile, fail things cleanly, as it has a
|
|
// cap on max offset that's much lower).
|
|
bool blockfile = !memory_only_ && !simple_cache_mode_;
|
|
InitCache();
|
|
|
|
const char kKey[] = "a key";
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
|
|
ASSERT_TRUE(entry != nullptr);
|
|
|
|
const int kSize = 1024;
|
|
// One bit set very high, so intermediate truncations to 32-bit would drop it
|
|
// even if they happen after a bunch of shifting right.
|
|
const int64_t kOffset = (1ll << 61);
|
|
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
EXPECT_EQ(blockfile ? net::ERR_CACHE_OPERATION_NOT_SUPPORTED : kSize,
|
|
WriteSparseData(entry, kOffset, buffer.get(), kSize));
|
|
|
|
int64_t start_out = -1;
|
|
EXPECT_EQ(0, GetAvailableRange(entry, /* offset = */ 0, kSize, &start_out));
|
|
|
|
start_out = -1;
|
|
EXPECT_EQ(blockfile ? 0 : kSize,
|
|
GetAvailableRange(entry, kOffset, kSize, &start_out));
|
|
EXPECT_EQ(kOffset, start_out);
|
|
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SparseOffset64Bit) {
|
|
InitCache();
|
|
SparseOffset64Bit();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleSparseOffset64Bit) {
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
SparseOffset64Bit();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, MemoryOnlySparseOffset64Bit) {
|
|
// https://crbug.com/946436
|
|
SetMemoryOnlyMode();
|
|
InitCache();
|
|
SparseOffset64Bit();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, SimpleCacheCloseResurrection) {
|
|
const int kSize = 10;
|
|
scoped_refptr<net::IOBuffer> buffer =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buffer->data(), kSize, false);
|
|
|
|
const char kKey[] = "key";
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry(kKey, &entry), IsOk());
|
|
ASSERT_TRUE(entry != nullptr);
|
|
|
|
// Let optimistic create finish.
|
|
base::RunLoop().RunUntilIdle();
|
|
disk_cache::FlushCacheThreadForTesting();
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
int rv = entry->WriteData(1, 0, buffer.get(), kSize,
|
|
net::CompletionOnceCallback(), false);
|
|
|
|
// Write should be optimistic.
|
|
ASSERT_EQ(kSize, rv);
|
|
|
|
// Since the write is still pending, the open will get queued...
|
|
TestEntryResultCompletionCallback cb_open;
|
|
EntryResult result2 =
|
|
cache_->OpenEntry(kKey, net::HIGHEST, cb_open.callback());
|
|
EXPECT_EQ(net::ERR_IO_PENDING, result2.net_error());
|
|
|
|
// ... as the open is queued, this Close will temporarily reduce the number
|
|
// of external references to 0. This should not break things.
|
|
entry->Close();
|
|
|
|
// Wait till open finishes.
|
|
result2 = cb_open.GetResult(std::move(result2));
|
|
ASSERT_EQ(net::OK, result2.net_error());
|
|
disk_cache::Entry* entry2 = result2.ReleaseEntry();
|
|
ASSERT_TRUE(entry2 != nullptr);
|
|
|
|
// Get first close a chance to finish.
|
|
base::RunLoop().RunUntilIdle();
|
|
disk_cache::FlushCacheThreadForTesting();
|
|
base::RunLoop().RunUntilIdle();
|
|
|
|
// Make sure |entry2| is still usable.
|
|
scoped_refptr<net::IOBuffer> buffer2 =
|
|
base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
memset(buffer2->data(), 0, kSize);
|
|
EXPECT_EQ(kSize, ReadData(entry2, 1, 0, buffer2.get(), kSize));
|
|
EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize));
|
|
entry2->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheEntryTest, BlockFileSparsePendingAfterDtor) {
|
|
// Test of behavior of ~EntryImpl for sparse entry that runs after backend
|
|
// destruction.
