4708 lines
178 KiB
C
4708 lines
178 KiB
C
/*
|
|
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <immintrin.h>
|
|
|
|
#include "config/aom_dsp_rtcd.h"
|
|
#include "aom_dsp/x86/intrapred_x86.h"
|
|
#include "aom_dsp/x86/intrapred_utils.h"
|
|
#include "aom_dsp/x86/lpf_common_sse2.h"
|
|
|
|
static INLINE __m256i dc_sum_64(const uint8_t *ref) {
|
|
const __m256i x0 = _mm256_loadu_si256((const __m256i *)ref);
|
|
const __m256i x1 = _mm256_loadu_si256((const __m256i *)(ref + 32));
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i y0 = _mm256_sad_epu8(x0, zero);
|
|
__m256i y1 = _mm256_sad_epu8(x1, zero);
|
|
y0 = _mm256_add_epi64(y0, y1);
|
|
__m256i u0 = _mm256_permute2x128_si256(y0, y0, 1);
|
|
y0 = _mm256_add_epi64(u0, y0);
|
|
u0 = _mm256_unpackhi_epi64(y0, y0);
|
|
return _mm256_add_epi16(y0, u0);
|
|
}
|
|
|
|
static INLINE __m256i dc_sum_32(const uint8_t *ref) {
|
|
const __m256i x = _mm256_loadu_si256((const __m256i *)ref);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i y = _mm256_sad_epu8(x, zero);
|
|
__m256i u = _mm256_permute2x128_si256(y, y, 1);
|
|
y = _mm256_add_epi64(u, y);
|
|
u = _mm256_unpackhi_epi64(y, y);
|
|
return _mm256_add_epi16(y, u);
|
|
}
|
|
|
|
static INLINE void row_store_32xh(const __m256i *r, int height, uint8_t *dst,
|
|
ptrdiff_t stride) {
|
|
for (int i = 0; i < height; ++i) {
|
|
_mm256_storeu_si256((__m256i *)dst, *r);
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static INLINE void row_store_32x2xh(const __m256i *r0, const __m256i *r1,
|
|
int height, uint8_t *dst,
|
|
ptrdiff_t stride) {
|
|
for (int i = 0; i < height; ++i) {
|
|
_mm256_storeu_si256((__m256i *)dst, *r0);
|
|
_mm256_storeu_si256((__m256i *)(dst + 32), *r1);
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static INLINE void row_store_64xh(const __m256i *r, int height, uint8_t *dst,
|
|
ptrdiff_t stride) {
|
|
for (int i = 0; i < height; ++i) {
|
|
_mm256_storeu_si256((__m256i *)dst, *r);
|
|
_mm256_storeu_si256((__m256i *)(dst + 32), *r);
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static DECLARE_ALIGNED(16, uint8_t, HighbdLoadMaskx[8][16]) = {
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
|
{ 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 },
|
|
{ 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 },
|
|
{ 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 },
|
|
{ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7 },
|
|
{ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5 },
|
|
{ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3 },
|
|
{ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 },
|
|
};
|
|
|
|
static DECLARE_ALIGNED(16, uint8_t, HighbdEvenOddMaskx4[4][16]) = {
|
|
{ 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15 },
|
|
{ 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 4, 5, 8, 9, 12, 13 },
|
|
{ 0, 1, 0, 1, 4, 5, 8, 9, 12, 13, 0, 1, 6, 7, 10, 11 },
|
|
{ 0, 1, 0, 1, 0, 1, 6, 7, 10, 11, 14, 15, 0, 1, 8, 9 }
|
|
};
|
|
|
|
static DECLARE_ALIGNED(16, uint8_t, HighbdEvenOddMaskx[8][32]) = {
|
|
{ 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29,
|
|
2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 },
|
|
{ 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27,
|
|
0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 },
|
|
{ 0, 1, 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25,
|
|
0, 1, 0, 1, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27 },
|
|
{ 0, 1, 0, 1, 0, 1, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23,
|
|
0, 1, 0, 1, 0, 1, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25 },
|
|
{ 0, 1, 0, 1, 0, 1, 0, 1, 8, 9, 12, 13, 16, 17, 20, 21,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 14, 15, 18, 19, 22, 23 },
|
|
{ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 14, 15, 18, 19,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 12, 13, 16, 17, 20, 21 },
|
|
{ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 12, 13, 16, 17,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 14, 15, 18, 19 },
|
|
{ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 14, 15,
|
|
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 16, 17 }
|
|
};
|
|
|
|
static DECLARE_ALIGNED(32, uint16_t, HighbdBaseMask[17][16]) = {
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0,
|
|
0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0,
|
|
0, 0, 0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0, 0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0 },
|
|
{ 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff }
|
|
};
|
|
|
|
static INLINE void highbd_transpose16x4_8x8_sse2(__m128i *x, __m128i *d) {
|
|
__m128i r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15;
|
|
|
|
r0 = _mm_unpacklo_epi16(x[0], x[1]);
|
|
r1 = _mm_unpacklo_epi16(x[2], x[3]);
|
|
r2 = _mm_unpacklo_epi16(x[4], x[5]);
|
|
r3 = _mm_unpacklo_epi16(x[6], x[7]);
|
|
|
|
r4 = _mm_unpacklo_epi16(x[8], x[9]);
|
|
r5 = _mm_unpacklo_epi16(x[10], x[11]);
|
|
r6 = _mm_unpacklo_epi16(x[12], x[13]);
|
|
r7 = _mm_unpacklo_epi16(x[14], x[15]);
|
|
|
|
r8 = _mm_unpacklo_epi32(r0, r1);
|
|
r9 = _mm_unpackhi_epi32(r0, r1);
|
|
r10 = _mm_unpacklo_epi32(r2, r3);
|
|
r11 = _mm_unpackhi_epi32(r2, r3);
|
|
|
|
r12 = _mm_unpacklo_epi32(r4, r5);
|
|
r13 = _mm_unpackhi_epi32(r4, r5);
|
|
r14 = _mm_unpacklo_epi32(r6, r7);
|
|
r15 = _mm_unpackhi_epi32(r6, r7);
|
|
|
|
r0 = _mm_unpacklo_epi64(r8, r9);
|
|
r1 = _mm_unpackhi_epi64(r8, r9);
|
|
r2 = _mm_unpacklo_epi64(r10, r11);
|
|
r3 = _mm_unpackhi_epi64(r10, r11);
|
|
|
|
r4 = _mm_unpacklo_epi64(r12, r13);
|
|
r5 = _mm_unpackhi_epi64(r12, r13);
|
|
r6 = _mm_unpacklo_epi64(r14, r15);
|
|
r7 = _mm_unpackhi_epi64(r14, r15);
|
|
|
|
d[0] = _mm_unpacklo_epi64(r0, r2);
|
|
d[1] = _mm_unpacklo_epi64(r4, r6);
|
|
d[2] = _mm_unpacklo_epi64(r1, r3);
|
|
d[3] = _mm_unpacklo_epi64(r5, r7);
|
|
|
|
d[4] = _mm_unpackhi_epi64(r0, r2);
|
|
d[5] = _mm_unpackhi_epi64(r4, r6);
|
|
d[6] = _mm_unpackhi_epi64(r1, r3);
|
|
d[7] = _mm_unpackhi_epi64(r5, r7);
|
|
}
|
|
|
|
static INLINE void highbd_transpose4x16_avx2(__m256i *x, __m256i *d) {
|
|
__m256i w0, w1, w2, w3, ww0, ww1;
|
|
|
|
w0 = _mm256_unpacklo_epi16(x[0], x[1]); // 00 10 01 11 02 12 03 13
|
|
w1 = _mm256_unpacklo_epi16(x[2], x[3]); // 20 30 21 31 22 32 23 33
|
|
w2 = _mm256_unpackhi_epi16(x[0], x[1]); // 40 50 41 51 42 52 43 53
|
|
w3 = _mm256_unpackhi_epi16(x[2], x[3]); // 60 70 61 71 62 72 63 73
|
|
|
|
ww0 = _mm256_unpacklo_epi32(w0, w1); // 00 10 20 30 01 11 21 31
|
|
ww1 = _mm256_unpacklo_epi32(w2, w3); // 40 50 60 70 41 51 61 71
|
|
|
|
d[0] = _mm256_unpacklo_epi64(ww0, ww1); // 00 10 20 30 40 50 60 70
|
|
d[1] = _mm256_unpackhi_epi64(ww0, ww1); // 01 11 21 31 41 51 61 71
|
|
|
|
ww0 = _mm256_unpackhi_epi32(w0, w1); // 02 12 22 32 03 13 23 33
|
|
ww1 = _mm256_unpackhi_epi32(w2, w3); // 42 52 62 72 43 53 63 73
|
|
|
|
d[2] = _mm256_unpacklo_epi64(ww0, ww1); // 02 12 22 32 42 52 62 72
|
|
d[3] = _mm256_unpackhi_epi64(ww0, ww1); // 03 13 23 33 43 53 63 73
|
|
}
|
|
|
|
static INLINE void highbd_transpose8x16_16x8_avx2(__m256i *x, __m256i *d) {
|
|
__m256i w0, w1, w2, w3, ww0, ww1;
|
|
|
|
w0 = _mm256_unpacklo_epi16(x[0], x[1]); // 00 10 01 11 02 12 03 13
|
|
w1 = _mm256_unpacklo_epi16(x[2], x[3]); // 20 30 21 31 22 32 23 33
|
|
w2 = _mm256_unpacklo_epi16(x[4], x[5]); // 40 50 41 51 42 52 43 53
|
|
w3 = _mm256_unpacklo_epi16(x[6], x[7]); // 60 70 61 71 62 72 63 73
|
|
|
|
ww0 = _mm256_unpacklo_epi32(w0, w1); // 00 10 20 30 01 11 21 31
|
|
ww1 = _mm256_unpacklo_epi32(w2, w3); // 40 50 60 70 41 51 61 71
|
|
|
|
d[0] = _mm256_unpacklo_epi64(ww0, ww1); // 00 10 20 30 40 50 60 70
|
|
d[1] = _mm256_unpackhi_epi64(ww0, ww1); // 01 11 21 31 41 51 61 71
|
|
|
|
ww0 = _mm256_unpackhi_epi32(w0, w1); // 02 12 22 32 03 13 23 33
|
|
ww1 = _mm256_unpackhi_epi32(w2, w3); // 42 52 62 72 43 53 63 73
|
|
|
|
d[2] = _mm256_unpacklo_epi64(ww0, ww1); // 02 12 22 32 42 52 62 72
|
|
d[3] = _mm256_unpackhi_epi64(ww0, ww1); // 03 13 23 33 43 53 63 73
|
|
|
|
w0 = _mm256_unpackhi_epi16(x[0], x[1]); // 04 14 05 15 06 16 07 17
|
|
w1 = _mm256_unpackhi_epi16(x[2], x[3]); // 24 34 25 35 26 36 27 37
|
|
w2 = _mm256_unpackhi_epi16(x[4], x[5]); // 44 54 45 55 46 56 47 57
|
|
w3 = _mm256_unpackhi_epi16(x[6], x[7]); // 64 74 65 75 66 76 67 77
|
|
|
|
ww0 = _mm256_unpacklo_epi32(w0, w1); // 04 14 24 34 05 15 25 35
|
|
ww1 = _mm256_unpacklo_epi32(w2, w3); // 44 54 64 74 45 55 65 75
|
|
|
|
d[4] = _mm256_unpacklo_epi64(ww0, ww1); // 04 14 24 34 44 54 64 74
|
|
d[5] = _mm256_unpackhi_epi64(ww0, ww1); // 05 15 25 35 45 55 65 75
|
|
|
|
ww0 = _mm256_unpackhi_epi32(w0, w1); // 06 16 26 36 07 17 27 37
|
|
ww1 = _mm256_unpackhi_epi32(w2, w3); // 46 56 66 76 47 57 67 77
|
|
|
|
d[6] = _mm256_unpacklo_epi64(ww0, ww1); // 06 16 26 36 46 56 66 76
|
|
d[7] = _mm256_unpackhi_epi64(ww0, ww1); // 07 17 27 37 47 57 67 77
|
|
}
|
|
|
|
static INLINE void highbd_transpose16x16_avx2(__m256i *x, __m256i *d) {
|
|
__m256i w0, w1, w2, w3, ww0, ww1;
|
|
__m256i dd[16];
|
|
w0 = _mm256_unpacklo_epi16(x[0], x[1]);
|
|
w1 = _mm256_unpacklo_epi16(x[2], x[3]);
|
|
w2 = _mm256_unpacklo_epi16(x[4], x[5]);
|
|
w3 = _mm256_unpacklo_epi16(x[6], x[7]);
|
|
|
|
ww0 = _mm256_unpacklo_epi32(w0, w1); //
|
|
ww1 = _mm256_unpacklo_epi32(w2, w3); //
|
|
|
|
dd[0] = _mm256_unpacklo_epi64(ww0, ww1);
|
|
dd[1] = _mm256_unpackhi_epi64(ww0, ww1);
|
|
|
|
ww0 = _mm256_unpackhi_epi32(w0, w1); //
|
|
ww1 = _mm256_unpackhi_epi32(w2, w3); //
|
|
|
|
dd[2] = _mm256_unpacklo_epi64(ww0, ww1);
|
|
dd[3] = _mm256_unpackhi_epi64(ww0, ww1);
|
|
|
|
w0 = _mm256_unpackhi_epi16(x[0], x[1]);
|
|
w1 = _mm256_unpackhi_epi16(x[2], x[3]);
|
|
w2 = _mm256_unpackhi_epi16(x[4], x[5]);
|
|
w3 = _mm256_unpackhi_epi16(x[6], x[7]);
|
|
|
|
ww0 = _mm256_unpacklo_epi32(w0, w1); //
|
|
ww1 = _mm256_unpacklo_epi32(w2, w3); //
|
|
|
|
dd[4] = _mm256_unpacklo_epi64(ww0, ww1);
|
|
dd[5] = _mm256_unpackhi_epi64(ww0, ww1);
|
|
|
|
ww0 = _mm256_unpackhi_epi32(w0, w1); //
|
|
ww1 = _mm256_unpackhi_epi32(w2, w3); //
|
|
|
|
dd[6] = _mm256_unpacklo_epi64(ww0, ww1);
|
|
dd[7] = _mm256_unpackhi_epi64(ww0, ww1);
|
|
|
|
w0 = _mm256_unpacklo_epi16(x[8], x[9]);
|
|
w1 = _mm256_unpacklo_epi16(x[10], x[11]);
|
|
w2 = _mm256_unpacklo_epi16(x[12], x[13]);
|
|
w3 = _mm256_unpacklo_epi16(x[14], x[15]);
|
|
|
|
ww0 = _mm256_unpacklo_epi32(w0, w1);
|
|
ww1 = _mm256_unpacklo_epi32(w2, w3);
|
|
|
|
dd[8] = _mm256_unpacklo_epi64(ww0, ww1);
|
|
dd[9] = _mm256_unpackhi_epi64(ww0, ww1);
|
|
|
|
ww0 = _mm256_unpackhi_epi32(w0, w1);
|
|
ww1 = _mm256_unpackhi_epi32(w2, w3);
|
|
|
|
dd[10] = _mm256_unpacklo_epi64(ww0, ww1);
|
|
dd[11] = _mm256_unpackhi_epi64(ww0, ww1);
|
|
|
|
w0 = _mm256_unpackhi_epi16(x[8], x[9]);
|
|
w1 = _mm256_unpackhi_epi16(x[10], x[11]);
|
|
w2 = _mm256_unpackhi_epi16(x[12], x[13]);
|
|
w3 = _mm256_unpackhi_epi16(x[14], x[15]);
|
|
|
|
ww0 = _mm256_unpacklo_epi32(w0, w1);
|
|
ww1 = _mm256_unpacklo_epi32(w2, w3);
|
|
|
|
dd[12] = _mm256_unpacklo_epi64(ww0, ww1);
|
|
dd[13] = _mm256_unpackhi_epi64(ww0, ww1);
|
|
|
|
ww0 = _mm256_unpackhi_epi32(w0, w1);
|
|
ww1 = _mm256_unpackhi_epi32(w2, w3);
|
|
|
|
dd[14] = _mm256_unpacklo_epi64(ww0, ww1);
|
|
dd[15] = _mm256_unpackhi_epi64(ww0, ww1);
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
d[i] = _mm256_insertf128_si256(dd[i], _mm256_castsi256_si128(dd[i + 8]), 1);
|
|
d[i + 8] = _mm256_insertf128_si256(dd[i + 8],
|
|
_mm256_extracti128_si256(dd[i], 1), 0);
|
|
}
|
|
}
|
|
|
|
void aom_dc_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i sum_above = dc_sum_32(above);
|
|
__m256i sum_left = dc_sum_32(left);
|
|
sum_left = _mm256_add_epi16(sum_left, sum_above);
|
|
const __m256i thirtytwo = _mm256_set1_epi16(32);
|
|
sum_left = _mm256_add_epi16(sum_left, thirtytwo);
|
|
sum_left = _mm256_srai_epi16(sum_left, 6);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum_left, zero);
|
|
row_store_32xh(&row, 32, dst, stride);
|
|
}
|
|
|
|
void aom_dc_top_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_32(above);
|
|
(void)left;
|
|
|
|
const __m256i sixteen = _mm256_set1_epi16(16);
|
|
sum = _mm256_add_epi16(sum, sixteen);
|
|
sum = _mm256_srai_epi16(sum, 5);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_32xh(&row, 32, dst, stride);
|
|
}
|
|
|
|
void aom_dc_left_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_32(left);
|
|
(void)above;
|
|
|
|
const __m256i sixteen = _mm256_set1_epi16(16);
|
|
sum = _mm256_add_epi16(sum, sixteen);
|
|
sum = _mm256_srai_epi16(sum, 5);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_32xh(&row, 32, dst, stride);
|
|
}
|
|
|
|
void aom_dc_128_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
(void)above;
|
|
(void)left;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)0x80);
|
|
row_store_32xh(&row, 32, dst, stride);
|
|
}
|
|
|
|
void aom_v_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i row = _mm256_loadu_si256((const __m256i *)above);
|
|
(void)left;
|
|
row_store_32xh(&row, 32, dst, stride);
|
|
}
|
|
|
|
// There are 32 rows togeter. This function does line:
|
|
// 0,1,2,3, and 16,17,18,19. The next call would do
|
|
// 4,5,6,7, and 20,21,22,23. So 4 times of calling
|
|
// would finish 32 rows.
