327 lines
12 KiB
C
327 lines
12 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
#include <immintrin.h> // AVX2
|
|
|
|
#include "config/aom_dsp_rtcd.h"
|
|
|
|
#include "aom/aom_integer.h"
|
|
#include "aom_dsp/x86/synonyms_avx2.h"
|
|
|
|
static AOM_FORCE_INLINE void aggregate_and_store_sum(uint32_t res[4],
|
|
const __m256i *sum_ref0,
|
|
const __m256i *sum_ref1,
|
|
const __m256i *sum_ref2,
|
|
const __m256i *sum_ref3) {
|
|
// In sum_ref-i the result is saved in the first 4 bytes and the other 4
|
|
// bytes are zeroed.
|
|
// merge sum_ref0 and sum_ref1 also sum_ref2 and sum_ref3
|
|
// 0, 0, 1, 1
|
|
__m256i sum_ref01 = _mm256_castps_si256(_mm256_shuffle_ps(
|
|
_mm256_castsi256_ps(*sum_ref0), _mm256_castsi256_ps(*sum_ref1),
|
|
_MM_SHUFFLE(2, 0, 2, 0)));
|
|
// 2, 2, 3, 3
|
|
__m256i sum_ref23 = _mm256_castps_si256(_mm256_shuffle_ps(
|
|
_mm256_castsi256_ps(*sum_ref2), _mm256_castsi256_ps(*sum_ref3),
|
|
_MM_SHUFFLE(2, 0, 2, 0)));
|
|
|
|
// sum adjacent 32 bit integers
|
|
__m256i sum_ref0123 = _mm256_hadd_epi32(sum_ref01, sum_ref23);
|
|
|
|
// add the low 128 bit to the high 128 bit
|
|
__m128i sum = _mm_add_epi32(_mm256_castsi256_si128(sum_ref0123),
|
|
_mm256_extractf128_si256(sum_ref0123, 1));
|
|
|
|
_mm_storeu_si128((__m128i *)(res), sum);
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void aom_sadMxNx4d_avx2(
|
|
int M, int N, const uint8_t *src, int src_stride,
|
|
const uint8_t *const ref[4], int ref_stride, uint32_t res[4]) {
|
|
__m256i src_reg, ref0_reg, ref1_reg, ref2_reg, ref3_reg;
|
|
__m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3;
|
|
int i, j;
|
|
const uint8_t *ref0, *ref1, *ref2, *ref3;
|
|
|
|
ref0 = ref[0];
|
|
ref1 = ref[1];
|
|
ref2 = ref[2];
|
|
ref3 = ref[3];
|
|
sum_ref0 = _mm256_setzero_si256();
|
|
sum_ref2 = _mm256_setzero_si256();
|
|
sum_ref1 = _mm256_setzero_si256();
|
|
sum_ref3 = _mm256_setzero_si256();
|
|
|
|
for (i = 0; i < N; i++) {
|
|
for (j = 0; j < M; j += 32) {
|
|
// load src and all refs
|
|
src_reg = _mm256_loadu_si256((const __m256i *)(src + j));
|
|
ref0_reg = _mm256_loadu_si256((const __m256i *)(ref0 + j));
|
|
ref1_reg = _mm256_loadu_si256((const __m256i *)(ref1 + j));
|
|
ref2_reg = _mm256_loadu_si256((const __m256i *)(ref2 + j));
|
|
ref3_reg = _mm256_loadu_si256((const __m256i *)(ref3 + j));
|
|
|
|
// sum of the absolute differences between every ref-i to src
|
|
ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
|
|
ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
|
|
ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
|
|
ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg);
|
|
// sum every ref-i
|
|
sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
|
|
sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
|
|
sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
|
|
sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg);
|
|
}
|
|
src += src_stride;
|
|
ref0 += ref_stride;
|
|
ref1 += ref_stride;
|
|
ref2 += ref_stride;
|
|
ref3 += ref_stride;
|
|
}
|
|
|
|
aggregate_and_store_sum(res, &sum_ref0, &sum_ref1, &sum_ref2, &sum_ref3);
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void aom_sadMxNx3d_avx2(
|
|
int M, int N, const uint8_t *src, int src_stride,
|
|
const uint8_t *const ref[4], int ref_stride, uint32_t res[4]) {
|
|
__m256i src_reg, ref0_reg, ref1_reg, ref2_reg;
|
|
__m256i sum_ref0, sum_ref1, sum_ref2;
|
|
int i, j;
|
|
const uint8_t *ref0, *ref1, *ref2;
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
|
|
ref0 = ref[0];
|
|
ref1 = ref[1];
|
|
ref2 = ref[2];
|
|
sum_ref0 = _mm256_setzero_si256();
|
|