|
|
//
|
|
// Hand-creating the backend for realistic shutdown behavior.
|
|
CleanupCacheDir();
|
|
CreateBackend(disk_cache::kNone);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(CreateEntry("key", &entry), IsOk());
|
|
ASSERT_TRUE(entry != nullptr);
|
|
|
|
const int kSize = 61184;
|
|
|
|
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
|
|
CacheTestFillBuffer(buf->data(), kSize, false);
|
|
|
|
// The write pattern here avoids the second write being handled by the
|
|
// buffering layer, making SparseControl have to deal with its asynchrony.
|
|
EXPECT_EQ(1, WriteSparseData(entry, 65535, buf.get(), 1));
|
|
EXPECT_EQ(net::ERR_IO_PENDING,
|
|
entry->WriteSparseData(2560, buf.get(), kSize, base::DoNothing()));
|
|
entry->Close();
|
|
ResetCaches();
|
|
|
|
// Create a new instance as a way of flushing the thread.
|
|
InitCache();
|
|
FlushQueueForTest();
|
|
}
|
|
|
|
class DiskCacheSimplePrefetchTest : public DiskCacheEntryTest {
|
|
public:
|
|
DiskCacheSimplePrefetchTest() = default;
|
|
|
|
enum { kEntrySize = 1024 };
|
|
|
|
void SetUp() override {
|
|
payload_ = base::MakeRefCounted<net::IOBuffer>(kEntrySize);
|
|
CacheTestFillBuffer(payload_->data(), kEntrySize, false);
|
|
DiskCacheEntryTest::SetUp();
|
|
}
|
|
|
|
void SetupFullAndTrailerPrefetch(int full_size,
|
|
int trailer_speculative_size) {
|
|
std::map<std::string, std::string> params;
|
|
params[disk_cache::kSimpleCacheFullPrefetchBytesParam] =
|
|
base::NumberToString(full_size);
|
|
params[disk_cache::kSimpleCacheTrailerPrefetchSpeculativeBytesParam] =
|
|
base::NumberToString(trailer_speculative_size);
|
|
scoped_feature_list_.InitAndEnableFeatureWithParameters(
|
|
disk_cache::kSimpleCachePrefetchExperiment, params);
|
|
}
|
|
|
|
void SetupFullPrefetch(int size) { SetupFullAndTrailerPrefetch(size, 0); }
|
|
|
|
void InitCacheAndCreateEntry(const std::string& key) {
|
|
SetSimpleCacheMode();
|
|
SetCacheType(SimpleCacheType());
|
|
InitCache();
|
|
|
|
disk_cache::Entry* entry;
|
|
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
|
|
// Use stream 1 since that's what new prefetch stuff is about.
|
|
ASSERT_EQ(kEntrySize,
|
|
WriteData(entry, 1, 0, payload_.get(), kEntrySize, false));
|
|
entry->Close();
|
|
}
|
|
|
|
virtual net::CacheType SimpleCacheType() const { return net::DISK_CACHE; }
|
|
|
|
void InitCacheAndCreateEntryWithNoCrc(const std::string& key) {
|
|
const int kHalfSize = kEntrySize / 2;
|
|
const int kRemSize = kEntrySize - kHalfSize;
|
|
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
disk_cache::Entry* entry;
|
|
ASSERT_EQ(net::OK, CreateEntry(key, &entry));
|
|
// Use stream 1 since that's what new prefetch stuff is about.
|
|
ASSERT_EQ(kEntrySize,
|
|
WriteData(entry, 1, 0, payload_.get(), kEntrySize, false));
|
|
|
|
// Overwrite later part of the buffer, since we can't keep track of
|
|
// the checksum in that case. Do it with identical contents, though,
|
|
// so that the only difference between here and InitCacheAndCreateEntry()
|
|
// would be whether the result has a checkum or not.