|
|
static INLINE void h_predictor_32x8line(const __m256i *row, uint8_t *dst,
|
|
ptrdiff_t stride) {
|
|
__m256i t[4];
|
|
__m256i m = _mm256_setzero_si256();
|
|
const __m256i inc = _mm256_set1_epi8(4);
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
t[i] = _mm256_shuffle_epi8(*row, m);
|
|
__m256i r0 = _mm256_permute2x128_si256(t[i], t[i], 0);
|
|
__m256i r1 = _mm256_permute2x128_si256(t[i], t[i], 0x11);
|
|
_mm256_storeu_si256((__m256i *)dst, r0);
|
|
_mm256_storeu_si256((__m256i *)(dst + (stride << 4)), r1);
|
|
dst += stride;
|
|
m = _mm256_add_epi8(m, inc);
|
|
}
|
|
}
|
|
|
|
void aom_h_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
(void)above;
|
|
const __m256i left_col = _mm256_loadu_si256((__m256i const *)left);
|
|
|
|
__m256i u = _mm256_unpacklo_epi8(left_col, left_col);
|
|
|
|
__m256i v = _mm256_unpacklo_epi8(u, u);
|
|
h_predictor_32x8line(&v, dst, stride);
|
|
dst += stride << 2;
|
|
|
|
v = _mm256_unpackhi_epi8(u, u);
|
|
h_predictor_32x8line(&v, dst, stride);
|
|
dst += stride << 2;
|
|
|
|
u = _mm256_unpackhi_epi8(left_col, left_col);
|
|
|
|
v = _mm256_unpacklo_epi8(u, u);
|
|
h_predictor_32x8line(&v, dst, stride);
|
|
dst += stride << 2;
|
|
|
|
v = _mm256_unpackhi_epi8(u, u);
|
|
h_predictor_32x8line(&v, dst, stride);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Rectangle
|
|
void aom_dc_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m128i top_sum = dc_sum_32_sse2(above);
|
|
__m128i left_sum = dc_sum_16_sse2(left);
|
|
left_sum = _mm_add_epi16(top_sum, left_sum);
|
|
uint16_t sum = (uint16_t)_mm_cvtsi128_si32(left_sum);
|
|
sum += 24;
|
|
sum /= 48;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)sum);
|
|
row_store_32xh(&row, 16, dst, stride);
|
|
}
|
|
|
|
void aom_dc_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i sum_above = dc_sum_32(above);
|
|
__m256i sum_left = dc_sum_64(left);
|
|
sum_left = _mm256_add_epi16(sum_left, sum_above);
|
|
uint16_t sum = (uint16_t)_mm_cvtsi128_si32(_mm256_castsi256_si128(sum_left));
|
|
sum += 48;
|
|
sum /= 96;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)sum);
|
|
row_store_32xh(&row, 64, dst, stride);
|
|
}
|
|
|
|
void aom_dc_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i sum_above = dc_sum_64(above);
|
|
__m256i sum_left = dc_sum_64(left);
|
|
sum_left = _mm256_add_epi16(sum_left, sum_above);
|
|
uint16_t sum = (uint16_t)_mm_cvtsi128_si32(_mm256_castsi256_si128(sum_left));
|
|
sum += 64;
|
|
sum /= 128;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)sum);
|
|
row_store_64xh(&row, 64, dst, stride);
|
|
}
|
|
|
|
void aom_dc_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i sum_above = dc_sum_64(above);
|
|
__m256i sum_left = dc_sum_32(left);
|
|
sum_left = _mm256_add_epi16(sum_left, sum_above);
|
|
uint16_t sum = (uint16_t)_mm_cvtsi128_si32(_mm256_castsi256_si128(sum_left));
|
|
sum += 48;
|
|
sum /= 96;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)sum);
|
|
row_store_64xh(&row, 32, dst, stride);
|
|
}
|
|
|
|
void aom_dc_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i sum_above = dc_sum_64(above);
|
|
__m256i sum_left = _mm256_castsi128_si256(dc_sum_16_sse2(left));
|
|
sum_left = _mm256_add_epi16(sum_left, sum_above);
|
|
uint16_t sum = (uint16_t)_mm_cvtsi128_si32(_mm256_castsi256_si128(sum_left));
|
|
sum += 40;
|
|
sum /= 80;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)sum);
|
|
row_store_64xh(&row, 16, dst, stride);
|
|
}
|
|
|
|
void aom_dc_top_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_32(above);
|
|
(void)left;
|
|
|
|
const __m256i sixteen = _mm256_set1_epi16(16);
|
|
sum = _mm256_add_epi16(sum, sixteen);
|
|
sum = _mm256_srai_epi16(sum, 5);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_32xh(&row, 16, dst, stride);
|
|
}
|
|
|
|
void aom_dc_top_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_32(above);
|
|
(void)left;
|
|
|
|
const __m256i sixteen = _mm256_set1_epi16(16);
|
|
sum = _mm256_add_epi16(sum, sixteen);
|
|
sum = _mm256_srai_epi16(sum, 5);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_32xh(&row, 64, dst, stride);
|
|
}
|
|
|
|
void aom_dc_top_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_64(above);
|
|
(void)left;
|
|
|
|
const __m256i thirtytwo = _mm256_set1_epi16(32);
|
|
sum = _mm256_add_epi16(sum, thirtytwo);
|
|
sum = _mm256_srai_epi16(sum, 6);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_64xh(&row, 64, dst, stride);
|
|
}
|
|
|
|
void aom_dc_top_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_64(above);
|
|
(void)left;
|
|
|
|
const __m256i thirtytwo = _mm256_set1_epi16(32);
|
|
sum = _mm256_add_epi16(sum, thirtytwo);
|
|
sum = _mm256_srai_epi16(sum, 6);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_64xh(&row, 32, dst, stride);
|
|
}
|
|
|
|
void aom_dc_top_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_64(above);
|
|
(void)left;
|
|
|
|
const __m256i thirtytwo = _mm256_set1_epi16(32);
|
|
sum = _mm256_add_epi16(sum, thirtytwo);
|
|
sum = _mm256_srai_epi16(sum, 6);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_64xh(&row, 16, dst, stride);
|
|
}
|
|
|
|
void aom_dc_left_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m128i sum = dc_sum_16_sse2(left);
|
|
(void)above;
|
|
|
|
const __m128i eight = _mm_set1_epi16(8);
|
|
sum = _mm_add_epi16(sum, eight);
|
|
sum = _mm_srai_epi16(sum, 4);
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i r = _mm_shuffle_epi8(sum, zero);
|
|
const __m256i row = _mm256_inserti128_si256(_mm256_castsi128_si256(r), r, 1);
|
|
row_store_32xh(&row, 16, dst, stride);
|
|
}
|
|
|
|
void aom_dc_left_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_64(left);
|
|
(void)above;
|
|
|
|
const __m256i thirtytwo = _mm256_set1_epi16(32);
|
|
sum = _mm256_add_epi16(sum, thirtytwo);
|
|
sum = _mm256_srai_epi16(sum, 6);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_32xh(&row, 64, dst, stride);
|
|
}
|
|
|
|
void aom_dc_left_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_64(left);
|
|
(void)above;
|
|
|
|
const __m256i thirtytwo = _mm256_set1_epi16(32);
|
|
sum = _mm256_add_epi16(sum, thirtytwo);
|
|
sum = _mm256_srai_epi16(sum, 6);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_64xh(&row, 64, dst, stride);
|
|
}
|
|
|
|
void aom_dc_left_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m256i sum = dc_sum_32(left);
|
|
(void)above;
|
|
|
|
const __m256i sixteen = _mm256_set1_epi16(16);
|
|
sum = _mm256_add_epi16(sum, sixteen);
|
|
sum = _mm256_srai_epi16(sum, 5);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
__m256i row = _mm256_shuffle_epi8(sum, zero);
|
|
row_store_64xh(&row, 32, dst, stride);
|
|
}
|
|
|
|
void aom_dc_left_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
__m128i sum = dc_sum_16_sse2(left);
|
|
(void)above;
|
|
|
|
const __m128i eight = _mm_set1_epi16(8);
|
|
sum = _mm_add_epi16(sum, eight);
|
|
sum = _mm_srai_epi16(sum, 4);
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i r = _mm_shuffle_epi8(sum, zero);
|
|
const __m256i row = _mm256_inserti128_si256(_mm256_castsi128_si256(r), r, 1);
|
|
row_store_64xh(&row, 16, dst, stride);
|
|
}
|
|
|
|
void aom_dc_128_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
(void)above;
|
|
(void)left;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)0x80);
|
|
row_store_32xh(&row, 16, dst, stride);
|
|
}
|
|
|
|
void aom_dc_128_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
(void)above;
|
|
(void)left;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)0x80);
|
|
row_store_32xh(&row, 64, dst, stride);
|
|
}
|
|
|
|
void aom_dc_128_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
(void)above;
|
|
(void)left;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)0x80);
|
|
row_store_64xh(&row, 64, dst, stride);
|
|
}
|
|
|
|
void aom_dc_128_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
(void)above;
|
|
(void)left;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)0x80);
|
|
row_store_64xh(&row, 32, dst, stride);
|
|
}
|
|
|
|
void aom_dc_128_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above,
|
|
const uint8_t *left) {
|
|
(void)above;
|
|
(void)left;
|
|
const __m256i row = _mm256_set1_epi8((int8_t)0x80);
|
|
row_store_64xh(&row, 16, dst, stride);
|
|
}
|
|
|
|
void aom_v_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i row = _mm256_loadu_si256((const __m256i *)above);
|
|
(void)left;
|
|
row_store_32xh(&row, 16, dst, stride);
|
|
}
|
|
|
|
void aom_v_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i row = _mm256_loadu_si256((const __m256i *)above);
|
|
(void)left;
|
|
row_store_32xh(&row, 64, dst, stride);
|
|
}
|
|
|
|
void aom_v_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i row0 = _mm256_loadu_si256((const __m256i *)above);
|
|
const __m256i row1 = _mm256_loadu_si256((const __m256i *)(above + 32));
|
|
(void)left;
|
|
row_store_32x2xh(&row0, &row1, 64, dst, stride);
|
|
}
|
|
|
|
void aom_v_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i row0 = _mm256_loadu_si256((const __m256i *)above);
|
|
const __m256i row1 = _mm256_loadu_si256((const __m256i *)(above + 32));
|
|
(void)left;
|
|
row_store_32x2xh(&row0, &row1, 32, dst, stride);
|
|
}
|
|
|
|
void aom_v_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i row0 = _mm256_loadu_si256((const __m256i *)above);
|
|
const __m256i row1 = _mm256_loadu_si256((const __m256i *)(above + 32));
|
|
(void)left;
|
|
row_store_32x2xh(&row0, &row1, 16, dst, stride);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// PAETH_PRED
|
|
|
|
// Return 16 16-bit pixels in one row (__m256i)
|
|
static INLINE __m256i paeth_pred(const __m256i *left, const __m256i *top,
|
|
const __m256i *topleft) {
|
|
const __m256i base =
|
|
_mm256_sub_epi16(_mm256_add_epi16(*top, *left), *topleft);
|
|
|
|
__m256i pl = _mm256_abs_epi16(_mm256_sub_epi16(base, *left));
|
|
__m256i pt = _mm256_abs_epi16(_mm256_sub_epi16(base, *top));
|
|
__m256i ptl = _mm256_abs_epi16(_mm256_sub_epi16(base, *topleft));
|
|
|
|
__m256i mask1 = _mm256_cmpgt_epi16(pl, pt);
|
|
mask1 = _mm256_or_si256(mask1, _mm256_cmpgt_epi16(pl, ptl));
|
|
__m256i mask2 = _mm256_cmpgt_epi16(pt, ptl);
|
|
|
|
pl = _mm256_andnot_si256(mask1, *left);
|
|
|
|
ptl = _mm256_and_si256(mask2, *topleft);
|
|
pt = _mm256_andnot_si256(mask2, *top);
|
|
pt = _mm256_or_si256(pt, ptl);
|
|
pt = _mm256_and_si256(mask1, pt);
|
|
|
|
return _mm256_or_si256(pt, pl);
|
|
}
|
|
|
|
// Return 16 8-bit pixels in one row (__m128i)
|
|
static INLINE __m128i paeth_16x1_pred(const __m256i *left, const __m256i *top,
|
|
const __m256i *topleft) {
|
|
const __m256i p0 = paeth_pred(left, top, topleft);
|
|
const __m256i p1 = _mm256_permute4x64_epi64(p0, 0xe);
|
|
const __m256i p = _mm256_packus_epi16(p0, p1);
|
|
return _mm256_castsi256_si128(p);
|
|
}
|
|
|
|
static INLINE __m256i get_top_vector(const uint8_t *above) {
|
|
const __m128i x = _mm_load_si128((const __m128i *)above);
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i t0 = _mm_unpacklo_epi8(x, zero);
|
|
const __m128i t1 = _mm_unpackhi_epi8(x, zero);
|
|
return _mm256_inserti128_si256(_mm256_castsi128_si256(t0), t1, 1);
|
|
}
|
|
|
|
void aom_paeth_predictor_16x8_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
__m128i x = _mm_loadl_epi64((const __m128i *)left);
|
|
const __m256i l = _mm256_inserti128_si256(_mm256_castsi128_si256(x), x, 1);
|
|
const __m256i tl16 = _mm256_set1_epi16((int16_t)above[-1]);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
const __m256i top = get_top_vector(above);
|
|
|
|
int i;
|
|
for (i = 0; i < 8; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
const __m128i row = paeth_16x1_pred(&l16, &top, &tl16);
|
|
|
|
_mm_store_si128((__m128i *)dst, row);
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
|
|
static INLINE __m256i get_left_vector(const uint8_t *left) {
|
|
const __m128i x = _mm_load_si128((const __m128i *)left);
|
|
return _mm256_inserti128_si256(_mm256_castsi128_si256(x), x, 1);
|
|
}
|
|
|
|
void aom_paeth_predictor_16x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i l = get_left_vector(left);
|
|
const __m256i tl16 = _mm256_set1_epi16((int16_t)above[-1]);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
const __m256i top = get_top_vector(above);
|
|
|
|
int i;
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
const __m128i row = paeth_16x1_pred(&l16, &top, &tl16);
|
|
|
|
_mm_store_si128((__m128i *)dst, row);
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
|
|
void aom_paeth_predictor_16x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
__m256i l = get_left_vector(left);
|
|
const __m256i tl16 = _mm256_set1_epi16((int16_t)above[-1]);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
const __m256i top = get_top_vector(above);
|
|
|
|
int i;
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
const __m128i row = paeth_16x1_pred(&l16, &top, &tl16);
|
|
|
|
_mm_store_si128((__m128i *)dst, row);
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
|
|
l = get_left_vector(left + 16);
|
|
rep = _mm256_set1_epi16((short)0x8000);
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
const __m128i row = paeth_16x1_pred(&l16, &top, &tl16);
|
|
|
|
_mm_store_si128((__m128i *)dst, row);
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
|
|
void aom_paeth_predictor_16x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i tl16 = _mm256_set1_epi16((int16_t)above[-1]);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
const __m256i top = get_top_vector(above);
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
const __m256i l = get_left_vector(left + j * 16);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
for (int i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
const __m128i row = paeth_16x1_pred(&l16, &top, &tl16);
|
|
|
|
_mm_store_si128((__m128i *)dst, row);
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return 32 8-bit pixels in one row (__m256i)
|
|
static INLINE __m256i paeth_32x1_pred(const __m256i *left, const __m256i *top0,
|
|
const __m256i *top1,
|
|
const __m256i *topleft) {
|
|
__m256i p0 = paeth_pred(left, top0, topleft);
|
|
__m256i p1 = _mm256_permute4x64_epi64(p0, 0xe);
|
|
const __m256i x0 = _mm256_packus_epi16(p0, p1);
|
|
|
|
p0 = paeth_pred(left, top1, topleft);
|
|
p1 = _mm256_permute4x64_epi64(p0, 0xe);
|
|
const __m256i x1 = _mm256_packus_epi16(p0, p1);
|
|
|
|
return _mm256_permute2x128_si256(x0, x1, 0x20);
|
|
}
|
|
|
|
void aom_paeth_predictor_32x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i l = get_left_vector(left);
|
|
const __m256i t0 = get_top_vector(above);
|
|
const __m256i t1 = get_top_vector(above + 16);
|
|
const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
|
|
int i;
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
|
|
const __m256i r = paeth_32x1_pred(&l16, &t0, &t1, &tl);
|
|
|
|
_mm256_storeu_si256((__m256i *)dst, r);
|
|
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
|
|
void aom_paeth_predictor_32x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
__m256i l = get_left_vector(left);
|
|
const __m256i t0 = get_top_vector(above);
|
|
const __m256i t1 = get_top_vector(above + 16);
|
|
const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
|
|
int i;
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
|
|
const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl);
|
|
const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl);
|
|
|
|
_mm_store_si128((__m128i *)dst, r0);
|
|
_mm_store_si128((__m128i *)(dst + 16), r1);
|
|
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
|
|
l = get_left_vector(left + 16);
|
|
rep = _mm256_set1_epi16((short)0x8000);
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
|
|
const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl);
|
|
const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl);
|
|
|
|
_mm_store_si128((__m128i *)dst, r0);
|
|
_mm_store_si128((__m128i *)(dst + 16), r1);
|
|
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
|
|
void aom_paeth_predictor_32x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i t0 = get_top_vector(above);
|
|
const __m256i t1 = get_top_vector(above + 16);
|
|
const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
|
|
int i, j;
|
|
for (j = 0; j < 4; ++j) {
|
|
const __m256i l = get_left_vector(left + j * 16);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
|
|
const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl);
|
|
const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl);
|
|
|
|
_mm_store_si128((__m128i *)dst, r0);
|
|
_mm_store_si128((__m128i *)(dst + 16), r1);
|
|
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
}
|
|
|
|
void aom_paeth_predictor_64x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i t0 = get_top_vector(above);
|
|
const __m256i t1 = get_top_vector(above + 16);
|
|
const __m256i t2 = get_top_vector(above + 32);
|
|
const __m256i t3 = get_top_vector(above + 48);
|
|
const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
|
|
int i, j;
|
|
for (j = 0; j < 2; ++j) {
|
|
const __m256i l = get_left_vector(left + j * 16);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
|
|
const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl);
|
|
const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl);
|
|
const __m128i r2 = paeth_16x1_pred(&l16, &t2, &tl);
|
|
const __m128i r3 = paeth_16x1_pred(&l16, &t3, &tl);
|
|
|
|
_mm_store_si128((__m128i *)dst, r0);
|
|
_mm_store_si128((__m128i *)(dst + 16), r1);
|
|
_mm_store_si128((__m128i *)(dst + 32), r2);
|
|
_mm_store_si128((__m128i *)(dst + 48), r3);
|
|
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
}
|
|
|
|
void aom_paeth_predictor_64x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i t0 = get_top_vector(above);
|
|
const __m256i t1 = get_top_vector(above + 16);
|
|
const __m256i t2 = get_top_vector(above + 32);
|
|
const __m256i t3 = get_top_vector(above + 48);
|
|
const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
|
|
int i, j;
|
|
for (j = 0; j < 4; ++j) {
|
|
const __m256i l = get_left_vector(left + j * 16);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
|
|
const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl);
|
|
const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl);
|
|
const __m128i r2 = paeth_16x1_pred(&l16, &t2, &tl);
|
|
const __m128i r3 = paeth_16x1_pred(&l16, &t3, &tl);
|
|
|
|
_mm_store_si128((__m128i *)dst, r0);
|
|
_mm_store_si128((__m128i *)(dst + 16), r1);
|
|
_mm_store_si128((__m128i *)(dst + 32), r2);
|
|
_mm_store_si128((__m128i *)(dst + 48), r3);