sum_ref2 = _mm256_setzero_si256();
|
|
sum_ref1 = _mm256_setzero_si256();
|
|
|
|
for (i = 0; i < N; i++) {
|
|
for (j = 0; j < M; j += 32) {
|
|
// load src and all refs
|
|
src_reg = _mm256_loadu_si256((const __m256i *)(src + j));
|
|
ref0_reg = _mm256_loadu_si256((const __m256i *)(ref0 + j));
|
|
ref1_reg = _mm256_loadu_si256((const __m256i *)(ref1 + j));
|
|
ref2_reg = _mm256_loadu_si256((const __m256i *)(ref2 + j));
|
|
|
|
// sum of the absolute differences between every ref-i to src
|
|
ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
|
|
ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
|
|
ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
|
|
// sum every ref-i
|
|
sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
|
|
sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
|
|
sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
|
|
}
|
|
src += src_stride;
|
|
ref0 += ref_stride;
|
|
ref1 += ref_stride;
|
|
ref2 += ref_stride;
|
|
}
|
|
aggregate_and_store_sum(res, &sum_ref0, &sum_ref1, &sum_ref2, &zero);
|
|
}
|
|
|
|
#define SADMXN_AVX2(m, n) \
|
|
void aom_sad##m##x##n##x4d_avx2(const uint8_t *src, int src_stride, \
|
|
const uint8_t *const ref[4], int ref_stride, \
|
|
uint32_t res[4]) { \
|
|
aom_sadMxNx4d_avx2(m, n, src, src_stride, ref, ref_stride, res); \
|
|
} \
|
|
void aom_sad##m##x##n##x3d_avx2(const uint8_t *src, int src_stride, \
|
|
const uint8_t *const ref[4], int ref_stride, \
|
|
uint32_t res[4]) { \
|
|
aom_sadMxNx3d_avx2(m, n, src, src_stride, ref, ref_stride, res); \
|
|
}
|
|
|
|
SADMXN_AVX2(32, 8)
|
|
SADMXN_AVX2(32, 16)
|
|
SADMXN_AVX2(32, 32)
|
|
SADMXN_AVX2(32, 64)
|
|
|
|
SADMXN_AVX2(64, 16)
|
|
SADMXN_AVX2(64, 32)
|
|
SADMXN_AVX2(64, 64)
|
|
SADMXN_AVX2(64, 128)
|
|
|
|
SADMXN_AVX2(128, 64)
|
|
SADMXN_AVX2(128, 128)
|
|
|
|
#define SAD_SKIP_MXN_AVX2(m, n) \
|
|
void aom_sad_skip_##m##x##n##x4d_avx2(const uint8_t *src, int src_stride, \
|
|
const uint8_t *const ref[4], \
|
|
int ref_stride, uint32_t res[4]) { \
|
|
aom_sadMxNx4d_avx2(m, ((n) >> 1), src, 2 * src_stride, ref, \
|
|
2 * ref_stride, res); \
|
|
res[0] <<= 1; \
|
|
res[1] <<= 1; \
|
|
res[2] <<= 1; \
|
|
res[3] <<= 1; \
|
|
}
|
|
|
|
SAD_SKIP_MXN_AVX2(32, 8)
|
|
SAD_SKIP_MXN_AVX2(32, 16)
|
|
SAD_SKIP_MXN_AVX2(32, 32)
|
|
SAD_SKIP_MXN_AVX2(32, 64)
|
|
|
|
SAD_SKIP_MXN_AVX2(64, 16)
|
|
SAD_SKIP_MXN_AVX2(64, 32)
|
|
SAD_SKIP_MXN_AVX2(64, 64)
|
|
SAD_SKIP_MXN_AVX2(64, 128)
|
|
|
|
SAD_SKIP_MXN_AVX2(128, 64)
|
|
SAD_SKIP_MXN_AVX2(128, 128)
|
|
|
|
static AOM_FORCE_INLINE void aom_sad16xNx3d_avx2(int N, const uint8_t *src,
|
|
int src_stride,
|
|
const uint8_t *const ref[4],
|
|
int ref_stride,
|
|
uint32_t res[4]) {
|
|
__m256i src_reg, ref0_reg, ref1_reg, ref2_reg;
|
|
__m256i sum_ref0, sum_ref1, sum_ref2;
|
|
const uint8_t *ref0, *ref1, *ref2;
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
assert(N % 2 == 0);
|
|
|
|
ref0 = ref[0];
|
|
ref1 = ref[1];
|
|
ref2 = ref[2];
|
|
sum_ref0 = _mm256_setzero_si256();
|
|
sum_ref2 = _mm256_setzero_si256();
|
|
sum_ref1 = _mm256_setzero_si256();
|
|
|
|
for (int i = 0; i < N; i += 2) {
|
|
// load src and all refs
|
|
src_reg = yy_loadu2_128(src + src_stride, src);
|
|
ref0_reg = yy_loadu2_128(ref0 + ref_stride, ref0);
|
|
ref1_reg = yy_loadu2_128(ref1 + ref_stride, ref1);
|
|
ref2_reg = yy_loadu2_128(ref2 + ref_stride, ref2);
|
|
|
|
// sum of the absolute differences between every ref-i to src
|
|
ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
|
|
ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
|
|
ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
|
|
|
|
// sum every ref-i
|
|
sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
|
|
sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
|
|
sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
|
|
|
|
src += 2 * src_stride;
|
|
ref0 += 2 * ref_stride;
|
|
ref1 += 2 * ref_stride;
|
|
ref2 += 2 * ref_stride;
|
|
}
|
|
|
|
aggregate_and_store_sum(res, &sum_ref0, &sum_ref1, &sum_ref2, &zero);
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void aom_sad16xNx4d_avx2(int N, const uint8_t *src,
|
|
int src_stride,
|
|
const uint8_t *const ref[4],
|
|
int ref_stride,
|
|
uint32_t res[4]) {
|
|
__m256i src_reg, ref0_reg, ref1_reg, ref2_reg, ref3_reg;
|
|
__m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3;
|
|
const uint8_t *ref0, *ref1, *ref2, *ref3;
|
|
assert(N % 2 == 0);
|
|
|
|
ref0 = ref[0];
|
|
ref1 = ref[1];
|
|
ref2 = ref[2];
|
|
ref3 = ref[3];
|
|
|
|
sum_ref0 = _mm256_setzero_si256();
|
|
sum_ref2 = _mm256_setzero_si256();
|
|
sum_ref1 = _mm256_setzero_si256();
|
|
sum_ref3 = _mm256_setzero_si256();
|
|
|
|
for (int i = 0; i < N; i += 2) {
|
|
// load src and all refs
|
|
src_reg = yy_loadu2_128(src + src_stride, src);
|
|
ref0_reg = yy_loadu2_128(ref0 + ref_stride, ref0);
|
|
ref1_reg = yy_loadu2_128(ref1 + ref_stride, ref1);
|
|
ref2_reg = yy_loadu2_128(ref2 + ref_stride, ref2);
|
|
ref3_reg = yy_loadu2_128(ref3 + ref_stride, ref3);
|
|
|
|
// sum of the absolute differences between every ref-i to src
|
|
ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg);
|
|
ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg);
|
|
ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg);
|
|
ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg);
|
|
|
|
// sum every ref-i
|
|
sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg);
|
|
sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg);
|
|
sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg);
|
|
sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg);
|
|
|
|
src += 2 * src_stride;
|
|
ref0 += 2 * ref_stride;
|
|
ref1 += 2 * ref_stride;
|
|
ref2 += 2 * ref_stride;
|
|
ref3 += 2 * ref_stride;
|
|
}
|
|
|
|
aggregate_and_store_sum(res, &sum_ref0, &sum_ref1, &sum_ref2, &sum_ref3);
|
|
}
|
|
|
|
#define SAD16XNX3_AVX2(n) \
|
|
void aom_sad16x##n##x3d_avx2(const uint8_t *src, int src_stride, \
|
|
const uint8_t *const ref[4], int ref_stride, \
|
|
uint32_t res[4]) { \
|
|
aom_sad16xNx3d_avx2(n, src, src_stride, ref, ref_stride, res); \
|
|
}
|
|
#define SAD16XNX4_AVX2(n) \
|
|
void aom_sad16x##n##x4d_avx2(const uint8_t *src, int src_stride, \
|
|
const uint8_t *const ref[4], int ref_stride, \
|
|
uint32_t res[4]) { \
|
|
aom_sad16xNx4d_avx2(n, src, src_stride, ref, ref_stride, res); \
|
|
}
|
|
|
|
SAD16XNX4_AVX2(32)
|
|
SAD16XNX4_AVX2(16)
|
|
SAD16XNX4_AVX2(8)
|
|
|
|
SAD16XNX3_AVX2(32)
|
|
SAD16XNX3_AVX2(16)
|
|
SAD16XNX3_AVX2(8)
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
SAD16XNX3_AVX2(64)
|
|
SAD16XNX3_AVX2(4)
|
|
|
|
SAD16XNX4_AVX2(64)
|
|
SAD16XNX4_AVX2(4)
|
|
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
#define SAD_SKIP_16XN_AVX2(n) \
|
|
void aom_sad_skip_16x##n##x4d_avx2(const uint8_t *src, int src_stride, \
|
|
const uint8_t *const ref[4], \
|
|
int ref_stride, uint32_t res[4]) { \
|
|
aom_sad16xNx4d_avx2(((n) >> 1), src, 2 * src_stride, ref, 2 * ref_stride, \
|
|
res); \
|
|
res[0] <<= 1; \
|
|
res[1] <<= 1; \
|
|
res[2] <<= 1; \
|
|
res[3] <<= 1; \
|
|
}
|
|
|
|
SAD_SKIP_16XN_AVX2(32)
|
|
SAD_SKIP_16XN_AVX2(16)
|
|
SAD_SKIP_16XN_AVX2(8)
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
SAD_SKIP_16XN_AVX2(64)
|
|
SAD_SKIP_16XN_AVX2(4)
|
|
#endif // !CONFIG_REALTIME_ONLY
|