|
|
scoped_refptr<net::IOBuffer> second_half =
|
|
base::MakeRefCounted<net::IOBuffer>(kRemSize);
|
|
memcpy(second_half->data(), payload_->data() + kHalfSize, kRemSize);
|
|
ASSERT_EQ(kRemSize, WriteData(entry, 1, kHalfSize, second_half.get(),
|
|
kRemSize, false));
|
|
entry->Close();
|
|
}
|
|
|
|
void TryRead(const std::string& key, bool expect_preread_stream1) {
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
|
|
scoped_refptr<net::IOBuffer> read_buf =
|
|
base::MakeRefCounted<net::IOBuffer>(kEntrySize);
|
|
net::TestCompletionCallback cb;
|
|
int rv = entry->ReadData(1, 0, read_buf.get(), kEntrySize, cb.callback());
|
|
|
|
// if preload happened, sync reply is expected.
|
|
if (expect_preread_stream1)
|
|
EXPECT_EQ(kEntrySize, rv);
|
|
else
|
|
EXPECT_EQ(net::ERR_IO_PENDING, rv);
|
|
rv = cb.GetResult(rv);
|
|
EXPECT_EQ(kEntrySize, rv);
|
|
EXPECT_EQ(0, memcmp(read_buf->data(), payload_->data(), kEntrySize));
|
|
entry->Close();
|
|
}
|
|
|
|
protected:
|
|
scoped_refptr<net::IOBuffer> payload_;
|
|
base::test::ScopedFeatureList scoped_feature_list_;
|
|
};
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, NoPrefetch) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullPrefetch(0);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_NONE, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, YesPrefetch) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullPrefetch(2 * kEntrySize);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ true);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_FULL, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, YesPrefetchNoRead) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullPrefetch(2 * kEntrySize);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(OpenEntry(kKey, &entry), IsOk());
|
|
entry->Close();
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_FULL, 1);
|
|
}
|
|
|
|
// This makes sure we detect checksum error on entry that's small enough to be
|
|
// prefetched. This is like DiskCacheEntryTest.BadChecksum, but we make sure
|
|
// to configure prefetch explicitly.
|
|
TEST_F(DiskCacheSimplePrefetchTest, BadChecksumSmall) {
|
|
SetupFullPrefetch(1024); // bigger than stuff below.
|
|
SetSimpleCacheMode();
|
|
InitCache();
|
|
|
|
const char key[] = "the first key";
|
|
ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, 10));
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
|
|
// Open the entry. Since we made a small entry, we will detect the CRC
|
|
// problem at open.
|
|
EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED));
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, ChecksumNoPrefetch) {
|
|
base::HistogramTester histogram_tester;
|
|
|
|
SetupFullPrefetch(0);
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
|
|
disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, NoChecksumNoPrefetch) {
|
|
base::HistogramTester histogram_tester;
|
|
|
|
SetupFullPrefetch(0);
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntryWithNoCrc(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
|
|
disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, ChecksumPrefetch) {
|
|
base::HistogramTester histogram_tester;
|
|
|
|
SetupFullPrefetch(2 * kEntrySize);
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ true);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
|
|
disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, NoChecksumPrefetch) {
|
|
base::HistogramTester histogram_tester;
|
|
|
|
SetupFullPrefetch(2 * kEntrySize);
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntryWithNoCrc(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ true);
|
|
|
|
// EOF check is recorded even if there is no CRC there.
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult",
|
|
disk_cache::CHECK_EOF_RESULT_SUCCESS, 2);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, PrefetchReadsSync) {
|
|
// Make sure we can read things synchronously after prefetch.
|
|
SetupFullPrefetch(32768); // way bigger than kEntrySize
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
|
|
disk_cache::Entry* entry = nullptr;
|
|
ASSERT_THAT(OpenEntry(kKey, &entry), IsOk());
|
|
scoped_refptr<net::IOBuffer> read_buf =
|
|
base::MakeRefCounted<net::IOBuffer>(kEntrySize);
|
|
|
|
// That this is entry->ReadData(...) rather than ReadData(entry, ...) is
|
|
// meaningful here, as the latter is a helper in the test fixture that blocks
|
|
// if needed.