|
|
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
}
|
|
|
|
void aom_paeth_predictor_64x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left) {
|
|
const __m256i t0 = get_top_vector(above);
|
|
const __m256i t1 = get_top_vector(above + 16);
|
|
const __m256i t2 = get_top_vector(above + 32);
|
|
const __m256i t3 = get_top_vector(above + 48);
|
|
const __m256i tl = _mm256_set1_epi16((int16_t)above[-1]);
|
|
const __m256i one = _mm256_set1_epi16(1);
|
|
|
|
int i;
|
|
const __m256i l = get_left_vector(left);
|
|
__m256i rep = _mm256_set1_epi16((short)0x8000);
|
|
for (i = 0; i < 16; ++i) {
|
|
const __m256i l16 = _mm256_shuffle_epi8(l, rep);
|
|
|
|
const __m128i r0 = paeth_16x1_pred(&l16, &t0, &tl);
|
|
const __m128i r1 = paeth_16x1_pred(&l16, &t1, &tl);
|
|
const __m128i r2 = paeth_16x1_pred(&l16, &t2, &tl);
|
|
const __m128i r3 = paeth_16x1_pred(&l16, &t3, &tl);
|
|
|
|
_mm_store_si128((__m128i *)dst, r0);
|
|
_mm_store_si128((__m128i *)(dst + 16), r1);
|
|
_mm_store_si128((__m128i *)(dst + 32), r2);
|
|
_mm_store_si128((__m128i *)(dst + 48), r3);
|
|
|
|
dst += stride;
|
|
rep = _mm256_add_epi16(rep, one);
|
|
}
|
|
}
|
|
|
|
#define PERM4x64(c0, c1, c2, c3) c0 + (c1 << 2) + (c2 << 4) + (c3 << 6)
|
|
#define PERM2x128(c0, c1) c0 + (c1 << 4)
|
|
|
|
static AOM_FORCE_INLINE void highbd_dr_prediction_z1_4xN_internal_avx2(
|
|
int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx) {
|
|
const int frac_bits = 6 - upsample_above;
|
|
const int max_base_x = ((N + 4) - 1) << upsample_above;
|
|
|
|
assert(dx > 0);
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a32, a16;
|
|
__m256i diff, c3f;
|
|
__m128i a_mbase_x, max_base_x128, base_inc128, mask128;
|
|
__m128i a0_128, a1_128;
|
|
a16 = _mm256_set1_epi16(16);
|
|
a_mbase_x = _mm_set1_epi16(above[max_base_x]);
|
|
max_base_x128 = _mm_set1_epi16(max_base_x);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, shift;
|
|
__m128i res1;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
dst[i] = a_mbase_x; // save 4 values
|
|
}
|
|
return;
|
|
}
|
|
|
|
a0_128 = _mm_loadu_si128((__m128i *)(above + base));
|
|
a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1));
|
|
|
|
if (upsample_above) {
|
|
a0_128 = _mm_shuffle_epi8(a0_128, *(__m128i *)HighbdEvenOddMaskx4[0]);
|
|
a1_128 = _mm_srli_si128(a0_128, 8);
|
|
|
|
base_inc128 = _mm_setr_epi16(base, base + 2, base + 4, base + 6, base + 8,
|
|
base + 10, base + 12, base + 14);
|
|
shift = _mm256_srli_epi16(
|
|
_mm256_and_si256(
|
|
_mm256_slli_epi16(_mm256_set1_epi16(x), upsample_above),
|
|
_mm256_set1_epi16(0x3f)),
|
|
1);
|
|
} else {
|
|
base_inc128 = _mm_setr_epi16(base, base + 1, base + 2, base + 3, base + 4,
|
|
base + 5, base + 6, base + 7);
|
|
shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1);
|
|
}
|
|
a0 = _mm256_castsi128_si256(a0_128);
|
|
a1 = _mm256_castsi128_si256(a1_128);
|
|
diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
res1 = _mm256_castsi256_si128(res);
|
|
|
|
mask128 = _mm_cmpgt_epi16(max_base_x128, base_inc128);
|
|
dst[r] = _mm_blendv_epi8(a_mbase_x, res1, mask128);
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_4xN_internal_avx2(
|
|
int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx) {
|
|
const int frac_bits = 6 - upsample_above;
|
|
const int max_base_x = ((N + 4) - 1) << upsample_above;
|
|
|
|
assert(dx > 0);
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a32, a16;
|
|
__m256i diff;
|
|
__m128i a_mbase_x, max_base_x128, base_inc128, mask128;
|
|
|
|
a16 = _mm256_set1_epi32(16);
|
|
a_mbase_x = _mm_set1_epi16(above[max_base_x]);
|
|
max_base_x128 = _mm_set1_epi32(max_base_x);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, shift;
|
|
__m128i res1;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
dst[i] = a_mbase_x; // save 4 values
|
|
}
|
|
return;
|
|
}
|
|
|
|
a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base)));
|
|
a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1)));
|
|
|
|
if (upsample_above) {
|
|
a0 = _mm256_permutevar8x32_epi32(
|
|
a0, _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0));
|
|
a1 = _mm256_castsi128_si256(_mm256_extracti128_si256(a0, 1));
|
|
base_inc128 = _mm_setr_epi32(base, base + 2, base + 4, base + 6);
|
|
shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(
|
|
_mm256_slli_epi32(_mm256_set1_epi32(x), upsample_above),
|
|
_mm256_set1_epi32(0x3f)),
|
|
1);
|
|
} else {
|
|
base_inc128 = _mm_setr_epi32(base, base + 1, base + 2, base + 3);
|
|
shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1);
|
|
}
|
|
|
|
diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
res = _mm256_add_epi32(a32, b);
|
|
res = _mm256_srli_epi32(res, 5);
|
|
|
|
res1 = _mm256_castsi256_si128(res);
|
|
res1 = _mm_packus_epi32(res1, res1);
|
|
|
|
mask128 = _mm_cmpgt_epi32(max_base_x128, base_inc128);
|
|
mask128 = _mm_packs_epi32(mask128, mask128); // goto 16 bit
|
|
dst[r] = _mm_blendv_epi8(a_mbase_x, res1, mask128);
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z1_4xN_avx2(int N, uint16_t *dst,
|
|
ptrdiff_t stride,
|
|
const uint16_t *above,
|
|
int upsample_above, int dx,
|
|
int bd) {
|
|
__m128i dstvec[16];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_4xN_internal_avx2(N, dstvec, above, upsample_above,
|
|
dx);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_4xN_internal_avx2(N, dstvec, above,
|
|
upsample_above, dx);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
_mm_storel_epi64((__m128i *)(dst + stride * i), dstvec[i]);
|
|
}
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_8xN_internal_avx2(
|
|
int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx) {
|
|
const int frac_bits = 6 - upsample_above;
|
|
const int max_base_x = ((8 + N) - 1) << upsample_above;
|
|
|
|
assert(dx > 0);
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a0_1, a1_1, a32, a16;
|
|
__m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256;
|
|
|
|
a16 = _mm256_set1_epi32(16);
|
|
a_mbase_x = _mm256_set1_epi16(above[max_base_x]);
|
|
max_base_x256 = _mm256_set1_epi32(max_base_x);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, res1, shift;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
dst[i] = _mm256_castsi256_si128(a_mbase_x); // save 8 values
|
|
}
|
|
return;
|
|
}
|
|
|
|
a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base)));
|
|
a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1)));
|
|
|
|
if (upsample_above) {
|
|
a0 = _mm256_permutevar8x32_epi32(
|
|
a0, _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0));
|
|
a1 = _mm256_castsi128_si256(_mm256_extracti128_si256(a0, 1));
|
|
|
|
a0_1 =
|
|
_mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 8)));
|
|
a0_1 = _mm256_permutevar8x32_epi32(
|
|
a0_1, _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0));
|
|
a1_1 = _mm256_castsi128_si256(_mm256_extracti128_si256(a0_1, 1));
|
|
|
|
a0 = _mm256_inserti128_si256(a0, _mm256_castsi256_si128(a0_1), 1);
|
|
a1 = _mm256_inserti128_si256(a1, _mm256_castsi256_si128(a1_1), 1);
|
|
base_inc256 =
|
|
_mm256_setr_epi32(base, base + 2, base + 4, base + 6, base + 8,
|
|
base + 10, base + 12, base + 14);
|
|
shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(
|
|
_mm256_slli_epi32(_mm256_set1_epi32(x), upsample_above),
|
|
_mm256_set1_epi32(0x3f)),
|
|
1);
|
|
} else {
|
|
base_inc256 = _mm256_setr_epi32(base, base + 1, base + 2, base + 3,
|
|
base + 4, base + 5, base + 6, base + 7);
|
|
shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1);
|
|
}
|
|
|
|
diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
res = _mm256_add_epi32(a32, b);
|
|
res = _mm256_srli_epi32(res, 5);
|
|
|
|
res1 = _mm256_packus_epi32(
|
|
res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)));
|
|
|
|
mask256 = _mm256_cmpgt_epi32(max_base_x256, base_inc256);
|
|
mask256 = _mm256_packs_epi32(
|
|
mask256, _mm256_castsi128_si256(
|
|
_mm256_extracti128_si256(mask256, 1))); // goto 16 bit
|
|
res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256);
|
|
dst[r] = _mm256_castsi256_si128(res1);
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void highbd_dr_prediction_z1_8xN_internal_avx2(
|
|
int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx) {
|
|
const int frac_bits = 6 - upsample_above;
|
|
const int max_base_x = ((8 + N) - 1) << upsample_above;
|
|
|
|
assert(dx > 0);
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a32, a16, c3f;
|
|
__m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256;
|
|
__m128i a0_x128, a1_x128;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
a_mbase_x = _mm256_set1_epi16(above[max_base_x]);
|
|
max_base_x256 = _mm256_set1_epi16(max_base_x);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, res1, shift;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
dst[i] = _mm256_castsi256_si128(a_mbase_x); // save 8 values
|
|
}
|
|
return;
|
|
}
|
|
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base));
|
|
if (upsample_above) {
|
|
__m128i mask, atmp0, atmp1, atmp2, atmp3;
|
|
a1_x128 = _mm_loadu_si128((__m128i *)(above + base + 8));
|
|
atmp0 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdEvenOddMaskx[0]);
|
|
atmp1 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdEvenOddMaskx[0]);
|
|
atmp2 =
|
|
_mm_shuffle_epi8(a0_x128, *(__m128i *)(HighbdEvenOddMaskx[0] + 16));
|
|
atmp3 =
|
|
_mm_shuffle_epi8(a1_x128, *(__m128i *)(HighbdEvenOddMaskx[0] + 16));
|
|
mask =
|
|
_mm_cmpgt_epi8(*(__m128i *)HighbdEvenOddMaskx[0], _mm_set1_epi8(15));
|
|
a0_x128 = _mm_blendv_epi8(atmp0, atmp1, mask);
|
|
mask = _mm_cmpgt_epi8(*(__m128i *)(HighbdEvenOddMaskx[0] + 16),
|
|
_mm_set1_epi8(15));
|
|
a1_x128 = _mm_blendv_epi8(atmp2, atmp3, mask);
|
|
|
|
base_inc256 = _mm256_setr_epi16(base, base + 2, base + 4, base + 6,
|
|
base + 8, base + 10, base + 12, base + 14,
|
|
0, 0, 0, 0, 0, 0, 0, 0);
|
|
shift = _mm256_srli_epi16(
|
|
_mm256_and_si256(
|
|
_mm256_slli_epi16(_mm256_set1_epi16(x), upsample_above), c3f),
|
|
1);
|
|
} else {
|
|
a1_x128 = _mm_loadu_si128((__m128i *)(above + base + 1));
|
|
base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3,
|
|
base + 4, base + 5, base + 6, base + 7, 0,
|
|
0, 0, 0, 0, 0, 0, 0);
|
|
shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1);
|
|
}
|
|
a0 = _mm256_castsi128_si256(a0_x128);
|
|
a1 = _mm256_castsi128_si256(a1_x128);
|
|
|
|
diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
|
|
mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256);
|
|
res1 = _mm256_blendv_epi8(a_mbase_x, res, mask256);
|
|
dst[r] = _mm256_castsi256_si128(res1);
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z1_8xN_avx2(int N, uint16_t *dst,
|
|
ptrdiff_t stride,
|
|
const uint16_t *above,
|
|
int upsample_above, int dx,
|
|
int bd) {
|
|
__m128i dstvec[32];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_8xN_internal_avx2(N, dstvec, above, upsample_above,
|
|
dx);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_8xN_internal_avx2(N, dstvec, above,
|
|
upsample_above, dx);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]);
|
|
}
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_16xN_internal_avx2(
|
|
int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx) {
|
|
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
|
|
(void)upsample_above;
|
|
const int frac_bits = 6;
|
|
const int max_base_x = ((16 + N) - 1);
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a0_1, a1, a1_1, a32, a16;
|
|
__m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256;
|
|
|
|
a16 = _mm256_set1_epi32(16);
|
|
a_mbase_x = _mm256_set1_epi16(above[max_base_x]);
|
|
max_base_x256 = _mm256_set1_epi16(max_base_x);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res[2], res1;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
dstvec[i] = a_mbase_x; // save 16 values
|
|
}
|
|
return;
|
|
}
|
|
__m256i shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1);
|
|
|
|
a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base)));
|
|
a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1)));
|
|
|
|
diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
|
|
res[0] = _mm256_add_epi32(a32, b);
|
|
res[0] = _mm256_srli_epi32(res[0], 5);
|
|
res[0] = _mm256_packus_epi32(
|
|
res[0], _mm256_castsi128_si256(_mm256_extracti128_si256(res[0], 1)));
|
|
|
|
int mdif = max_base_x - base;
|
|
if (mdif > 8) {
|
|
a0_1 =
|
|
_mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 8)));
|
|
a1_1 =
|
|
_mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 9)));
|
|
|
|
diff = _mm256_sub_epi32(a1_1, a0_1); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_1, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
|
|
res[1] = _mm256_add_epi32(a32, b);
|
|
res[1] = _mm256_srli_epi32(res[1], 5);
|
|
res[1] = _mm256_packus_epi32(
|
|
res[1], _mm256_castsi128_si256(_mm256_extracti128_si256(res[1], 1)));
|
|
} else {
|
|
res[1] = a_mbase_x;
|
|
}
|
|
res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]),
|
|
1); // 16 16bit values
|
|
|
|
base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3,
|
|
base + 4, base + 5, base + 6, base + 7,
|
|
base + 8, base + 9, base + 10, base + 11,
|
|
base + 12, base + 13, base + 14, base + 15);
|
|
mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256);
|
|
dstvec[r] = _mm256_blendv_epi8(a_mbase_x, res1, mask256);
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void highbd_dr_prediction_z1_16xN_internal_avx2(
|
|
int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx) {
|
|
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
|
|
(void)upsample_above;
|
|
const int frac_bits = 6;
|
|
const int max_base_x = ((16 + N) - 1);
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a32, a16, c3f;
|
|
__m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
a_mbase_x = _mm256_set1_epi16(above[max_base_x]);
|
|
max_base_x256 = _mm256_set1_epi16(max_base_x);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
dstvec[i] = a_mbase_x; // save 16 values
|
|
}
|
|
return;
|
|
}
|
|
__m256i shift =
|
|
_mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1);
|
|
|
|
a0 = _mm256_loadu_si256((__m256i *)(above + base));
|
|
a1 = _mm256_loadu_si256((__m256i *)(above + base + 1));
|
|
|
|
diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5); // 16 16bit values
|
|
|
|
base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3,
|
|
base + 4, base + 5, base + 6, base + 7,
|
|
base + 8, base + 9, base + 10, base + 11,
|
|
base + 12, base + 13, base + 14, base + 15);
|
|
mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256);
|
|
dstvec[r] = _mm256_blendv_epi8(a_mbase_x, res, mask256);
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z1_16xN_avx2(int N, uint16_t *dst,
|
|
ptrdiff_t stride,
|
|
const uint16_t *above,
|
|
int upsample_above, int dx,
|
|
int bd) {
|
|
__m256i dstvec[64];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_16xN_internal_avx2(N, dstvec, above, upsample_above,
|
|
dx);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_16xN_internal_avx2(N, dstvec, above,
|
|
upsample_above, dx);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]);
|
|
}
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_32xN_internal_avx2(
|
|
int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx) {
|
|
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
|
|
(void)upsample_above;
|
|
const int frac_bits = 6;
|
|
const int max_base_x = ((32 + N) - 1);
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a0_1, a1, a1_1, a32, a16, c3f;
|
|
__m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256;
|
|
|
|
a16 = _mm256_set1_epi32(16);
|
|
a_mbase_x = _mm256_set1_epi16(above[max_base_x]);
|
|
max_base_x256 = _mm256_set1_epi16(max_base_x);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res[2], res1;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
dstvec[i] = a_mbase_x; // save 32 values
|
|
dstvec[i + N] = a_mbase_x;
|
|
}
|
|
return;
|
|
}
|
|
|
|
__m256i shift =
|
|
_mm256_srli_epi32(_mm256_and_si256(_mm256_set1_epi32(x), c3f), 1);
|
|
|
|
for (int j = 0; j < 32; j += 16) {
|
|
int mdif = max_base_x - (base + j);
|
|
if (mdif <= 0) {
|
|
res1 = a_mbase_x;
|
|
} else {
|
|
a0 = _mm256_cvtepu16_epi32(
|
|
_mm_loadu_si128((__m128i *)(above + base + j)));
|
|
a1 = _mm256_cvtepu16_epi32(
|
|
_mm_loadu_si128((__m128i *)(above + base + 1 + j)));
|
|
|
|
diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
|
|
res[0] = _mm256_add_epi32(a32, b);
|
|
res[0] = _mm256_srli_epi32(res[0], 5);
|
|
res[0] = _mm256_packus_epi32(
|
|
res[0],
|
|
_mm256_castsi128_si256(_mm256_extracti128_si256(res[0], 1)));
|
|
if (mdif > 8) {
|
|
a0_1 = _mm256_cvtepu16_epi32(
|
|
_mm_loadu_si128((__m128i *)(above + base + 8 + j)));
|
|
a1_1 = _mm256_cvtepu16_epi32(
|
|
_mm_loadu_si128((__m128i *)(above + base + 9 + j)));
|
|
|
|
diff = _mm256_sub_epi32(a1_1, a0_1); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_1, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
|
|
res[1] = _mm256_add_epi32(a32, b);
|
|
res[1] = _mm256_srli_epi32(res[1], 5);
|
|
res[1] = _mm256_packus_epi32(
|
|
res[1],
|
|
_mm256_castsi128_si256(_mm256_extracti128_si256(res[1], 1)));
|
|
} else {
|
|
res[1] = a_mbase_x;
|
|
}
|
|
res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]),
|
|
1); // 16 16bit values
|
|
base_inc256 = _mm256_setr_epi16(
|
|
base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4,
|
|
base + j + 5, base + j + 6, base + j + 7, base + j + 8,
|
|
base + j + 9, base + j + 10, base + j + 11, base + j + 12,
|
|
base + j + 13, base + j + 14, base + j + 15);
|
|
|
|
mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256);
|
|
res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256);
|
|
}
|
|
if (!j) {
|
|
dstvec[r] = res1;
|
|
} else {
|
|
dstvec[r + N] = res1;
|
|
}
|
|
}
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void highbd_dr_prediction_z1_32xN_internal_avx2(
|
|
int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx) {
|
|
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
|
|
(void)upsample_above;
|
|
const int frac_bits = 6;
|
|
const int max_base_x = ((32 + N) - 1);
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a32, a16, c3f;
|
|
__m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
a_mbase_x = _mm256_set1_epi16(above[max_base_x]);
|
|
max_base_x256 = _mm256_set1_epi16(max_base_x);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
dstvec[i] = a_mbase_x; // save 32 values
|
|
dstvec[i + N] = a_mbase_x;
|
|
}
|
|
return;
|
|
}
|
|
|
|
__m256i shift =
|
|
_mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1);
|
|
|
|
for (int j = 0; j < 32; j += 16) {
|
|
int mdif = max_base_x - (base + j);
|
|
if (mdif <= 0) {
|
|
res = a_mbase_x;
|
|
} else {
|
|
a0 = _mm256_loadu_si256((__m256i *)(above + base + j));
|
|
a1 = _mm256_loadu_si256((__m256i *)(above + base + 1 + j));
|
|
|
|
diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
|
|
base_inc256 = _mm256_setr_epi16(
|
|
base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4,
|
|
base + j + 5, base + j + 6, base + j + 7, base + j + 8,
|
|
base + j + 9, base + j + 10, base + j + 11, base + j + 12,
|
|
base + j + 13, base + j + 14, base + j + 15);
|
|
|
|
mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256);
|
|
res = _mm256_blendv_epi8(a_mbase_x, res, mask256);
|
|
}
|
|
if (!j) {
|
|
dstvec[r] = res;
|
|
} else {
|
|
dstvec[r + N] = res;
|
|
}
|
|
}
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z1_32xN_avx2(int N, uint16_t *dst,
|
|
ptrdiff_t stride,
|
|
const uint16_t *above,
|
|
int upsample_above, int dx,
|
|
int bd) {
|
|
__m256i dstvec[128];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_32xN_internal_avx2(N, dstvec, above, upsample_above,
|
|
dx);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_32xN_internal_avx2(N, dstvec, above,
|
|
upsample_above, dx);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]);
|
|
_mm256_storeu_si256((__m256i *)(dst + stride * i + 16), dstvec[i + N]);
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_32bit_z1_64xN_avx2(int N, uint16_t *dst,
|
|
ptrdiff_t stride,
|
|
const uint16_t *above,
|
|
int upsample_above,
|
|
int dx) {
|
|
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
|
|
(void)upsample_above;
|
|
const int frac_bits = 6;
|
|
const int max_base_x = ((64 + N) - 1);
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a0_1, a1, a1_1, a32, a16;
|
|
__m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256;
|
|
|
|
a16 = _mm256_set1_epi32(16);
|
|
a_mbase_x = _mm256_set1_epi16(above[max_base_x]);
|
|
max_base_x256 = _mm256_set1_epi16(max_base_x);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++, dst += stride) {
|
|
__m256i b, res[2], res1;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
_mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values
|
|
_mm256_storeu_si256((__m256i *)(dst + 16), a_mbase_x);
|
|
_mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x);
|
|
_mm256_storeu_si256((__m256i *)(dst + 48), a_mbase_x);
|
|
dst += stride;
|
|
}
|
|
return;
|
|
}
|
|
|
|
__m256i shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1);
|
|
|
|
__m128i a0_128, a0_1_128, a1_128, a1_1_128;
|
|
for (int j = 0; j < 64; j += 16) {
|
|
int mdif = max_base_x - (base + j);
|
|
if (mdif <= 0) {
|
|
_mm256_storeu_si256((__m256i *)(dst + j), a_mbase_x);
|
|
} else {
|
|
a0_128 = _mm_loadu_si128((__m128i *)(above + base + j));
|
|
a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1 + j));
|
|
a0 = _mm256_cvtepu16_epi32(a0_128);
|
|
a1 = _mm256_cvtepu16_epi32(a1_128);
|
|
|
|
diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
|
|
res[0] = _mm256_add_epi32(a32, b);
|
|
res[0] = _mm256_srli_epi32(res[0], 5);
|
|
res[0] = _mm256_packus_epi32(
|
|
res[0],
|
|
_mm256_castsi128_si256(_mm256_extracti128_si256(res[0], 1)));
|
|
if (mdif > 8) {
|
|
a0_1_128 = _mm_loadu_si128((__m128i *)(above + base + 8 + j));
|
|
a1_1_128 = _mm_loadu_si128((__m128i *)(above + base + 9 + j));
|
|
a0_1 = _mm256_cvtepu16_epi32(a0_1_128);
|
|
a1_1 = _mm256_cvtepu16_epi32(a1_1_128);
|
|
|
|
diff = _mm256_sub_epi32(a1_1, a0_1); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_1, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
|
|
res[1] = _mm256_add_epi32(a32, b);
|
|
res[1] = _mm256_srli_epi32(res[1], 5);
|
|
res[1] = _mm256_packus_epi32(
|
|
res[1],
|
|
_mm256_castsi128_si256(_mm256_extracti128_si256(res[1], 1)));
|
|
} else {
|
|
res[1] = a_mbase_x;
|
|
}
|
|
res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]),
|
|
1); // 16 16bit values
|
|
base_inc256 = _mm256_setr_epi16(
|
|
base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4,
|
|
base + j + 5, base + j + 6, base + j + 7, base + j + 8,
|
|
base + j + 9, base + j + 10, base + j + 11, base + j + 12,
|
|
base + j + 13, base + j + 14, base + j + 15);
|
|
|
|
mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256);
|
|
res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256);
|
|
_mm256_storeu_si256((__m256i *)(dst + j), res1);
|
|
}
|
|
}
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z1_64xN_avx2(int N, uint16_t *dst,
|
|
ptrdiff_t stride,
|
|
const uint16_t *above,
|
|
int upsample_above, int dx) {
|
|
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
|
|
(void)upsample_above;
|
|
const int frac_bits = 6;
|
|
const int max_base_x = ((64 + N) - 1);
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a32, a16, c3f;
|
|
__m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
a_mbase_x = _mm256_set1_epi16(above[max_base_x]);
|
|
max_base_x256 = _mm256_set1_epi16(max_base_x);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++, dst += stride) {
|
|
__m256i b, res;
|
|
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
_mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values
|
|
_mm256_storeu_si256((__m256i *)(dst + 16), a_mbase_x);
|
|
_mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x);
|
|
_mm256_storeu_si256((__m256i *)(dst + 48), a_mbase_x);
|
|
dst += stride;
|
|
}
|
|
return;
|
|
}
|
|
|
|
__m256i shift =
|
|
_mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1);
|
|
|
|
for (int j = 0; j < 64; j += 16) {
|
|
int mdif = max_base_x - (base + j);
|
|
if (mdif <= 0) {
|
|
_mm256_storeu_si256((__m256i *)(dst + j), a_mbase_x);
|
|
} else {
|
|
a0 = _mm256_loadu_si256((__m256i *)(above + base + j));
|
|
a1 = _mm256_loadu_si256((__m256i *)(above + base + 1 + j));
|
|
|
|
diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
|
|
base_inc256 = _mm256_setr_epi16(
|
|
base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4,
|
|
base + j + 5, base + j + 6, base + j + 7, base + j + 8,
|
|
base + j + 9, base + j + 10, base + j + 11, base + j + 12,
|
|
base + j + 13, base + j + 14, base + j + 15);
|
|
|
|
mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256);
|
|
res = _mm256_blendv_epi8(a_mbase_x, res, mask256);
|
|
_mm256_storeu_si256((__m256i *)(dst + j), res); // 16 16bit values
|
|
}
|
|
}
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
// Directional prediction, zone 1: 0 < angle < 90
|
|
void av1_highbd_dr_prediction_z1_avx2(uint16_t *dst, ptrdiff_t stride, int bw,
|
|
int bh, const uint16_t *above,
|
|
const uint16_t *left, int upsample_above,
|
|
int dx, int dy, int bd) {
|
|
(void)left;
|
|
(void)dy;
|
|
|
|
switch (bw) {
|
|
case 4:
|
|
highbd_dr_prediction_z1_4xN_avx2(bh, dst, stride, above, upsample_above,
|
|
dx, bd);
|
|
break;
|
|
case 8:
|
|
highbd_dr_prediction_z1_8xN_avx2(bh, dst, stride, above, upsample_above,
|
|
dx, bd);
|
|
break;
|
|
case 16:
|
|
highbd_dr_prediction_z1_16xN_avx2(bh, dst, stride, above, upsample_above,
|
|
dx, bd);
|
|
break;
|
|
case 32:
|
|
highbd_dr_prediction_z1_32xN_avx2(bh, dst, stride, above, upsample_above,
|
|
dx, bd);
|
|
break;
|
|
case 64:
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_64xN_avx2(bh, dst, stride, above,
|
|
upsample_above, dx);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_64xN_avx2(bh, dst, stride, above,
|
|
upsample_above, dx);
|
|
}
|
|
break;
|
|
default: break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void highbd_transpose_TX_16X16(const uint16_t *src, ptrdiff_t pitchSrc,
|
|
uint16_t *dst, ptrdiff_t pitchDst) {
|
|
__m256i r[16];
|
|
__m256i d[16];
|
|
for (int j = 0; j < 16; j++) {
|
|
r[j] = _mm256_loadu_si256((__m256i *)(src + j * pitchSrc));
|
|
}
|
|
highbd_transpose16x16_avx2(r, d);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + j * pitchDst), d[j]);
|
|
}
|
|
}
|
|
|
|
static void highbd_transpose(const uint16_t *src, ptrdiff_t pitchSrc,
|
|
uint16_t *dst, ptrdiff_t pitchDst, int width,
|
|
int height) {
|
|
for (int j = 0; j < height; j += 16)
|
|
for (int i = 0; i < width; i += 16)
|
|
highbd_transpose_TX_16X16(src + i * pitchSrc + j, pitchSrc,
|
|
dst + j * pitchDst + i, pitchDst);
|
|
}
|
|
|
|
static void highbd_dr_prediction_32bit_z2_Nx4_avx2(
|
|
int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above,
|
|
const uint16_t *left, int upsample_above, int upsample_left, int dx,
|
|
int dy) {
|
|
const int min_base_x = -(1 << upsample_above);
|
|
const int min_base_y = -(1 << upsample_left);
|
|
const int frac_bits_x = 6 - upsample_above;
|
|
const int frac_bits_y = 6 - upsample_left;
|
|
|
|
assert(dx > 0);
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0_x, a1_x, a32, a16;
|
|
__m256i diff;
|
|
__m128i c3f, min_base_y128;
|
|
|
|
a16 = _mm256_set1_epi32(16);
|
|
c3f = _mm_set1_epi32(0x3f);
|
|
min_base_y128 = _mm_set1_epi32(min_base_y);
|
|
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, shift;
|
|
__m128i resx, resy, resxy;
|
|
__m128i a0_x128, a1_x128;
|
|
int y = r + 1;
|
|
int base_x = (-y * dx) >> frac_bits_x;
|
|
int base_shift = 0;
|
|
if (base_x < (min_base_x - 1)) {
|
|
base_shift = (min_base_x - base_x - 1) >> upsample_above;
|
|
}
|
|
int base_min_diff =
|
|
(min_base_x - base_x + upsample_above) >> upsample_above;
|
|
if (base_min_diff > 4) {
|
|
base_min_diff = 4;
|
|
} else {
|
|
if (base_min_diff < 0) base_min_diff = 0;
|
|
}
|
|
|
|
if (base_shift > 3) {
|
|
a0_x = _mm256_setzero_si256();
|
|
a1_x = _mm256_setzero_si256();
|
|
shift = _mm256_setzero_si256();
|
|
} else {
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
|
|
if (upsample_above) {
|
|
a0_x128 = _mm_shuffle_epi8(a0_x128,
|
|
*(__m128i *)HighbdEvenOddMaskx4[base_shift]);
|
|
a1_x128 = _mm_srli_si128(a0_x128, 8);
|
|
|
|
shift = _mm256_castsi128_si256(_mm_srli_epi32(
|
|
_mm_and_si128(
|
|
_mm_slli_epi32(
|
|
_mm_setr_epi32(-y * dx, (1 << 6) - y * dx,
|
|
(2 << 6) - y * dx, (3 << 6) - y * dx),
|
|
upsample_above),
|
|
c3f),
|
|
1));
|
|
} else {
|
|
a0_x128 =
|
|
_mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
a1_x128 = _mm_srli_si128(a0_x128, 2);
|
|
|
|
shift = _mm256_castsi128_si256(_mm_srli_epi32(
|
|
_mm_and_si128(_mm_setr_epi32(-y * dx, (1 << 6) - y * dx,
|
|
(2 << 6) - y * dx, (3 << 6) - y * dx),
|
|
c3f),
|
|
1));
|
|
}
|
|
a0_x = _mm256_cvtepu16_epi32(a0_x128);
|
|
a1_x = _mm256_cvtepu16_epi32(a1_x128);
|
|
}
|
|
// y calc
|
|
__m128i a0_y, a1_y, shifty;
|
|
if (base_x < min_base_x) {
|
|
__m128i r6, c1234, dy128, y_c128, base_y_c128, mask128;
|
|
DECLARE_ALIGNED(32, int, base_y_c[4]);
|
|
r6 = _mm_set1_epi32(r << 6);
|
|
dy128 = _mm_set1_epi32(dy);
|
|
c1234 = _mm_setr_epi32(1, 2, 3, 4);
|
|
y_c128 = _mm_sub_epi32(r6, _mm_mullo_epi32(c1234, dy128));
|
|
base_y_c128 = _mm_srai_epi32(y_c128, frac_bits_y);
|
|
mask128 = _mm_cmpgt_epi32(min_base_y128, base_y_c128);
|
|
base_y_c128 = _mm_andnot_si128(mask128, base_y_c128);
|
|
_mm_store_si128((__m128i *)base_y_c, base_y_c128);
|
|
|
|
a0_y = _mm_setr_epi32(left[base_y_c[0]], left[base_y_c[1]],
|
|
left[base_y_c[2]], left[base_y_c[3]]);
|
|
a1_y = _mm_setr_epi32(left[base_y_c[0] + 1], left[base_y_c[1] + 1],
|
|
left[base_y_c[2] + 1], left[base_y_c[3] + 1]);
|
|
|
|
if (upsample_left) {
|
|
shifty = _mm_srli_epi32(
|
|
_mm_and_si128(_mm_slli_epi32(y_c128, upsample_left), c3f), 1);
|
|
} else {
|
|
shifty = _mm_srli_epi32(_mm_and_si128(y_c128, c3f), 1);
|
|
}
|
|
a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1);
|
|
a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1);
|
|
shift = _mm256_inserti128_si256(shift, shifty, 1);
|
|
}
|
|
|
|
diff = _mm256_sub_epi32(a1_x, a0_x); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_x, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
res = _mm256_add_epi32(a32, b);
|
|
res = _mm256_srli_epi32(res, 5);
|
|
|
|
resx = _mm256_castsi256_si128(res);
|
|
resx = _mm_packus_epi32(resx, resx);
|
|
|
|
resy = _mm256_extracti128_si256(res, 1);
|
|
resy = _mm_packus_epi32(resy, resy);
|
|
|
|
resxy =
|
|
_mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]);
|
|
_mm_storel_epi64((__m128i *)(dst), resxy);
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z2_Nx4_avx2(
|
|
int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above,
|
|
const uint16_t *left, int upsample_above, int upsample_left, int dx,
|
|
int dy) {
|
|
const int min_base_x = -(1 << upsample_above);
|
|
const int min_base_y = -(1 << upsample_left);
|
|
const int frac_bits_x = 6 - upsample_above;
|
|
const int frac_bits_y = 6 - upsample_left;
|
|
|
|
assert(dx > 0);
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0_x, a1_x, a32, a16;
|
|
__m256i diff;
|
|
__m128i c3f, min_base_y128;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
c3f = _mm_set1_epi16(0x3f);
|
|
min_base_y128 = _mm_set1_epi16(min_base_y);
|
|
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, shift;
|
|
__m128i resx, resy, resxy;
|
|
__m128i a0_x128, a1_x128;
|
|
int y = r + 1;
|
|
int base_x = (-y * dx) >> frac_bits_x;
|
|
int base_shift = 0;
|
|
if (base_x < (min_base_x - 1)) {
|
|
base_shift = (min_base_x - base_x - 1) >> upsample_above;
|
|
}
|
|
int base_min_diff =
|
|
(min_base_x - base_x + upsample_above) >> upsample_above;
|
|
if (base_min_diff > 4) {
|
|
base_min_diff = 4;
|
|
} else {
|
|
if (base_min_diff < 0) base_min_diff = 0;
|
|
}
|
|
|
|
if (base_shift > 3) {
|
|
a0_x = _mm256_setzero_si256();
|
|
a1_x = _mm256_setzero_si256();
|
|
shift = _mm256_setzero_si256();
|
|
} else {
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
|
|
if (upsample_above) {
|
|
a0_x128 = _mm_shuffle_epi8(a0_x128,
|
|
*(__m128i *)HighbdEvenOddMaskx4[base_shift]);
|
|
a1_x128 = _mm_srli_si128(a0_x128, 8);
|
|
|
|
shift = _mm256_castsi128_si256(_mm_srli_epi16(
|
|
_mm_and_si128(
|
|
_mm_slli_epi16(_mm_setr_epi16(-y * dx, (1 << 6) - y * dx,
|
|
(2 << 6) - y * dx,
|
|
(3 << 6) - y * dx, 0, 0, 0, 0),
|
|
upsample_above),
|
|
c3f),
|
|
1));
|
|
} else {
|
|
a0_x128 =
|
|
_mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
a1_x128 = _mm_srli_si128(a0_x128, 2);
|
|
|
|
shift = _mm256_castsi128_si256(_mm_srli_epi16(
|
|
_mm_and_si128(
|
|
_mm_setr_epi16(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx,
|
|
(3 << 6) - y * dx, 0, 0, 0, 0),
|
|
c3f),
|
|
1));
|
|
}
|
|
a0_x = _mm256_castsi128_si256(a0_x128);
|
|
a1_x = _mm256_castsi128_si256(a1_x128);
|
|
}
|
|
// y calc
|
|
__m128i a0_y, a1_y, shifty;
|
|
if (base_x < min_base_x) {
|
|
__m128i r6, c1234, dy128, y_c128, base_y_c128, mask128;
|
|
DECLARE_ALIGNED(32, int16_t, base_y_c[8]);
|
|
r6 = _mm_set1_epi16(r << 6);
|
|
dy128 = _mm_set1_epi16(dy);
|
|
c1234 = _mm_setr_epi16(1, 2, 3, 4, 0, 0, 0, 0);
|
|
y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234, dy128));
|
|
base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y);
|
|
mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128);
|
|
base_y_c128 = _mm_andnot_si128(mask128, base_y_c128);
|
|
_mm_store_si128((__m128i *)base_y_c, base_y_c128);
|
|
|
|
a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
|
|
left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0);
|
|
a1_y = _mm_setr_epi16(left[base_y_c[0] + 1], left[base_y_c[1] + 1],
|
|
left[base_y_c[2] + 1], left[base_y_c[3] + 1], 0, 0,
|
|
0, 0);
|
|
|
|
if (upsample_left) {
|
|
shifty = _mm_srli_epi16(
|
|
_mm_and_si128(_mm_slli_epi16(y_c128, upsample_left), c3f), 1);
|
|
} else {
|
|
shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1);
|
|
}
|
|
a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1);
|
|
a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1);
|
|
shift = _mm256_inserti128_si256(shift, shifty, 1);
|
|
}
|
|
|
|
diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
|
|
resx = _mm256_castsi256_si128(res);
|
|
resy = _mm256_extracti128_si256(res, 1);
|
|
resxy =
|
|
_mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]);
|
|
_mm_storel_epi64((__m128i *)(dst), resxy);
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_32bit_z2_Nx8_avx2(
|
|
int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above,
|
|
const uint16_t *left, int upsample_above, int upsample_left, int dx,
|
|
int dy) {
|
|
const int min_base_x = -(1 << upsample_above);
|
|
const int min_base_y = -(1 << upsample_left);
|
|
const int frac_bits_x = 6 - upsample_above;
|
|
const int frac_bits_y = 6 - upsample_left;
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0_x, a1_x, a0_y, a1_y, a32, a16, c3f, min_base_y256;
|
|
__m256i diff;
|
|
__m128i a0_x128, a1_x128;
|
|
|
|
a16 = _mm256_set1_epi32(16);
|
|
c3f = _mm256_set1_epi32(0x3f);
|
|
min_base_y256 = _mm256_set1_epi32(min_base_y);
|
|
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, shift;
|
|
__m128i resx, resy, resxy;
|
|
int y = r + 1;
|
|
int base_x = (-y * dx) >> frac_bits_x;
|
|
int base_shift = 0;
|
|
if (base_x < (min_base_x - 1)) {
|
|
base_shift = (min_base_x - base_x - 1) >> upsample_above;
|
|
}
|
|
int base_min_diff =
|
|
(min_base_x - base_x + upsample_above) >> upsample_above;
|
|
if (base_min_diff > 8) {
|
|
base_min_diff = 8;
|
|
} else {
|
|
if (base_min_diff < 0) base_min_diff = 0;
|
|
}
|
|
|
|
if (base_shift > 7) {
|
|
resx = _mm_setzero_si128();
|
|
} else {
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
|
|
if (upsample_above) {
|
|
__m128i mask, atmp0, atmp1, atmp2, atmp3;
|
|
a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 8 + base_shift));
|
|
atmp0 = _mm_shuffle_epi8(a0_x128,
|
|
*(__m128i *)HighbdEvenOddMaskx[base_shift]);
|
|
atmp1 = _mm_shuffle_epi8(a1_x128,
|
|
*(__m128i *)HighbdEvenOddMaskx[base_shift]);
|
|
atmp2 = _mm_shuffle_epi8(
|
|
a0_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16));
|
|
atmp3 = _mm_shuffle_epi8(
|
|
a1_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16));
|
|
mask = _mm_cmpgt_epi8(*(__m128i *)HighbdEvenOddMaskx[base_shift],
|
|
_mm_set1_epi8(15));
|
|
a0_x128 = _mm_blendv_epi8(atmp0, atmp1, mask);
|
|
mask = _mm_cmpgt_epi8(*(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16),
|
|
_mm_set1_epi8(15));
|
|
a1_x128 = _mm_blendv_epi8(atmp2, atmp3, mask);
|
|
shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(
|
|
_mm256_slli_epi32(
|
|
_mm256_setr_epi32(-y * dx, (1 << 6) - y * dx,
|
|
(2 << 6) - y * dx, (3 << 6) - y * dx,
|
|
(4 << 6) - y * dx, (5 << 6) - y * dx,
|
|
(6 << 6) - y * dx, (7 << 6) - y * dx),
|
|
upsample_above),
|
|
c3f),
|
|
1);
|
|
} else {
|
|
a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 1 + base_shift));
|
|
a0_x128 =
|
|
_mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
a1_x128 =
|
|
_mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
|
|
shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(
|
|
_mm256_setr_epi32(-y * dx, (1 << 6) - y * dx, (2 << 6) - y * dx,
|
|
(3 << 6) - y * dx, (4 << 6) - y * dx,
|
|
(5 << 6) - y * dx, (6 << 6) - y * dx,
|
|
(7 << 6) - y * dx),
|
|
c3f),
|
|
1);
|
|
}
|
|
a0_x = _mm256_cvtepu16_epi32(a0_x128);
|
|
a1_x = _mm256_cvtepu16_epi32(a1_x128);
|
|
|
|
diff = _mm256_sub_epi32(a1_x, a0_x); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_x, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
res = _mm256_add_epi32(a32, b);
|
|
res = _mm256_srli_epi32(res, 5);
|
|
|
|
resx = _mm256_castsi256_si128(_mm256_packus_epi32(
|
|
res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))));
|
|
}
|
|
// y calc
|
|
if (base_x < min_base_x) {
|
|
DECLARE_ALIGNED(32, int, base_y_c[8]);
|
|
__m256i r6, c256, dy256, y_c256, base_y_c256, mask256;
|
|
r6 = _mm256_set1_epi32(r << 6);
|
|
dy256 = _mm256_set1_epi32(dy);
|
|
c256 = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8);
|
|
y_c256 = _mm256_sub_epi32(r6, _mm256_mullo_epi32(c256, dy256));
|
|
base_y_c256 = _mm256_srai_epi32(y_c256, frac_bits_y);
|
|
mask256 = _mm256_cmpgt_epi32(min_base_y256, base_y_c256);
|
|
base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256);
|
|
_mm256_store_si256((__m256i *)base_y_c, base_y_c256);
|
|
|
|
a0_y = _mm256_cvtepu16_epi32(_mm_setr_epi16(
|
|
left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]],
|
|
left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]],
|
|
left[base_y_c[6]], left[base_y_c[7]]));
|
|
a1_y = _mm256_cvtepu16_epi32(_mm_setr_epi16(
|
|
left[base_y_c[0] + 1], left[base_y_c[1] + 1], left[base_y_c[2] + 1],
|
|
left[base_y_c[3] + 1], left[base_y_c[4] + 1], left[base_y_c[5] + 1],
|
|
left[base_y_c[6] + 1], left[base_y_c[7] + 1]));
|
|
|
|
if (upsample_left) {
|
|
shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(_mm256_slli_epi32((y_c256), upsample_left), c3f),
|
|
1);
|
|
} else {
|
|
shift = _mm256_srli_epi32(_mm256_and_si256(y_c256, c3f), 1);
|
|
}
|
|
diff = _mm256_sub_epi32(a1_y, a0_y); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_y, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
res = _mm256_add_epi32(a32, b);
|
|
res = _mm256_srli_epi32(res, 5);
|
|
|
|
resy = _mm256_castsi256_si128(_mm256_packus_epi32(
|
|
res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))));
|
|
} else {
|
|
resy = resx;
|
|
}
|
|
resxy =
|
|
_mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]);
|
|
_mm_storeu_si128((__m128i *)(dst), resxy);
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z2_Nx8_avx2(
|
|
int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above,
|
|
const uint16_t *left, int upsample_above, int upsample_left, int dx,
|
|
int dy) {
|
|
const int min_base_x = -(1 << upsample_above);
|
|
const int min_base_y = -(1 << upsample_left);
|
|
const int frac_bits_x = 6 - upsample_above;
|
|
const int frac_bits_y = 6 - upsample_left;
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m128i c3f, min_base_y128;
|
|
__m256i a0_x, a1_x, diff, a32, a16;
|
|
__m128i a0_x128, a1_x128;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
c3f = _mm_set1_epi16(0x3f);
|
|
min_base_y128 = _mm_set1_epi16(min_base_y);
|
|
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, shift;
|
|
__m128i resx, resy, resxy;
|
|
int y = r + 1;
|
|
int base_x = (-y * dx) >> frac_bits_x;
|
|
int base_shift = 0;
|
|
if (base_x < (min_base_x - 1)) {
|
|
base_shift = (min_base_x - base_x - 1) >> upsample_above;
|
|
}
|
|
int base_min_diff =
|
|
(min_base_x - base_x + upsample_above) >> upsample_above;
|
|
if (base_min_diff > 8) {
|
|
base_min_diff = 8;
|
|
} else {
|
|
if (base_min_diff < 0) base_min_diff = 0;
|
|
}
|
|
|
|
if (base_shift > 7) {
|
|
a0_x = _mm256_setzero_si256();
|
|
a1_x = _mm256_setzero_si256();
|
|
shift = _mm256_setzero_si256();
|
|
} else {
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
|
|
if (upsample_above) {
|
|
__m128i mask, atmp0, atmp1, atmp2, atmp3;
|
|
a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 8 + base_shift));
|
|
atmp0 = _mm_shuffle_epi8(a0_x128,
|
|
*(__m128i *)HighbdEvenOddMaskx[base_shift]);
|
|
atmp1 = _mm_shuffle_epi8(a1_x128,
|
|
*(__m128i *)HighbdEvenOddMaskx[base_shift]);
|
|
atmp2 = _mm_shuffle_epi8(
|
|
a0_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16));
|
|
atmp3 = _mm_shuffle_epi8(
|
|
a1_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16));
|
|
mask = _mm_cmpgt_epi8(*(__m128i *)HighbdEvenOddMaskx[base_shift],
|
|
_mm_set1_epi8(15));
|
|
a0_x128 = _mm_blendv_epi8(atmp0, atmp1, mask);
|
|
mask = _mm_cmpgt_epi8(*(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16),
|
|
_mm_set1_epi8(15));
|
|
a1_x128 = _mm_blendv_epi8(atmp2, atmp3, mask);
|
|
|
|
shift = _mm256_castsi128_si256(_mm_srli_epi16(
|
|
_mm_and_si128(
|
|
_mm_slli_epi16(
|
|
_mm_setr_epi16(-y * dx, (1 << 6) - y * dx,
|
|
(2 << 6) - y * dx, (3 << 6) - y * dx,
|
|
(4 << 6) - y * dx, (5 << 6) - y * dx,
|
|
(6 << 6) - y * dx, (7 << 6) - y * dx),
|
|
upsample_above),
|
|
c3f),
|
|
1));
|
|
} else {
|
|
a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 1 + base_shift));
|
|
a0_x128 =
|
|
_mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
a1_x128 =
|
|
_mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
|
|
shift = _mm256_castsi128_si256(_mm_srli_epi16(
|
|
_mm_and_si128(_mm_setr_epi16(-y * dx, (1 << 6) - y * dx,
|
|
(2 << 6) - y * dx, (3 << 6) - y * dx,
|
|
(4 << 6) - y * dx, (5 << 6) - y * dx,
|
|
(6 << 6) - y * dx, (7 << 6) - y * dx),
|
|
c3f),
|
|
1));
|
|
}
|
|
a0_x = _mm256_castsi128_si256(a0_x128);
|
|
a1_x = _mm256_castsi128_si256(a1_x128);
|
|
}
|
|
|
|
// y calc
|
|
__m128i a0_y, a1_y, shifty;
|
|
if (base_x < min_base_x) {
|
|
DECLARE_ALIGNED(32, int16_t, base_y_c[8]);
|
|
__m128i r6, c1234, dy128, y_c128, base_y_c128, mask128;
|
|
r6 = _mm_set1_epi16(r << 6);
|
|
dy128 = _mm_set1_epi16(dy);
|
|
c1234 = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
|
|
y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234, dy128));
|
|
base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y);
|
|
mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128);
|
|
base_y_c128 = _mm_andnot_si128(mask128, base_y_c128);
|
|
_mm_store_si128((__m128i *)base_y_c, base_y_c128);
|
|
|
|
a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
|
|
left[base_y_c[2]], left[base_y_c[3]],
|
|
left[base_y_c[4]], left[base_y_c[5]],
|
|
left[base_y_c[6]], left[base_y_c[7]]);
|
|
a1_y = _mm_setr_epi16(left[base_y_c[0] + 1], left[base_y_c[1] + 1],
|
|
left[base_y_c[2] + 1], left[base_y_c[3] + 1],
|
|
left[base_y_c[4] + 1], left[base_y_c[5] + 1],
|
|
left[base_y_c[6] + 1], left[base_y_c[7] + 1]);
|
|
|
|
if (upsample_left) {
|
|
shifty = _mm_srli_epi16(
|
|
_mm_and_si128(_mm_slli_epi16((y_c128), upsample_left), c3f), 1);
|
|
} else {
|
|
shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1);
|
|
}
|
|
a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1);
|
|
a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1);
|
|
shift = _mm256_inserti128_si256(shift, shifty, 1);
|
|
}
|
|
|
|
diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
|
|
resx = _mm256_castsi256_si128(res);
|
|
resy = _mm256_extracti128_si256(res, 1);
|
|
|
|
resxy =
|
|
_mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]);
|
|
_mm_storeu_si128((__m128i *)(dst), resxy);
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_32bit_z2_HxW_avx2(
|
|
int H, int W, uint16_t *dst, ptrdiff_t stride, const uint16_t *above,
|
|
const uint16_t *left, int upsample_above, int upsample_left, int dx,
|
|
int dy) {
|
|
// here upsample_above and upsample_left are 0 by design of
|
|
// av1_use_intra_edge_upsample
|
|
const int min_base_x = -1;
|
|
const int min_base_y = -1;
|
|
(void)upsample_above;
|
|
(void)upsample_left;
|
|
const int frac_bits_x = 6;
|
|
const int frac_bits_y = 6;
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0_x, a1_x, a0_y, a1_y, a32, a0_1_x, a1_1_x, a16, c1;
|
|
__m256i diff, min_base_y256, c3f, dy256, c1234, c0123, c8;
|
|
__m128i a0_x128, a1_x128, a0_1_x128, a1_1_x128;
|
|
DECLARE_ALIGNED(32, int, base_y_c[16]);
|
|
|
|
a16 = _mm256_set1_epi32(16);
|
|
c1 = _mm256_srli_epi32(a16, 4);
|
|
c8 = _mm256_srli_epi32(a16, 1);
|
|
min_base_y256 = _mm256_set1_epi32(min_base_y);
|
|
c3f = _mm256_set1_epi32(0x3f);
|
|
dy256 = _mm256_set1_epi32(dy);
|
|
c0123 = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
|
|
c1234 = _mm256_add_epi32(c0123, c1);
|
|
|
|
for (int r = 0; r < H; r++) {
|
|
__m256i b, res, shift, ydx;
|
|
__m256i resx[2], resy[2];
|
|
__m256i resxy, j256, r6;
|
|
for (int j = 0; j < W; j += 16) {
|
|
j256 = _mm256_set1_epi32(j);
|
|
int y = r + 1;
|
|
ydx = _mm256_set1_epi32(y * dx);
|
|
|
|
int base_x = ((j << 6) - y * dx) >> frac_bits_x;
|
|
int base_shift = 0;
|
|
if ((base_x) < (min_base_x - 1)) {
|
|
base_shift = (min_base_x - base_x - 1);
|
|
}
|
|
int base_min_diff = (min_base_x - base_x);
|
|
if (base_min_diff > 16) {
|
|
base_min_diff = 16;
|
|
} else {
|
|
if (base_min_diff < 0) base_min_diff = 0;
|
|
}
|
|
|
|
if (base_shift > 7) {
|
|
resx[0] = _mm256_setzero_si256();
|
|
} else {
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
|
|
a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1));
|
|
a0_x128 =
|
|
_mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
a1_x128 =
|
|
_mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
|
|
a0_x = _mm256_cvtepu16_epi32(a0_x128);
|
|
a1_x = _mm256_cvtepu16_epi32(a1_x128);
|
|
|
|
r6 = _mm256_slli_epi32(_mm256_add_epi32(c0123, j256), 6);
|
|
shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(_mm256_sub_epi32(r6, ydx), c3f), 1);
|
|
|
|
diff = _mm256_sub_epi32(a1_x, a0_x); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_x, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
res = _mm256_add_epi32(a32, b);
|
|
res = _mm256_srli_epi32(res, 5);
|
|
|
|
resx[0] = _mm256_packus_epi32(
|
|
res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)));
|
|
}
|
|
int base_shift8 = 0;
|
|
if ((base_x + 8) < (min_base_x - 1)) {
|
|
base_shift8 = (min_base_x - (base_x + 8) - 1);
|
|
}
|
|
if (base_shift8 > 7) {
|
|
resx[1] = _mm256_setzero_si256();
|
|
} else {
|
|
a0_1_x128 =
|
|
_mm_loadu_si128((__m128i *)(above + base_x + base_shift8 + 8));
|
|
a1_1_x128 =
|
|
_mm_loadu_si128((__m128i *)(above + base_x + base_shift8 + 9));
|
|
a0_1_x128 = _mm_shuffle_epi8(a0_1_x128,
|
|
*(__m128i *)HighbdLoadMaskx[base_shift8]);
|
|
a1_1_x128 = _mm_shuffle_epi8(a1_1_x128,
|
|
*(__m128i *)HighbdLoadMaskx[base_shift8]);
|
|
|
|
a0_1_x = _mm256_cvtepu16_epi32(a0_1_x128);
|
|
a1_1_x = _mm256_cvtepu16_epi32(a1_1_x128);
|
|
|
|
r6 = _mm256_slli_epi32(
|
|
_mm256_add_epi32(c0123, _mm256_add_epi32(j256, c8)), 6);
|
|
shift = _mm256_srli_epi32(
|
|
_mm256_and_si256(_mm256_sub_epi32(r6, ydx), c3f), 1);
|
|
|
|
diff = _mm256_sub_epi32(a1_1_x, a0_1_x); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_1_x, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
|
|
resx[1] = _mm256_add_epi32(a32, b);
|
|
resx[1] = _mm256_srli_epi32(resx[1], 5);
|
|
resx[1] = _mm256_packus_epi32(
|
|
resx[1],
|
|
_mm256_castsi128_si256(_mm256_extracti128_si256(resx[1], 1)));
|
|
}
|
|
resx[0] =
|
|
_mm256_inserti128_si256(resx[0], _mm256_castsi256_si128(resx[1]),
|
|
1); // 16 16bit values
|
|
|
|
// y calc
|
|
resy[0] = _mm256_setzero_si256();
|
|
if ((base_x < min_base_x)) {
|
|
__m256i c256, y_c256, y_c_1_256, base_y_c256, mask256;
|
|
r6 = _mm256_set1_epi32(r << 6);
|
|
c256 = _mm256_add_epi32(j256, c1234);
|
|
y_c256 = _mm256_sub_epi32(r6, _mm256_mullo_epi32(c256, dy256));
|
|
base_y_c256 = _mm256_srai_epi32(y_c256, frac_bits_y);
|
|
mask256 = _mm256_cmpgt_epi32(min_base_y256, base_y_c256);
|
|
base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256);
|
|
_mm256_store_si256((__m256i *)base_y_c, base_y_c256);
|
|
c256 = _mm256_add_epi32(c256, c8);
|
|
y_c_1_256 = _mm256_sub_epi32(r6, _mm256_mullo_epi32(c256, dy256));
|
|
base_y_c256 = _mm256_srai_epi32(y_c_1_256, frac_bits_y);
|
|
mask256 = _mm256_cmpgt_epi32(min_base_y256, base_y_c256);
|
|
base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256);
|
|
_mm256_store_si256((__m256i *)(base_y_c + 8), base_y_c256);
|
|
|
|
a0_y = _mm256_cvtepu16_epi32(_mm_setr_epi16(
|
|
left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]],
|
|
left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]],
|
|
left[base_y_c[6]], left[base_y_c[7]]));
|
|
a1_y = _mm256_cvtepu16_epi32(_mm_setr_epi16(
|
|
left[base_y_c[0] + 1], left[base_y_c[1] + 1], left[base_y_c[2] + 1],
|
|
left[base_y_c[3] + 1], left[base_y_c[4] + 1], left[base_y_c[5] + 1],
|
|
left[base_y_c[6] + 1], left[base_y_c[7] + 1]));
|
|
|
|
shift = _mm256_srli_epi32(_mm256_and_si256(y_c256, c3f), 1);
|
|
|
|
diff = _mm256_sub_epi32(a1_y, a0_y); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_y, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
res = _mm256_add_epi32(a32, b);
|
|
res = _mm256_srli_epi32(res, 5);
|
|
|
|
resy[0] = _mm256_packus_epi32(
|
|
res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)));
|
|
|
|
a0_y = _mm256_cvtepu16_epi32(_mm_setr_epi16(
|
|
left[base_y_c[8]], left[base_y_c[9]], left[base_y_c[10]],
|
|
left[base_y_c[11]], left[base_y_c[12]], left[base_y_c[13]],
|
|
left[base_y_c[14]], left[base_y_c[15]]));
|
|
a1_y = _mm256_cvtepu16_epi32(
|
|
_mm_setr_epi16(left[base_y_c[8] + 1], left[base_y_c[9] + 1],
|
|
left[base_y_c[10] + 1], left[base_y_c[11] + 1],
|
|
left[base_y_c[12] + 1], left[base_y_c[13] + 1],
|
|
left[base_y_c[14] + 1], left[base_y_c[15] + 1]));
|
|
shift = _mm256_srli_epi32(_mm256_and_si256(y_c_1_256, c3f), 1);
|
|
|
|
diff = _mm256_sub_epi32(a1_y, a0_y); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi32(a0_y, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi32(diff, shift);
|
|
res = _mm256_add_epi32(a32, b);
|
|
res = _mm256_srli_epi32(res, 5);
|
|
|
|
resy[1] = _mm256_packus_epi32(
|
|
res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)));
|
|
|
|
resy[0] =
|
|
_mm256_inserti128_si256(resy[0], _mm256_castsi256_si128(resy[1]),
|
|
1); // 16 16bit values
|
|
}
|
|
|
|
resxy = _mm256_blendv_epi8(resx[0], resy[0],
|
|
*(__m256i *)HighbdBaseMask[base_min_diff]);
|
|
_mm256_storeu_si256((__m256i *)(dst + j), resxy);
|
|
} // for j
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z2_HxW_avx2(
|
|
int H, int W, uint16_t *dst, ptrdiff_t stride, const uint16_t *above,
|
|
const uint16_t *left, int upsample_above, int upsample_left, int dx,
|
|
int dy) {
|
|
// here upsample_above and upsample_left are 0 by design of
|
|
// av1_use_intra_edge_upsample
|
|
const int min_base_x = -1;
|
|
const int min_base_y = -1;
|
|
(void)upsample_above;
|
|
(void)upsample_left;
|
|
const int frac_bits_x = 6;
|
|
const int frac_bits_y = 6;
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0_x, a1_x, a32, a16, c3f, c1;
|
|
__m256i diff, min_base_y256, dy256, c1234, c0123;
|
|
DECLARE_ALIGNED(32, int16_t, base_y_c[16]);
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
c1 = _mm256_srli_epi16(a16, 4);
|
|
min_base_y256 = _mm256_set1_epi16(min_base_y);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
dy256 = _mm256_set1_epi16(dy);
|
|
c0123 =
|
|
_mm256_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
c1234 = _mm256_add_epi16(c0123, c1);
|
|
|
|
for (int r = 0; r < H; r++) {
|
|
__m256i b, res, shift;
|
|
__m256i resx, resy, ydx;
|
|
__m256i resxy, j256, r6;
|
|
__m128i a0_x128, a1_x128, a0_1_x128, a1_1_x128;
|
|
int y = r + 1;
|
|
ydx = _mm256_set1_epi16((short)(y * dx));
|
|
|
|
for (int j = 0; j < W; j += 16) {
|
|
j256 = _mm256_set1_epi16(j);
|
|
int base_x = ((j << 6) - y * dx) >> frac_bits_x;
|
|
int base_shift = 0;
|
|
if ((base_x) < (min_base_x - 1)) {
|
|
base_shift = (min_base_x - (base_x)-1);
|
|
}
|
|
int base_min_diff = (min_base_x - base_x);
|
|
if (base_min_diff > 16) {
|
|
base_min_diff = 16;
|
|
} else {
|
|
if (base_min_diff < 0) base_min_diff = 0;
|
|
}
|
|
|
|
if (base_shift < 8) {
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
|
|
a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1));
|
|
a0_x128 =
|
|
_mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
a1_x128 =
|
|
_mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]);
|
|
|
|
a0_x = _mm256_castsi128_si256(a0_x128);
|
|
a1_x = _mm256_castsi128_si256(a1_x128);
|
|
} else {
|
|
a0_x = _mm256_setzero_si256();
|
|
a1_x = _mm256_setzero_si256();
|
|
}
|
|
|
|
int base_shift1 = 0;
|
|
if (base_shift > 8) {
|
|
base_shift1 = base_shift - 8;
|
|
}
|
|
if (base_shift1 < 8) {
|
|
a0_1_x128 =
|
|
_mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 8));
|
|
a1_1_x128 =
|
|
_mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 9));
|
|
a0_1_x128 = _mm_shuffle_epi8(a0_1_x128,
|
|
*(__m128i *)HighbdLoadMaskx[base_shift1]);
|
|
a1_1_x128 = _mm_shuffle_epi8(a1_1_x128,
|
|
*(__m128i *)HighbdLoadMaskx[base_shift1]);
|
|
|
|
a0_x = _mm256_inserti128_si256(a0_x, a0_1_x128, 1);
|
|
a1_x = _mm256_inserti128_si256(a1_x, a1_1_x128, 1);
|
|
}
|
|
r6 = _mm256_slli_epi16(_mm256_add_epi16(c0123, j256), 6);
|
|
shift = _mm256_srli_epi16(
|
|
_mm256_and_si256(_mm256_sub_epi16(r6, ydx), c3f), 1);
|
|
|
|
diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
res = _mm256_add_epi16(a32, b);
|
|
resx = _mm256_srli_epi16(res, 5); // 16 16-bit values
|
|
|
|
// y calc
|
|
resy = _mm256_setzero_si256();
|
|
__m256i a0_y, a1_y, shifty;
|
|
if ((base_x < min_base_x)) {
|
|
__m256i c256, y_c256, base_y_c256, mask256, mul16;
|
|
r6 = _mm256_set1_epi16(r << 6);
|
|
c256 = _mm256_add_epi16(j256, c1234);
|
|
mul16 = _mm256_min_epu16(_mm256_mullo_epi16(c256, dy256),
|
|
_mm256_srli_epi16(min_base_y256, 1));
|
|
y_c256 = _mm256_sub_epi16(r6, mul16);
|
|
base_y_c256 = _mm256_srai_epi16(y_c256, frac_bits_y);
|
|
mask256 = _mm256_cmpgt_epi16(min_base_y256, base_y_c256);
|
|
base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256);
|
|
_mm256_store_si256((__m256i *)base_y_c, base_y_c256);
|
|
|
|
a0_y = _mm256_setr_epi16(
|
|
left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]],
|
|
left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]],
|
|
left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]],
|
|
left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]],
|
|
left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]],
|
|
left[base_y_c[15]]);
|
|
base_y_c256 = _mm256_add_epi16(base_y_c256, c1);