|
|
EXPECT_EQ(kEntrySize, entry->ReadData(1, 0, read_buf.get(), kEntrySize,
|
|
net::CompletionOnceCallback()));
|
|
EXPECT_EQ(0, memcmp(read_buf->data(), payload_->data(), kEntrySize));
|
|
entry->Close();
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, NoFullNoSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullAndTrailerPrefetch(0, 0);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_NONE, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, NoFullSmallSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullAndTrailerPrefetch(0, kEntrySize / 2);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_TRAILER, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, NoFullLargeSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
// A large speculative trailer prefetch that exceeds the entry file
|
|
// size should effectively trigger full prefetch behavior.
|
|
SetupFullAndTrailerPrefetch(0, kEntrySize * 2);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ true);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_FULL, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, SmallFullNoSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullAndTrailerPrefetch(kEntrySize / 2, 0);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_NONE, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, LargeFullNoSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullAndTrailerPrefetch(kEntrySize * 2, 0);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ true);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_FULL, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, SmallFullSmallSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullAndTrailerPrefetch(kEntrySize / 2, kEntrySize / 2);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_TRAILER, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimplePrefetchTest, LargeFullSmallSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
// Full prefetch takes precedence over a trailer speculative prefetch.
|
|
SetupFullAndTrailerPrefetch(kEntrySize * 2, kEntrySize / 2);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ true);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_FULL, 1);
|
|
}
|
|
|
|
class DiskCacheSimpleAppCachePrefetchTest : public DiskCacheSimplePrefetchTest {
|
|
public:
|
|
// APP_CACHE mode will enable trailer prefetch hint support.
|
|
net::CacheType SimpleCacheType() const override { return net::APP_CACHE; }
|
|
};
|
|
|
|
TEST_F(DiskCacheSimpleAppCachePrefetchTest, NoFullNoSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullAndTrailerPrefetch(0, 0);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_TRAILER, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimpleAppCachePrefetchTest, NoFullSmallSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullAndTrailerPrefetch(0, kEntrySize / 2);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_TRAILER, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimpleAppCachePrefetchTest, NoFullLargeSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
// Even though the speculative trailer prefetch size is larger than the
|
|
// file size, the hint should take precedence and still perform a limited
|
|
// trailer prefetch.
|
|
SetupFullAndTrailerPrefetch(0, kEntrySize * 2);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_TRAILER, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimpleAppCachePrefetchTest, SmallFullNoSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullAndTrailerPrefetch(kEntrySize / 2, 0);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_TRAILER, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimpleAppCachePrefetchTest, LargeFullNoSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
// Full prefetch takes precedence over a trailer hint prefetch.
|
|
SetupFullAndTrailerPrefetch(kEntrySize * 2, 0);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ true);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_FULL, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimpleAppCachePrefetchTest, SmallFullSmallSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
SetupFullAndTrailerPrefetch(kEntrySize / 2, kEntrySize / 2);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ false);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_TRAILER, 1);
|
|
}
|
|
|
|
TEST_F(DiskCacheSimpleAppCachePrefetchTest, LargeFullSmallSpeculative) {
|
|
base::HistogramTester histogram_tester;
|
|
// Full prefetch takes precedence over a trailer speculative prefetch.
|
|
SetupFullAndTrailerPrefetch(kEntrySize * 2, kEntrySize / 2);
|
|
|
|
const char kKey[] = "a key";
|
|
InitCacheAndCreateEntry(kKey);
|
|
TryRead(kKey, /* expect_preread_stream1 */ true);
|
|
|
|
histogram_tester.ExpectUniqueSample("SimpleCache.App.SyncOpenPrefetchMode",
|
|
disk_cache::OPEN_PREFETCH_FULL, 1);
|
|
}
|