|
|
_mm256_store_si256((__m256i *)base_y_c, base_y_c256);
|
|
|
|
a1_y = _mm256_setr_epi16(
|
|
left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]],
|
|
left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]],
|
|
left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]],
|
|
left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]],
|
|
left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]],
|
|
left[base_y_c[15]]);
|
|
|
|
shifty = _mm256_srli_epi16(_mm256_and_si256(y_c256, c3f), 1);
|
|
|
|
diff = _mm256_sub_epi16(a1_y, a0_y); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0_y, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shifty);
|
|
res = _mm256_add_epi16(a32, b);
|
|
resy = _mm256_srli_epi16(res, 5);
|
|
}
|
|
|
|
resxy = _mm256_blendv_epi8(resx, resy,
|
|
*(__m256i *)HighbdBaseMask[base_min_diff]);
|
|
_mm256_storeu_si256((__m256i *)(dst + j), resxy);
|
|
} // for j
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
// Directional prediction, zone 2: 90 < angle < 180
|
|
void av1_highbd_dr_prediction_z2_avx2(uint16_t *dst, ptrdiff_t stride, int bw,
|
|
int bh, const uint16_t *above,
|
|
const uint16_t *left, int upsample_above,
|
|
int upsample_left, int dx, int dy,
|
|
int bd) {
|
|
(void)bd;
|
|
assert(dx > 0);
|
|
assert(dy > 0);
|
|
switch (bw) {
|
|
case 4:
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z2_Nx4_avx2(bh, dst, stride, above, left,
|
|
upsample_above, upsample_left, dx, dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z2_Nx4_avx2(bh, dst, stride, above, left,
|
|
upsample_above, upsample_left,
|
|
dx, dy);
|
|
}
|
|
break;
|
|
case 8:
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z2_Nx8_avx2(bh, dst, stride, above, left,
|
|
upsample_above, upsample_left, dx, dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z2_Nx8_avx2(bh, dst, stride, above, left,
|
|
upsample_above, upsample_left,
|
|
dx, dy);
|
|
}
|
|
break;
|
|
default:
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z2_HxW_avx2(bh, bw, dst, stride, above, left,
|
|
upsample_above, upsample_left, dx, dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z2_HxW_avx2(bh, bw, dst, stride, above, left,
|
|
upsample_above, upsample_left,
|
|
dx, dy);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Directional prediction, zone 3 functions
|
|
static void highbd_dr_prediction_z3_4x4_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m128i dstvec[4], d[4];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_4xN_internal_avx2(4, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_4xN_internal_avx2(4, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
highbd_transpose4x8_8x4_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2],
|
|
&dstvec[3], &d[0], &d[1], &d[2], &d[3]);
|
|
_mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]);
|
|
_mm_storel_epi64((__m128i *)(dst + 1 * stride), d[1]);
|
|
_mm_storel_epi64((__m128i *)(dst + 2 * stride), d[2]);
|
|
_mm_storel_epi64((__m128i *)(dst + 3 * stride), d[3]);
|
|
return;
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_8x8_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m128i dstvec[8], d[8];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_8xN_internal_avx2(8, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_8xN_internal_avx2(8, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
highbd_transpose8x8_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3],
|
|
&dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7],
|
|
&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6],
|
|
&d[7]);
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_4x8_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m128i dstvec[4], d[8];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_8xN_internal_avx2(4, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_8xN_internal_avx2(4, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
|
|
highbd_transpose4x8_8x4_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3],
|
|
&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6],
|
|
&d[7]);
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storel_epi64((__m128i *)(dst + i * stride), d[i]);
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_8x4_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m128i dstvec[8], d[4];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_4xN_internal_avx2(8, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_4xN_internal_avx2(8, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
|
|
highbd_transpose8x8_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3],
|
|
&dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7],
|
|
&d[0], &d[1], &d[2], &d[3]);
|
|
_mm_storeu_si128((__m128i *)(dst + 0 * stride), d[0]);
|
|
_mm_storeu_si128((__m128i *)(dst + 1 * stride), d[1]);
|
|
_mm_storeu_si128((__m128i *)(dst + 2 * stride), d[2]);
|
|
_mm_storeu_si128((__m128i *)(dst + 3 * stride), d[3]);
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_8x16_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m256i dstvec[8], d[8];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_16xN_internal_avx2(8, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_16xN_internal_avx2(8, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
highbd_transpose8x16_16x8_avx2(dstvec, d);
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride),
|
|
_mm256_castsi256_si128(d[i]));
|
|
}
|
|
for (int i = 8; i < 16; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride),
|
|
_mm256_extracti128_si256(d[i - 8], 1));
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_16x8_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m128i dstvec[16], d[16];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_8xN_internal_avx2(16, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_8xN_internal_avx2(16, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
for (int i = 0; i < 16; i += 8) {
|
|
highbd_transpose8x8_sse2(&dstvec[0 + i], &dstvec[1 + i], &dstvec[2 + i],
|
|
&dstvec[3 + i], &dstvec[4 + i], &dstvec[5 + i],
|
|
&dstvec[6 + i], &dstvec[7 + i], &d[0 + i],
|
|
&d[1 + i], &d[2 + i], &d[3 + i], &d[4 + i],
|
|
&d[5 + i], &d[6 + i], &d[7 + i]);
|
|
}
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride + 8), d[i + 8]);
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_4x16_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m256i dstvec[4], d[4], d1;
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_16xN_internal_avx2(4, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_16xN_internal_avx2(4, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
highbd_transpose4x16_avx2(dstvec, d);
|
|
for (int i = 0; i < 4; i++) {
|
|
_mm_storel_epi64((__m128i *)(dst + i * stride),
|
|
_mm256_castsi256_si128(d[i]));
|
|
d1 = _mm256_bsrli_epi128(d[i], 8);
|
|
_mm_storel_epi64((__m128i *)(dst + (i + 4) * stride),
|
|
_mm256_castsi256_si128(d1));
|
|
_mm_storel_epi64((__m128i *)(dst + (i + 8) * stride),
|
|
_mm256_extracti128_si256(d[i], 1));
|
|
_mm_storel_epi64((__m128i *)(dst + (i + 12) * stride),
|
|
_mm256_extracti128_si256(d1, 1));
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_16x4_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m128i dstvec[16], d[8];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_4xN_internal_avx2(16, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_4xN_internal_avx2(16, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
highbd_transpose16x4_8x8_sse2(dstvec, d);
|
|
|
|
_mm_storeu_si128((__m128i *)(dst + 0 * stride), d[0]);
|
|
_mm_storeu_si128((__m128i *)(dst + 0 * stride + 8), d[1]);
|
|
_mm_storeu_si128((__m128i *)(dst + 1 * stride), d[2]);
|
|
_mm_storeu_si128((__m128i *)(dst + 1 * stride + 8), d[3]);
|
|
_mm_storeu_si128((__m128i *)(dst + 2 * stride), d[4]);
|
|
_mm_storeu_si128((__m128i *)(dst + 2 * stride + 8), d[5]);
|
|
_mm_storeu_si128((__m128i *)(dst + 3 * stride), d[6]);
|
|
_mm_storeu_si128((__m128i *)(dst + 3 * stride + 8), d[7]);
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_8x32_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m256i dstvec[16], d[16];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_32xN_internal_avx2(8, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_32xN_internal_avx2(8, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
|
|
for (int i = 0; i < 16; i += 8) {
|
|
highbd_transpose8x16_16x8_avx2(dstvec + i, d + i);
|
|
}
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride),
|
|
_mm256_castsi256_si128(d[i]));
|
|
}
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + (i + 8) * stride),
|
|
_mm256_extracti128_si256(d[i], 1));
|
|
}
|
|
for (int i = 8; i < 16; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + (i + 8) * stride),
|
|
_mm256_castsi256_si128(d[i]));
|
|
}
|
|
for (int i = 8; i < 16; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + (i + 16) * stride),
|
|
_mm256_extracti128_si256(d[i], 1));
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_32x8_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m128i dstvec[32], d[32];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_8xN_internal_avx2(32, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_8xN_internal_avx2(32, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
|
|
for (int i = 0; i < 32; i += 8) {
|
|
highbd_transpose8x8_sse2(&dstvec[0 + i], &dstvec[1 + i], &dstvec[2 + i],
|
|
&dstvec[3 + i], &dstvec[4 + i], &dstvec[5 + i],
|
|
&dstvec[6 + i], &dstvec[7 + i], &d[0 + i],
|
|
&d[1 + i], &d[2 + i], &d[3 + i], &d[4 + i],
|
|
&d[5 + i], &d[6 + i], &d[7 + i]);
|
|
}
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride + 8), d[i + 8]);
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride + 16), d[i + 16]);
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride + 24), d[i + 24]);
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_16x16_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m256i dstvec[16], d[16];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_16xN_internal_avx2(16, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_16xN_internal_avx2(16, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
|
|
highbd_transpose16x16_avx2(dstvec, d);
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]);
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_32x32_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m256i dstvec[64], d[16];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_32xN_internal_avx2(32, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_32xN_internal_avx2(32, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
highbd_transpose16x16_avx2(dstvec, d);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + j * stride), d[j]);
|
|
}
|
|
highbd_transpose16x16_avx2(dstvec + 16, d);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + j * stride + 16), d[j]);
|
|
}
|
|
highbd_transpose16x16_avx2(dstvec + 32, d);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + (j + 16) * stride), d[j]);
|
|
}
|
|
highbd_transpose16x16_avx2(dstvec + 48, d);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + (j + 16) * stride + 16), d[j]);
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_64x64_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
DECLARE_ALIGNED(16, uint16_t, dstT[64 * 64]);
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_64xN_avx2(64, dstT, 64, left, upsample_left, dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_64xN_avx2(64, dstT, 64, left, upsample_left,
|
|
dy);
|
|
}
|
|
highbd_transpose(dstT, 64, dst, stride, 64, 64);
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_16x32_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m256i dstvec[32], d[32];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_32xN_internal_avx2(16, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_32xN_internal_avx2(16, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
for (int i = 0; i < 32; i += 8) {
|
|
highbd_transpose8x16_16x8_avx2(dstvec + i, d + i);
|
|
}
|
|
// store
|
|
for (int j = 0; j < 32; j += 16) {
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + (i + j) * stride),
|
|
_mm256_castsi256_si128(d[(i + j)]));
|
|
}
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + (i + j) * stride + 8),
|
|
_mm256_castsi256_si128(d[(i + j) + 8]));
|
|
}
|
|
for (int i = 8; i < 16; i++) {
|
|
_mm256_storeu_si256(
|
|
(__m256i *)(dst + (i + j) * stride),
|
|
_mm256_inserti128_si256(
|
|
d[(i + j)], _mm256_extracti128_si256(d[(i + j) - 8], 1), 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_32x16_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m256i dstvec[32], d[16];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_16xN_internal_avx2(32, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_16xN_internal_avx2(32, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
for (int i = 0; i < 32; i += 16) {
|
|
highbd_transpose16x16_avx2((dstvec + i), d);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + j * stride + i), d[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_32x64_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
uint16_t dstT[64 * 32];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_64xN_avx2(32, dstT, 64, left, upsample_left, dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_64xN_avx2(32, dstT, 64, left, upsample_left,
|
|
dy);
|
|
}
|
|
highbd_transpose(dstT, 64, dst, stride, 32, 64);
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_64x32_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
DECLARE_ALIGNED(16, uint16_t, dstT[32 * 64]);
|
|
highbd_dr_prediction_z1_32xN_avx2(64, dstT, 32, left, upsample_left, dy, bd);
|
|
highbd_transpose(dstT, 32, dst, stride, 64, 32);
|
|
return;
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_16x64_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
DECLARE_ALIGNED(16, uint16_t, dstT[64 * 16]);
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_64xN_avx2(16, dstT, 64, left, upsample_left, dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_64xN_avx2(16, dstT, 64, left, upsample_left,
|
|
dy);
|
|
}
|
|
highbd_transpose(dstT, 64, dst, stride, 16, 64);
|
|
}
|
|
|
|
static void highbd_dr_prediction_z3_64x16_avx2(uint16_t *dst, ptrdiff_t stride,
|
|
const uint16_t *left,
|
|
int upsample_left, int dy,
|
|
int bd) {
|
|
__m256i dstvec[64], d[16];
|
|
if (bd < 12) {
|
|
highbd_dr_prediction_z1_16xN_internal_avx2(64, dstvec, left, upsample_left,
|
|
dy);
|
|
} else {
|
|
highbd_dr_prediction_32bit_z1_16xN_internal_avx2(64, dstvec, left,
|
|
upsample_left, dy);
|
|
}
|
|
for (int i = 0; i < 64; i += 16) {
|
|
highbd_transpose16x16_avx2((dstvec + i), d);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + j * stride + i), d[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void av1_highbd_dr_prediction_z3_avx2(uint16_t *dst, ptrdiff_t stride, int bw,
|
|
int bh, const uint16_t *above,
|
|
const uint16_t *left, int upsample_left,
|
|
int dx, int dy, int bd) {
|
|
(void)above;
|
|
(void)dx;
|
|
|
|
assert(dx == 1);
|
|
assert(dy > 0);
|
|
if (bw == bh) {
|
|
switch (bw) {
|
|
case 4:
|
|
highbd_dr_prediction_z3_4x4_avx2(dst, stride, left, upsample_left, dy,
|
|
bd);
|
|
break;
|
|
case 8:
|
|
highbd_dr_prediction_z3_8x8_avx2(dst, stride, left, upsample_left, dy,
|
|
bd);
|
|
break;
|
|
case 16:
|
|
highbd_dr_prediction_z3_16x16_avx2(dst, stride, left, upsample_left, dy,
|
|
bd);
|
|
break;
|
|
case 32:
|
|
highbd_dr_prediction_z3_32x32_avx2(dst, stride, left, upsample_left, dy,
|
|
bd);
|
|
break;
|
|
case 64:
|
|
highbd_dr_prediction_z3_64x64_avx2(dst, stride, left, upsample_left, dy,
|
|
bd);
|
|
break;
|
|
}
|
|
} else {
|
|
if (bw < bh) {
|
|
if (bw + bw == bh) {
|
|
switch (bw) {
|
|
case 4:
|
|
highbd_dr_prediction_z3_4x8_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 8:
|
|
highbd_dr_prediction_z3_8x16_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 16:
|
|
highbd_dr_prediction_z3_16x32_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 32:
|
|
highbd_dr_prediction_z3_32x64_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (bw) {
|
|
case 4:
|
|
highbd_dr_prediction_z3_4x16_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 8:
|
|
highbd_dr_prediction_z3_8x32_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 16:
|
|
highbd_dr_prediction_z3_16x64_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
if (bh + bh == bw) {
|
|
switch (bh) {
|
|
case 4:
|
|
highbd_dr_prediction_z3_8x4_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 8:
|
|
highbd_dr_prediction_z3_16x8_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 16:
|
|
highbd_dr_prediction_z3_32x16_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 32:
|
|
highbd_dr_prediction_z3_64x32_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (bh) {
|
|
case 4:
|
|
highbd_dr_prediction_z3_16x4_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 8:
|
|
highbd_dr_prediction_z3_32x8_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
case 16:
|
|
highbd_dr_prediction_z3_64x16_avx2(dst, stride, left, upsample_left,
|
|
dy, bd);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Low bit depth functions
|
|
static DECLARE_ALIGNED(32, uint8_t, BaseMask[33][32]) = {
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0 },
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
|
|
};
|
|
|
|
/* clang-format on */
|
|
static AOM_FORCE_INLINE void dr_prediction_z1_HxW_internal_avx2(
|
|
int H, int W, __m128i *dst, const uint8_t *above, int upsample_above,
|
|
int dx) {
|
|
const int frac_bits = 6 - upsample_above;
|
|
const int max_base_x = ((W + H) - 1) << upsample_above;
|
|
|
|
assert(dx > 0);
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a32, a16;
|
|
__m256i diff, c3f;
|
|
__m128i a_mbase_x;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
a_mbase_x = _mm_set1_epi8((int8_t)above[max_base_x]);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < W; r++) {
|
|
__m256i b, res, shift;
|
|
__m128i res1, a0_128, a1_128;
|
|
|
|
int base = x >> frac_bits;
|
|
int base_max_diff = (max_base_x - base) >> upsample_above;
|
|
if (base_max_diff <= 0) {
|
|
for (int i = r; i < W; ++i) {
|
|
dst[i] = a_mbase_x; // save 4 values
|
|
}
|
|
return;
|
|
}
|
|
if (base_max_diff > H) base_max_diff = H;
|
|
a0_128 = _mm_loadu_si128((__m128i *)(above + base));
|
|
a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1));
|
|
|
|
if (upsample_above) {
|
|
a0_128 = _mm_shuffle_epi8(a0_128, *(__m128i *)EvenOddMaskx[0]);
|
|
a1_128 = _mm_srli_si128(a0_128, 8);
|
|
|
|
shift = _mm256_srli_epi16(
|
|
_mm256_and_si256(
|
|
_mm256_slli_epi16(_mm256_set1_epi16(x), upsample_above), c3f),
|
|
1);
|
|
} else {
|
|
shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1);
|
|
}
|
|
a0 = _mm256_cvtepu8_epi16(a0_128);
|
|
a1 = _mm256_cvtepu8_epi16(a1_128);
|
|
|
|
diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
|
|
res = _mm256_packus_epi16(
|
|
res, _mm256_castsi128_si256(
|
|
_mm256_extracti128_si256(res, 1))); // goto 8 bit
|
|
res1 = _mm256_castsi256_si128(res); // 16 8bit values
|
|
|
|
dst[r] =
|
|
_mm_blendv_epi8(a_mbase_x, res1, *(__m128i *)BaseMask[base_max_diff]);
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z1_4xN_avx2(int N, uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, int upsample_above,
|
|
int dx) {
|
|
__m128i dstvec[16];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(4, N, dstvec, above, upsample_above, dx);
|
|
for (int i = 0; i < N; i++) {
|
|
*(int *)(dst + stride * i) = _mm_cvtsi128_si32(dstvec[i]);
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z1_8xN_avx2(int N, uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, int upsample_above,
|
|
int dx) {
|
|
__m128i dstvec[32];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(8, N, dstvec, above, upsample_above, dx);
|
|
for (int i = 0; i < N; i++) {
|
|
_mm_storel_epi64((__m128i *)(dst + stride * i), dstvec[i]);
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z1_16xN_avx2(int N, uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, int upsample_above,
|
|
int dx) {
|
|
__m128i dstvec[64];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(16, N, dstvec, above, upsample_above, dx);
|
|
for (int i = 0; i < N; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]);
|
|
}
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void dr_prediction_z1_32xN_internal_avx2(
|
|
int N, __m256i *dstvec, const uint8_t *above, int upsample_above, int dx) {
|
|
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
|
|
(void)upsample_above;
|
|
const int frac_bits = 6;
|
|
const int max_base_x = ((32 + N) - 1);
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a32, a16;
|
|
__m256i a_mbase_x, diff, c3f;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
a_mbase_x = _mm256_set1_epi8((int8_t)above[max_base_x]);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, res16[2];
|
|
__m128i a0_128, a1_128;
|
|
|
|
int base = x >> frac_bits;
|
|
int base_max_diff = (max_base_x - base);
|
|
if (base_max_diff <= 0) {
|
|
for (int i = r; i < N; ++i) {
|
|
dstvec[i] = a_mbase_x; // save 32 values
|
|
}
|
|
return;
|
|
}
|
|
if (base_max_diff > 32) base_max_diff = 32;
|
|
__m256i shift =
|
|
_mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1);
|
|
|
|
for (int j = 0, jj = 0; j < 32; j += 16, jj++) {
|
|
int mdiff = base_max_diff - j;
|
|
if (mdiff <= 0) {
|
|
res16[jj] = a_mbase_x;
|
|
} else {
|
|
a0_128 = _mm_loadu_si128((__m128i *)(above + base + j));
|
|
a1_128 = _mm_loadu_si128((__m128i *)(above + base + j + 1));
|
|
a0 = _mm256_cvtepu8_epi16(a0_128);
|
|
a1 = _mm256_cvtepu8_epi16(a1_128);
|
|
|
|
diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
res16[jj] = _mm256_packus_epi16(
|
|
res, _mm256_castsi128_si256(
|
|
_mm256_extracti128_si256(res, 1))); // 16 8bit values
|
|
}
|
|
}
|
|
res16[1] =
|
|
_mm256_inserti128_si256(res16[0], _mm256_castsi256_si128(res16[1]),
|
|
1); // 32 8bit values
|
|
|
|
dstvec[r] = _mm256_blendv_epi8(
|
|
a_mbase_x, res16[1],
|
|
*(__m256i *)BaseMask[base_max_diff]); // 32 8bit values
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z1_32xN_avx2(int N, uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, int upsample_above,
|
|
int dx) {
|
|
__m256i dstvec[64];
|
|
dr_prediction_z1_32xN_internal_avx2(N, dstvec, above, upsample_above, dx);
|
|
for (int i = 0; i < N; i++) {
|
|
_mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]);
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z1_64xN_avx2(int N, uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, int upsample_above,
|
|
int dx) {
|
|
// here upsample_above is 0 by design of av1_use_intra_edge_upsample
|
|
(void)upsample_above;
|
|
const int frac_bits = 6;
|
|
const int max_base_x = ((64 + N) - 1);
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i a0, a1, a32, a16;
|
|
__m256i a_mbase_x, diff, c3f;
|
|
__m128i max_base_x128, base_inc128, mask128;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
a_mbase_x = _mm256_set1_epi8((int8_t)above[max_base_x]);
|
|
max_base_x128 = _mm_set1_epi8(max_base_x);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
|
|
int x = dx;
|
|
for (int r = 0; r < N; r++, dst += stride) {
|
|
__m256i b, res;
|
|
int base = x >> frac_bits;
|
|
if (base >= max_base_x) {
|
|
for (int i = r; i < N; ++i) {
|
|
_mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values
|
|
_mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x);
|
|
dst += stride;
|
|
}
|
|
return;
|
|
}
|
|
|
|
__m256i shift =
|
|
_mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1);
|
|
|
|
__m128i a0_128, a1_128, res128;
|
|
for (int j = 0; j < 64; j += 16) {
|
|
int mdif = max_base_x - (base + j);
|
|
if (mdif <= 0) {
|
|
_mm_storeu_si128((__m128i *)(dst + j),
|
|
_mm256_castsi256_si128(a_mbase_x));
|
|
} else {
|
|
a0_128 = _mm_loadu_si128((__m128i *)(above + base + j));
|
|
a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1 + j));
|
|
a0 = _mm256_cvtepu8_epi16(a0_128);
|
|
a1 = _mm256_cvtepu8_epi16(a1_128);
|
|
|
|
diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
res = _mm256_packus_epi16(
|
|
res, _mm256_castsi128_si256(
|
|
_mm256_extracti128_si256(res, 1))); // 16 8bit values
|
|
|
|
base_inc128 =
|
|
_mm_setr_epi8((int8_t)(base + j), (int8_t)(base + j + 1),
|
|
(int8_t)(base + j + 2), (int8_t)(base + j + 3),
|
|
(int8_t)(base + j + 4), (int8_t)(base + j + 5),
|
|
(int8_t)(base + j + 6), (int8_t)(base + j + 7),
|
|
(int8_t)(base + j + 8), (int8_t)(base + j + 9),
|
|
(int8_t)(base + j + 10), (int8_t)(base + j + 11),
|
|
(int8_t)(base + j + 12), (int8_t)(base + j + 13),
|
|
(int8_t)(base + j + 14), (int8_t)(base + j + 15));
|
|
|
|
mask128 = _mm_cmpgt_epi8(_mm_subs_epu8(max_base_x128, base_inc128),
|
|
_mm_setzero_si128());
|
|
res128 = _mm_blendv_epi8(_mm256_castsi256_si128(a_mbase_x),
|
|
_mm256_castsi256_si128(res), mask128);
|
|
_mm_storeu_si128((__m128i *)(dst + j), res128);
|
|
}
|
|
}
|
|
x += dx;
|
|
}
|
|
}
|
|
|
|
// Directional prediction, zone 1: 0 < angle < 90
|
|
void av1_dr_prediction_z1_avx2(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
|
|
const uint8_t *above, const uint8_t *left,
|
|
int upsample_above, int dx, int dy) {
|
|
(void)left;
|
|
(void)dy;
|
|
switch (bw) {
|
|
case 4:
|
|
dr_prediction_z1_4xN_avx2(bh, dst, stride, above, upsample_above, dx);
|
|
break;
|
|
case 8:
|
|
dr_prediction_z1_8xN_avx2(bh, dst, stride, above, upsample_above, dx);
|
|
break;
|
|
case 16:
|
|
dr_prediction_z1_16xN_avx2(bh, dst, stride, above, upsample_above, dx);
|
|
break;
|
|
case 32:
|
|
dr_prediction_z1_32xN_avx2(bh, dst, stride, above, upsample_above, dx);
|
|
break;
|
|
case 64:
|
|
dr_prediction_z1_64xN_avx2(bh, dst, stride, above, upsample_above, dx);
|
|
break;
|
|
default: break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void dr_prediction_z2_Nx4_avx2(int N, uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left,
|
|
int upsample_above, int upsample_left,
|
|
int dx, int dy) {
|
|
const int min_base_x = -(1 << upsample_above);
|
|
const int min_base_y = -(1 << upsample_left);
|
|
const int frac_bits_x = 6 - upsample_above;
|
|
const int frac_bits_y = 6 - upsample_left;
|
|
|
|
assert(dx > 0);
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m128i a0_x, a1_x, a32, a16, diff;
|
|
__m128i c3f, min_base_y128, c1234, dy128;
|
|
|
|
a16 = _mm_set1_epi16(16);
|
|
c3f = _mm_set1_epi16(0x3f);
|
|
min_base_y128 = _mm_set1_epi16(min_base_y);
|
|
c1234 = _mm_setr_epi16(0, 1, 2, 3, 4, 0, 0, 0);
|
|
dy128 = _mm_set1_epi16(dy);
|
|
|
|
for (int r = 0; r < N; r++) {
|
|
__m128i b, res, shift, r6, ydx;
|
|
__m128i resx, resy, resxy;
|
|
__m128i a0_x128, a1_x128;
|
|
int y = r + 1;
|
|
int base_x = (-y * dx) >> frac_bits_x;
|
|
int base_shift = 0;
|
|
if (base_x < (min_base_x - 1)) {
|
|
base_shift = (min_base_x - base_x - 1) >> upsample_above;
|
|
}
|
|
int base_min_diff =
|
|
(min_base_x - base_x + upsample_above) >> upsample_above;
|
|
if (base_min_diff > 4) {
|
|
base_min_diff = 4;
|
|
} else {
|
|
if (base_min_diff < 0) base_min_diff = 0;
|
|
}
|
|
|
|
if (base_shift > 3) {
|
|
a0_x = _mm_setzero_si128();
|
|
a1_x = _mm_setzero_si128();
|
|
shift = _mm_setzero_si128();
|
|
} else {
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
|
|
ydx = _mm_set1_epi16(y * dx);
|
|
r6 = _mm_slli_epi16(c1234, 6);
|
|
|
|
if (upsample_above) {
|
|
a0_x128 =
|
|
_mm_shuffle_epi8(a0_x128, *(__m128i *)EvenOddMaskx[base_shift]);
|
|
a1_x128 = _mm_srli_si128(a0_x128, 8);
|
|
|
|
shift = _mm_srli_epi16(
|
|
_mm_and_si128(
|
|
_mm_slli_epi16(_mm_sub_epi16(r6, ydx), upsample_above), c3f),
|
|
1);
|
|
} else {
|
|
a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)LoadMaskx[base_shift]);
|
|
a1_x128 = _mm_srli_si128(a0_x128, 1);
|
|
|
|
shift = _mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1);
|
|
}
|
|
a0_x = _mm_cvtepu8_epi16(a0_x128);
|
|
a1_x = _mm_cvtepu8_epi16(a1_x128);
|
|
}
|
|
// y calc
|
|
__m128i a0_y, a1_y, shifty;
|
|
if (base_x < min_base_x) {
|
|
DECLARE_ALIGNED(32, int16_t, base_y_c[8]);
|
|
__m128i y_c128, base_y_c128, mask128, c1234_;
|
|
c1234_ = _mm_srli_si128(c1234, 2);
|
|
r6 = _mm_set1_epi16(r << 6);
|
|
y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234_, dy128));
|
|
base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y);
|
|
mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128);
|
|
base_y_c128 = _mm_andnot_si128(mask128, base_y_c128);
|
|
_mm_store_si128((__m128i *)base_y_c, base_y_c128);
|
|
|
|
a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
|
|
left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0);
|
|
base_y_c128 = _mm_add_epi16(base_y_c128, _mm_srli_epi16(a16, 4));
|
|
_mm_store_si128((__m128i *)base_y_c, base_y_c128);
|
|
a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
|
|
left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0);
|
|
|
|
if (upsample_left) {
|
|
shifty = _mm_srli_epi16(
|
|
_mm_and_si128(_mm_slli_epi16(y_c128, upsample_left), c3f), 1);
|
|
} else {
|
|
shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1);
|
|
}
|
|
a0_x = _mm_unpacklo_epi64(a0_x, a0_y);
|
|
a1_x = _mm_unpacklo_epi64(a1_x, a1_y);
|
|
shift = _mm_unpacklo_epi64(shift, shifty);
|
|
}
|
|
|
|
diff = _mm_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
|
|
a32 = _mm_slli_epi16(a0_x, 5); // a[x] * 32
|
|
a32 = _mm_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm_mullo_epi16(diff, shift);
|
|
res = _mm_add_epi16(a32, b);
|
|
res = _mm_srli_epi16(res, 5);
|
|
|
|
resx = _mm_packus_epi16(res, res);
|
|
resy = _mm_srli_si128(resx, 4);
|
|
|
|
resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)BaseMask[base_min_diff]);
|
|
*(int *)(dst) = _mm_cvtsi128_si32(resxy);
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z2_Nx8_avx2(int N, uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *above, const uint8_t *left,
|
|
int upsample_above, int upsample_left,
|
|
int dx, int dy) {
|
|
const int min_base_x = -(1 << upsample_above);
|
|
const int min_base_y = -(1 << upsample_left);
|
|
const int frac_bits_x = 6 - upsample_above;
|
|
const int frac_bits_y = 6 - upsample_left;
|
|
|
|
// pre-filter above pixels
|
|
// store in temp buffers:
|
|
// above[x] * 32 + 16
|
|
// above[x+1] - above[x]
|
|
// final pixels will be calculated as:
|
|
// (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5
|
|
__m256i diff, a32, a16;
|
|
__m256i a0_x, a1_x;
|
|
__m128i a0_x128, a1_x128, min_base_y128, c3f;
|
|
__m128i c1234, dy128;
|
|
|
|
a16 = _mm256_set1_epi16(16);
|
|
c3f = _mm_set1_epi16(0x3f);
|
|
min_base_y128 = _mm_set1_epi16(min_base_y);
|
|
dy128 = _mm_set1_epi16(dy);
|
|
c1234 = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
|
|
|
|
for (int r = 0; r < N; r++) {
|
|
__m256i b, res, shift;
|
|
__m128i resx, resy, resxy, r6, ydx;
|
|
|
|
int y = r + 1;
|
|
int base_x = (-y * dx) >> frac_bits_x;
|
|
int base_shift = 0;
|
|
if (base_x < (min_base_x - 1)) {
|
|
base_shift = (min_base_x - base_x - 1) >> upsample_above;
|
|
}
|
|
int base_min_diff =
|
|
(min_base_x - base_x + upsample_above) >> upsample_above;
|
|
if (base_min_diff > 8) {
|
|
base_min_diff = 8;
|
|
} else {
|
|
if (base_min_diff < 0) base_min_diff = 0;
|
|
}
|
|
|
|
if (base_shift > 7) {
|
|
a0_x = _mm256_setzero_si256();
|
|
a1_x = _mm256_setzero_si256();
|
|
shift = _mm256_setzero_si256();
|
|
} else {
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift));
|
|
ydx = _mm_set1_epi16(y * dx);
|
|
r6 = _mm_slli_epi16(_mm_srli_si128(c1234, 2), 6);
|
|
if (upsample_above) {
|
|
a0_x128 =
|
|
_mm_shuffle_epi8(a0_x128, *(__m128i *)EvenOddMaskx[base_shift]);
|
|
a1_x128 = _mm_srli_si128(a0_x128, 8);
|
|
|
|
shift = _mm256_castsi128_si256(_mm_srli_epi16(
|
|
_mm_and_si128(
|
|
_mm_slli_epi16(_mm_sub_epi16(r6, ydx), upsample_above), c3f),
|
|
1));
|
|
} else {
|
|
a1_x128 = _mm_srli_si128(a0_x128, 1);
|
|
a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)LoadMaskx[base_shift]);
|
|
a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)LoadMaskx[base_shift]);
|
|
|
|
shift = _mm256_castsi128_si256(
|
|
_mm_srli_epi16(_mm_and_si128(_mm_sub_epi16(r6, ydx), c3f), 1));
|
|
}
|
|
a0_x = _mm256_castsi128_si256(_mm_cvtepu8_epi16(a0_x128));
|
|
a1_x = _mm256_castsi128_si256(_mm_cvtepu8_epi16(a1_x128));
|
|
}
|
|
|
|
// y calc
|
|
__m128i a0_y, a1_y, shifty;
|
|
if (base_x < min_base_x) {
|
|
DECLARE_ALIGNED(32, int16_t, base_y_c[16]);
|
|
__m128i y_c128, base_y_c128, mask128;
|
|
r6 = _mm_set1_epi16(r << 6);
|
|
y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234, dy128));
|
|
base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y);
|
|
mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128);
|
|
base_y_c128 = _mm_andnot_si128(mask128, base_y_c128);
|
|
_mm_store_si128((__m128i *)base_y_c, base_y_c128);
|
|
|
|
a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
|
|
left[base_y_c[2]], left[base_y_c[3]],
|
|
left[base_y_c[4]], left[base_y_c[5]],
|
|
left[base_y_c[6]], left[base_y_c[7]]);
|
|
base_y_c128 = _mm_add_epi16(
|
|
base_y_c128, _mm_srli_epi16(_mm256_castsi256_si128(a16), 4));
|
|
_mm_store_si128((__m128i *)base_y_c, base_y_c128);
|
|
|
|
a1_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]],
|
|
left[base_y_c[2]], left[base_y_c[3]],
|
|
left[base_y_c[4]], left[base_y_c[5]],
|
|
left[base_y_c[6]], left[base_y_c[7]]);
|
|
|
|
if (upsample_left) {
|
|
shifty = _mm_srli_epi16(
|
|
_mm_and_si128(_mm_slli_epi16(y_c128, upsample_left), c3f), 1);
|
|
} else {
|
|
shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1);
|
|
}
|
|
|
|
a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1);
|
|
a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1);
|
|
shift = _mm256_inserti128_si256(shift, shifty, 1);
|
|
}
|
|
|
|
diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5);
|
|
|
|
resx = _mm_packus_epi16(_mm256_castsi256_si128(res),
|
|
_mm256_castsi256_si128(res));
|
|
resy = _mm256_extracti128_si256(res, 1);
|
|
resy = _mm_packus_epi16(resy, resy);
|
|
|
|
resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)BaseMask[base_min_diff]);
|
|
_mm_storel_epi64((__m128i *)(dst), resxy);
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z2_HxW_avx2(int H, int W, uint8_t *dst,
|
|
ptrdiff_t stride, const uint8_t *above,
|
|
const uint8_t *left, int upsample_above,
|
|
int upsample_left, int dx, int dy) {
|
|
// here upsample_above and upsample_left are 0 by design of
|
|
// av1_use_intra_edge_upsample
|
|
const int min_base_x = -1;
|
|
const int min_base_y = -1;
|
|
(void)upsample_above;
|
|
(void)upsample_left;
|
|
const int frac_bits_x = 6;
|
|
const int frac_bits_y = 6;
|
|
|
|
__m256i a0_x, a1_x, a0_y, a1_y, a32, a16, c1234, c0123;
|
|
__m256i diff, min_base_y256, c3f, shifty, dy256, c1;
|
|
__m128i a0_x128, a1_x128;
|
|
|
|
DECLARE_ALIGNED(32, int16_t, base_y_c[16]);
|
|
a16 = _mm256_set1_epi16(16);
|
|
c1 = _mm256_srli_epi16(a16, 4);
|
|
min_base_y256 = _mm256_set1_epi16(min_base_y);
|
|
c3f = _mm256_set1_epi16(0x3f);
|
|
dy256 = _mm256_set1_epi16(dy);
|
|
c0123 =
|
|
_mm256_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
c1234 = _mm256_add_epi16(c0123, c1);
|
|
|
|
for (int r = 0; r < H; r++) {
|
|
__m256i b, res, shift, j256, r6, ydx;
|
|
__m128i resx, resy;
|
|
__m128i resxy;
|
|
int y = r + 1;
|
|
ydx = _mm256_set1_epi16((int16_t)(y * dx));
|
|
|
|
int base_x = (-y * dx) >> frac_bits_x;
|
|
for (int j = 0; j < W; j += 16) {
|
|
j256 = _mm256_set1_epi16(j);
|
|
int base_shift = 0;
|
|
if ((base_x + j) < (min_base_x - 1)) {
|
|
base_shift = (min_base_x - (base_x + j) - 1);
|
|
}
|
|
int base_min_diff = (min_base_x - base_x - j);
|
|
if (base_min_diff > 16) {
|
|
base_min_diff = 16;
|
|
} else {
|
|
if (base_min_diff < 0) base_min_diff = 0;
|
|
}
|
|
|
|
if (base_shift < 16) {
|
|
a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + j));
|
|
a1_x128 =
|
|
_mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1 + j));
|
|
a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)LoadMaskx[base_shift]);
|
|
a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)LoadMaskx[base_shift]);
|
|
|
|
a0_x = _mm256_cvtepu8_epi16(a0_x128);
|
|
a1_x = _mm256_cvtepu8_epi16(a1_x128);
|
|
|
|
r6 = _mm256_slli_epi16(_mm256_add_epi16(c0123, j256), 6);
|
|
shift = _mm256_srli_epi16(
|
|
_mm256_and_si256(_mm256_sub_epi16(r6, ydx), c3f), 1);
|
|
|
|
diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shift);
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5); // 16 16-bit values
|
|
resx = _mm256_castsi256_si128(_mm256_packus_epi16(
|
|
res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))));
|
|
} else {
|
|
resx = _mm_setzero_si128();
|
|
}
|
|
|
|
// y calc
|
|
if (base_x < min_base_x) {
|
|
__m256i c256, y_c256, base_y_c256, mask256, mul16;
|
|
r6 = _mm256_set1_epi16(r << 6);
|
|
c256 = _mm256_add_epi16(j256, c1234);
|
|
mul16 = _mm256_min_epu16(_mm256_mullo_epi16(c256, dy256),
|
|
_mm256_srli_epi16(min_base_y256, 1));
|
|
y_c256 = _mm256_sub_epi16(r6, mul16);
|
|
|
|
base_y_c256 = _mm256_srai_epi16(y_c256, frac_bits_y);
|
|
mask256 = _mm256_cmpgt_epi16(min_base_y256, base_y_c256);
|
|
|
|
base_y_c256 = _mm256_blendv_epi8(base_y_c256, min_base_y256, mask256);
|
|
int16_t min_y = (int16_t)_mm_extract_epi16(
|
|
_mm256_extracti128_si256(base_y_c256, 1), 7);
|
|
int16_t max_y =
|
|
(int16_t)_mm_extract_epi16(_mm256_castsi256_si128(base_y_c256), 0);
|
|
int16_t offset_diff = max_y - min_y;
|
|
|
|
if (offset_diff < 16) {
|
|
__m256i min_y256 = _mm256_set1_epi16(min_y);
|
|
|
|
__m256i base_y_offset = _mm256_sub_epi16(base_y_c256, min_y256);
|
|
__m128i base_y_offset128 =
|
|
_mm_packs_epi16(_mm256_extracti128_si256(base_y_offset, 0),
|
|
_mm256_extracti128_si256(base_y_offset, 1));
|
|
|
|
__m128i a0_y128 = _mm_maskload_epi32(
|
|
(int *)(left + min_y), *(__m128i *)LoadMaskz2[offset_diff / 4]);
|
|
__m128i a1_y128 =
|
|
_mm_maskload_epi32((int *)(left + min_y + 1),
|
|
*(__m128i *)LoadMaskz2[offset_diff / 4]);
|
|
a0_y128 = _mm_shuffle_epi8(a0_y128, base_y_offset128);
|
|
a1_y128 = _mm_shuffle_epi8(a1_y128, base_y_offset128);
|
|
a0_y = _mm256_cvtepu8_epi16(a0_y128);
|
|
a1_y = _mm256_cvtepu8_epi16(a1_y128);
|
|
} else {
|
|
base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256);
|
|
_mm256_store_si256((__m256i *)base_y_c, base_y_c256);
|
|
|
|
a0_y = _mm256_setr_epi16(
|
|
left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]],
|
|
left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]],
|
|
left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]],
|
|
left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]],
|
|
left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]],
|
|
left[base_y_c[15]]);
|
|
base_y_c256 = _mm256_add_epi16(base_y_c256, c1);
|
|
_mm256_store_si256((__m256i *)base_y_c, base_y_c256);
|
|
|
|
a1_y = _mm256_setr_epi16(
|
|
left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]],
|
|
left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]],
|
|
left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]],
|
|
left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]],
|
|
left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]],
|
|
left[base_y_c[15]]);
|
|
}
|
|
shifty = _mm256_srli_epi16(_mm256_and_si256(y_c256, c3f), 1);
|
|
|
|
diff = _mm256_sub_epi16(a1_y, a0_y); // a[x+1] - a[x]
|
|
a32 = _mm256_slli_epi16(a0_y, 5); // a[x] * 32
|
|
a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16
|
|
|
|
b = _mm256_mullo_epi16(diff, shifty);
|
|
res = _mm256_add_epi16(a32, b);
|
|
res = _mm256_srli_epi16(res, 5); // 16 16-bit values
|
|
resy = _mm256_castsi256_si128(_mm256_packus_epi16(
|
|
res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))));
|
|
} else {
|
|
resy = _mm_setzero_si128();
|
|
}
|
|
resxy = _mm_blendv_epi8(resx, resy, *(__m128i *)BaseMask[base_min_diff]);
|
|
_mm_storeu_si128((__m128i *)(dst + j), resxy);
|
|
} // for j
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
// Directional prediction, zone 2: 90 < angle < 180
|
|
void av1_dr_prediction_z2_avx2(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
|
|
const uint8_t *above, const uint8_t *left,
|
|
int upsample_above, int upsample_left, int dx,
|
|
int dy) {
|
|
assert(dx > 0);
|
|
assert(dy > 0);
|
|
switch (bw) {
|
|
case 4:
|
|
dr_prediction_z2_Nx4_avx2(bh, dst, stride, above, left, upsample_above,
|
|
upsample_left, dx, dy);
|
|
break;
|
|
case 8:
|
|
dr_prediction_z2_Nx8_avx2(bh, dst, stride, above, left, upsample_above,
|
|
upsample_left, dx, dy);
|
|
break;
|
|
default:
|
|
dr_prediction_z2_HxW_avx2(bh, bw, dst, stride, above, left,
|
|
upsample_above, upsample_left, dx, dy);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// z3 functions
|
|
static INLINE void transpose16x32_avx2(__m256i *x, __m256i *d) {
|
|
__m256i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9;
|
|
__m256i w10, w11, w12, w13, w14, w15;
|
|
|
|
w0 = _mm256_unpacklo_epi8(x[0], x[1]);
|
|
w1 = _mm256_unpacklo_epi8(x[2], x[3]);
|
|
w2 = _mm256_unpacklo_epi8(x[4], x[5]);
|
|
w3 = _mm256_unpacklo_epi8(x[6], x[7]);
|
|
|
|
w8 = _mm256_unpacklo_epi8(x[8], x[9]);
|
|
w9 = _mm256_unpacklo_epi8(x[10], x[11]);
|
|
w10 = _mm256_unpacklo_epi8(x[12], x[13]);
|
|
w11 = _mm256_unpacklo_epi8(x[14], x[15]);
|
|
|
|
w4 = _mm256_unpacklo_epi16(w0, w1);
|
|
w5 = _mm256_unpacklo_epi16(w2, w3);
|
|
w12 = _mm256_unpacklo_epi16(w8, w9);
|
|
w13 = _mm256_unpacklo_epi16(w10, w11);
|
|
|
|
w6 = _mm256_unpacklo_epi32(w4, w5);
|
|
w7 = _mm256_unpackhi_epi32(w4, w5);
|
|
w14 = _mm256_unpacklo_epi32(w12, w13);
|
|
w15 = _mm256_unpackhi_epi32(w12, w13);
|
|
|
|
// Store first 4-line result
|
|
d[0] = _mm256_unpacklo_epi64(w6, w14);
|
|
d[1] = _mm256_unpackhi_epi64(w6, w14);
|
|
d[2] = _mm256_unpacklo_epi64(w7, w15);
|
|
d[3] = _mm256_unpackhi_epi64(w7, w15);
|
|
|
|
w4 = _mm256_unpackhi_epi16(w0, w1);
|
|
w5 = _mm256_unpackhi_epi16(w2, w3);
|
|
w12 = _mm256_unpackhi_epi16(w8, w9);
|
|
w13 = _mm256_unpackhi_epi16(w10, w11);
|
|
|
|
w6 = _mm256_unpacklo_epi32(w4, w5);
|
|
w7 = _mm256_unpackhi_epi32(w4, w5);
|
|
w14 = _mm256_unpacklo_epi32(w12, w13);
|
|
w15 = _mm256_unpackhi_epi32(w12, w13);
|
|
|
|
// Store second 4-line result
|
|
d[4] = _mm256_unpacklo_epi64(w6, w14);
|
|
d[5] = _mm256_unpackhi_epi64(w6, w14);
|
|
d[6] = _mm256_unpacklo_epi64(w7, w15);
|
|
d[7] = _mm256_unpackhi_epi64(w7, w15);
|
|
|
|
// upper half
|
|
w0 = _mm256_unpackhi_epi8(x[0], x[1]);
|
|
w1 = _mm256_unpackhi_epi8(x[2], x[3]);
|
|
w2 = _mm256_unpackhi_epi8(x[4], x[5]);
|
|
w3 = _mm256_unpackhi_epi8(x[6], x[7]);
|
|
|
|
w8 = _mm256_unpackhi_epi8(x[8], x[9]);
|
|
w9 = _mm256_unpackhi_epi8(x[10], x[11]);
|
|
w10 = _mm256_unpackhi_epi8(x[12], x[13]);
|
|
w11 = _mm256_unpackhi_epi8(x[14], x[15]);
|
|
|
|
w4 = _mm256_unpacklo_epi16(w0, w1);
|
|
w5 = _mm256_unpacklo_epi16(w2, w3);
|
|
w12 = _mm256_unpacklo_epi16(w8, w9);
|
|
w13 = _mm256_unpacklo_epi16(w10, w11);
|
|
|
|
w6 = _mm256_unpacklo_epi32(w4, w5);
|
|
w7 = _mm256_unpackhi_epi32(w4, w5);
|
|
w14 = _mm256_unpacklo_epi32(w12, w13);
|
|
w15 = _mm256_unpackhi_epi32(w12, w13);
|
|
|
|
// Store first 4-line result
|
|
d[8] = _mm256_unpacklo_epi64(w6, w14);
|
|
d[9] = _mm256_unpackhi_epi64(w6, w14);
|
|
d[10] = _mm256_unpacklo_epi64(w7, w15);
|
|
d[11] = _mm256_unpackhi_epi64(w7, w15);
|
|
|
|
w4 = _mm256_unpackhi_epi16(w0, w1);
|
|
w5 = _mm256_unpackhi_epi16(w2, w3);
|
|
w12 = _mm256_unpackhi_epi16(w8, w9);
|
|
w13 = _mm256_unpackhi_epi16(w10, w11);
|
|
|
|
w6 = _mm256_unpacklo_epi32(w4, w5);
|
|
w7 = _mm256_unpackhi_epi32(w4, w5);
|
|
w14 = _mm256_unpacklo_epi32(w12, w13);
|
|
w15 = _mm256_unpackhi_epi32(w12, w13);
|
|
|
|
// Store second 4-line result
|
|
d[12] = _mm256_unpacklo_epi64(w6, w14);
|
|
d[13] = _mm256_unpackhi_epi64(w6, w14);
|
|
d[14] = _mm256_unpacklo_epi64(w7, w15);
|
|
d[15] = _mm256_unpackhi_epi64(w7, w15);
|
|
}
|
|
|
|
static void dr_prediction_z3_4x4_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[4], d[4];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(4, 4, dstvec, left, upsample_left, dy);
|
|
transpose4x8_8x4_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3],
|
|
&d[0], &d[1], &d[2], &d[3]);
|
|
|
|
*(int *)(dst + stride * 0) = _mm_cvtsi128_si32(d[0]);
|
|
*(int *)(dst + stride * 1) = _mm_cvtsi128_si32(d[1]);
|
|
*(int *)(dst + stride * 2) = _mm_cvtsi128_si32(d[2]);
|
|
*(int *)(dst + stride * 3) = _mm_cvtsi128_si32(d[3]);
|
|
return;
|
|
}
|
|
|
|
static void dr_prediction_z3_8x8_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[8], d[8];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(8, 8, dstvec, left, upsample_left, dy);
|
|
transpose8x8_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4],
|
|
&dstvec[5], &dstvec[6], &dstvec[7], &d[0], &d[1], &d[2],
|
|
&d[3]);
|
|
|
|
_mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]);
|
|
_mm_storel_epi64((__m128i *)(dst + 1 * stride), _mm_srli_si128(d[0], 8));
|
|
_mm_storel_epi64((__m128i *)(dst + 2 * stride), d[1]);
|
|
_mm_storel_epi64((__m128i *)(dst + 3 * stride), _mm_srli_si128(d[1], 8));
|
|
_mm_storel_epi64((__m128i *)(dst + 4 * stride), d[2]);
|
|
_mm_storel_epi64((__m128i *)(dst + 5 * stride), _mm_srli_si128(d[2], 8));
|
|
_mm_storel_epi64((__m128i *)(dst + 6 * stride), d[3]);
|
|
_mm_storel_epi64((__m128i *)(dst + 7 * stride), _mm_srli_si128(d[3], 8));
|
|
}
|
|
|
|
static void dr_prediction_z3_4x8_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[4], d[8];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(8, 4, dstvec, left, upsample_left, dy);
|
|
transpose4x8_8x4_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &d[0],
|
|
&d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]);
|
|
for (int i = 0; i < 8; i++) {
|
|
*(int *)(dst + stride * i) = _mm_cvtsi128_si32(d[i]);
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_8x4_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[8], d[4];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(4, 8, dstvec, left, upsample_left, dy);
|
|
transpose8x8_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3],
|
|
&dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], &d[0],
|
|
&d[1], &d[2], &d[3]);
|
|
_mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]);
|
|
_mm_storel_epi64((__m128i *)(dst + 1 * stride), d[1]);
|
|
_mm_storel_epi64((__m128i *)(dst + 2 * stride), d[2]);
|
|
_mm_storel_epi64((__m128i *)(dst + 3 * stride), d[3]);
|
|
}
|
|
|
|
static void dr_prediction_z3_8x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[8], d[8];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(16, 8, dstvec, left, upsample_left, dy);
|
|
transpose8x16_16x8_sse2(dstvec, dstvec + 1, dstvec + 2, dstvec + 3,
|
|
dstvec + 4, dstvec + 5, dstvec + 6, dstvec + 7, d,
|
|
d + 1, d + 2, d + 3, d + 4, d + 5, d + 6, d + 7);
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storel_epi64((__m128i *)(dst + i * stride), d[i]);
|
|
_mm_storel_epi64((__m128i *)(dst + (i + 8) * stride),
|
|
_mm_srli_si128(d[i], 8));
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_16x8_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[16], d[16];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(8, 16, dstvec, left, upsample_left, dy);
|
|
transpose16x8_8x16_sse2(
|
|
&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5],
|
|
&dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11],
|
|
&dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2],
|
|
&d[3], &d[4], &d[5], &d[6], &d[7]);
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_4x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[4], d[16];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(16, 4, dstvec, left, upsample_left, dy);
|
|
transpose4x16_sse2(dstvec, d);
|
|
for (int i = 0; i < 16; i++) {
|
|
*(int *)(dst + stride * i) = _mm_cvtsi128_si32(d[i]);
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_16x4_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[16], d[8];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(4, 16, dstvec, left, upsample_left, dy);
|
|
for (int i = 4; i < 8; i++) {
|
|
d[i] = _mm_setzero_si128();
|
|
}
|
|
transpose16x8_8x16_sse2(
|
|
&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5],
|
|
&dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11],
|
|
&dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2],
|
|
&d[3], &d[4], &d[5], &d[6], &d[7]);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_8x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m256i dstvec[16], d[16];
|
|
|
|
dr_prediction_z1_32xN_internal_avx2(8, dstvec, left, upsample_left, dy);
|
|
for (int i = 8; i < 16; i++) {
|
|
dstvec[i] = _mm256_setzero_si256();
|
|
}
|
|
transpose16x32_avx2(dstvec, d);
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
_mm_storel_epi64((__m128i *)(dst + i * stride),
|
|
_mm256_castsi256_si128(d[i]));
|
|
}
|
|
for (int i = 0; i < 16; i++) {
|
|
_mm_storel_epi64((__m128i *)(dst + (i + 16) * stride),
|
|
_mm256_extracti128_si256(d[i], 1));
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_32x8_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[32], d[16];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(8, 32, dstvec, left, upsample_left, dy);
|
|
|
|
transpose16x8_8x16_sse2(
|
|
&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], &dstvec[4], &dstvec[5],
|
|
&dstvec[6], &dstvec[7], &dstvec[8], &dstvec[9], &dstvec[10], &dstvec[11],
|
|
&dstvec[12], &dstvec[13], &dstvec[14], &dstvec[15], &d[0], &d[1], &d[2],
|
|
&d[3], &d[4], &d[5], &d[6], &d[7]);
|
|
transpose16x8_8x16_sse2(
|
|
&dstvec[0 + 16], &dstvec[1 + 16], &dstvec[2 + 16], &dstvec[3 + 16],
|
|
&dstvec[4 + 16], &dstvec[5 + 16], &dstvec[6 + 16], &dstvec[7 + 16],
|
|
&dstvec[8 + 16], &dstvec[9 + 16], &dstvec[10 + 16], &dstvec[11 + 16],
|
|
&dstvec[12 + 16], &dstvec[13 + 16], &dstvec[14 + 16], &dstvec[15 + 16],
|
|
&d[0 + 8], &d[1 + 8], &d[2 + 8], &d[3 + 8], &d[4 + 8], &d[5 + 8],
|
|
&d[6 + 8], &d[7 + 8]);
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride + 16), d[i + 8]);
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_16x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[16], d[16];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(16, 16, dstvec, left, upsample_left, dy);
|
|
transpose16x16_sse2(dstvec, d);
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
_mm_storeu_si128((__m128i *)(dst + i * stride), d[i]);
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_32x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m256i dstvec[32], d[32];
|
|
|
|
dr_prediction_z1_32xN_internal_avx2(32, dstvec, left, upsample_left, dy);
|
|
transpose16x32_avx2(dstvec, d);
|
|
transpose16x32_avx2(dstvec + 16, d + 16);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm_storeu_si128((__m128i *)(dst + j * stride),
|
|
_mm256_castsi256_si128(d[j]));
|
|
_mm_storeu_si128((__m128i *)(dst + j * stride + 16),
|
|
_mm256_castsi256_si128(d[j + 16]));
|
|
}
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm_storeu_si128((__m128i *)(dst + (j + 16) * stride),
|
|
_mm256_extracti128_si256(d[j], 1));
|
|
_mm_storeu_si128((__m128i *)(dst + (j + 16) * stride + 16),
|
|
_mm256_extracti128_si256(d[j + 16], 1));
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_64x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
DECLARE_ALIGNED(16, uint8_t, dstT[64 * 64]);
|
|
dr_prediction_z1_64xN_avx2(64, dstT, 64, left, upsample_left, dy);
|
|
transpose(dstT, 64, dst, stride, 64, 64);
|
|
}
|
|
|
|
static void dr_prediction_z3_16x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m256i dstvec[16], d[16];
|
|
|
|
dr_prediction_z1_32xN_internal_avx2(16, dstvec, left, upsample_left, dy);
|
|
transpose16x32_avx2(dstvec, d);
|
|
// store
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm_storeu_si128((__m128i *)(dst + j * stride),
|
|
_mm256_castsi256_si128(d[j]));
|
|
_mm_storeu_si128((__m128i *)(dst + (j + 16) * stride),
|
|
_mm256_extracti128_si256(d[j], 1));
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_32x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[32], d[16];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(16, 32, dstvec, left, upsample_left, dy);
|
|
for (int i = 0; i < 32; i += 16) {
|
|
transpose16x16_sse2((dstvec + i), d);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm_storeu_si128((__m128i *)(dst + j * stride + i), d[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dr_prediction_z3_32x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
uint8_t dstT[64 * 32];
|
|
dr_prediction_z1_64xN_avx2(32, dstT, 64, left, upsample_left, dy);
|
|
transpose(dstT, 64, dst, stride, 32, 64);
|
|
}
|
|
|
|
static void dr_prediction_z3_64x32_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
uint8_t dstT[32 * 64];
|
|
dr_prediction_z1_32xN_avx2(64, dstT, 32, left, upsample_left, dy);
|
|
transpose(dstT, 32, dst, stride, 64, 32);
|
|
return;
|
|
}
|
|
|
|
static void dr_prediction_z3_16x64_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
uint8_t dstT[64 * 16];
|
|
dr_prediction_z1_64xN_avx2(16, dstT, 64, left, upsample_left, dy);
|
|
transpose(dstT, 64, dst, stride, 16, 64);
|
|
}
|
|
|
|
static void dr_prediction_z3_64x16_avx2(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *left, int upsample_left,
|
|
int dy) {
|
|
__m128i dstvec[64], d[16];
|
|
|
|
dr_prediction_z1_HxW_internal_avx2(16, 64, dstvec, left, upsample_left, dy);
|
|
for (int i = 0; i < 64; i += 16) {
|
|
transpose16x16_sse2((dstvec + i), d);
|
|
for (int j = 0; j < 16; j++) {
|
|
_mm_storeu_si128((__m128i *)(dst + j * stride + i), d[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void av1_dr_prediction_z3_avx2(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
|
|
const uint8_t *above, const uint8_t *left,
|
|
int upsample_left, int dx, int dy) {
|
|
(void)above;
|
|
(void)dx;
|
|
assert(dx == 1);
|
|
assert(dy > 0);
|
|
|
|
if (bw == bh) {
|
|
switch (bw) {
|
|
case 4:
|
|
dr_prediction_z3_4x4_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 8:
|
|
dr_prediction_z3_8x8_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 16:
|
|
dr_prediction_z3_16x16_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 32:
|
|
dr_prediction_z3_32x32_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 64:
|
|
dr_prediction_z3_64x64_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
}
|
|
} else {
|
|
if (bw < bh) {
|
|
if (bw + bw == bh) {
|
|
switch (bw) {
|
|
case 4:
|
|
dr_prediction_z3_4x8_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 8:
|
|
dr_prediction_z3_8x16_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 16:
|
|
dr_prediction_z3_16x32_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 32:
|
|
dr_prediction_z3_32x64_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (bw) {
|
|
case 4:
|
|
dr_prediction_z3_4x16_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 8:
|
|
dr_prediction_z3_8x32_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 16:
|
|
dr_prediction_z3_16x64_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
if (bh + bh == bw) {
|
|
switch (bh) {
|
|
case 4:
|
|
dr_prediction_z3_8x4_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 8:
|
|
dr_prediction_z3_16x8_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 16:
|
|
dr_prediction_z3_32x16_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 32:
|
|
dr_prediction_z3_64x32_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (bh) {
|
|
case 4:
|
|
dr_prediction_z3_16x4_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 8:
|
|
dr_prediction_z3_32x8_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
case 16:
|
|
dr_prediction_z3_64x16_avx2(dst, stride, left, upsample_left, dy);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|