151 lines
4.7 KiB
C
151 lines
4.7 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "av1/common/blockd.h"
|
|
#include "av1/encoder/palette.h"
|
|
#include "av1/encoder/random.h"
|
|
|
|
#ifndef AV1_K_MEANS_DIM
|
|
#error "This template requires AV1_K_MEANS_DIM to be defined"
|
|
#endif
|
|
|
|
#define RENAME_(x, y) AV1_K_MEANS_RENAME(x, y)
|
|
#define RENAME(x) RENAME_(x, AV1_K_MEANS_DIM)
|
|
|
|
// Though we want to compute the smallest L2 norm, in 1 dimension,
|
|
// it is equivalent to find the smallest L1 norm and then square it.
|
|
// This is preferrable for speed, especially on the SIMD side.
|
|
static int RENAME(calc_dist)(const int16_t *p1, const int16_t *p2) {
|
|
#if AV1_K_MEANS_DIM == 1
|
|
return abs(p1[0] - p2[0]);
|
|
#else
|
|
int dist = 0;
|
|
for (int i = 0; i < AV1_K_MEANS_DIM; ++i) {
|
|
const int diff = p1[i] - p2[i];
|
|
dist += diff * diff;
|
|
}
|
|
return dist;
|
|
#endif
|
|
}
|
|
|
|
void RENAME(av1_calc_indices)(const int16_t *data, const int16_t *centroids,
|
|
uint8_t *indices, int64_t *dist, int n, int k) {
|
|
if (dist) {
|
|
*dist = 0;
|
|
}
|
|
for (int i = 0; i < n; ++i) {
|
|
int min_dist = RENAME(calc_dist)(data + i * AV1_K_MEANS_DIM, centroids);
|
|
indices[i] = 0;
|
|
for (int j = 1; j < k; ++j) {
|
|
const int this_dist = RENAME(calc_dist)(data + i * AV1_K_MEANS_DIM,
|
|
centroids + j * AV1_K_MEANS_DIM);
|
|
if (this_dist < min_dist) {
|
|
min_dist = this_dist;
|
|
indices[i] = j;
|
|
}
|
|
}
|
|
if (dist) {
|
|
#if AV1_K_MEANS_DIM == 1
|
|
*dist += min_dist * min_dist;
|
|
#else
|
|
*dist += min_dist;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static void RENAME(calc_centroids)(const int16_t *data, int16_t *centroids,
|
|
const uint8_t *indices, int n, int k) {
|
|
int i, j;
|
|
int count[PALETTE_MAX_SIZE] = { 0 };
|
|
int centroids_sum[AV1_K_MEANS_DIM * PALETTE_MAX_SIZE];
|
|
unsigned int rand_state = (unsigned int)data[0];
|
|
assert(n <= 32768);
|
|
memset(centroids_sum, 0, sizeof(centroids_sum[0]) * k * AV1_K_MEANS_DIM);
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
const int index = indices[i];
|
|
assert(index < k);
|
|
++count[index];
|
|
for (j = 0; j < AV1_K_MEANS_DIM; ++j) {
|
|
centroids_sum[index * AV1_K_MEANS_DIM + j] +=
|
|
data[i * AV1_K_MEANS_DIM + j];
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < k; ++i) {
|
|
if (count[i] == 0) {
|
|
memcpy(centroids + i * AV1_K_MEANS_DIM,
|
|
data + (lcg_rand16(&rand_state) % n) * AV1_K_MEANS_DIM,
|
|
sizeof(centroids[0]) * AV1_K_MEANS_DIM);
|
|
} else {
|
|
for (j = 0; j < AV1_K_MEANS_DIM; ++j) {
|
|
centroids[i * AV1_K_MEANS_DIM + j] =
|
|
DIVIDE_AND_ROUND(centroids_sum[i * AV1_K_MEANS_DIM + j], count[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RENAME(av1_k_means)(const int16_t *data, int16_t *centroids,
|
|
uint8_t *indices, int n, int k, int max_itr) {
|
|
int16_t centroids_tmp[AV1_K_MEANS_DIM * PALETTE_MAX_SIZE];
|
|
uint8_t indices_tmp[MAX_PALETTE_BLOCK_WIDTH * MAX_PALETTE_BLOCK_HEIGHT];
|
|
int16_t *meta_centroids[2] = { centroids, centroids_tmp };
|
|
uint8_t *meta_indices[2] = { indices, indices_tmp };
|
|
int i, l = 0, prev_l, best_l = 0;
|
|
int64_t this_dist;
|
|
|
|
assert(n <= MAX_PALETTE_BLOCK_WIDTH * MAX_PALETTE_BLOCK_HEIGHT);
|
|
|
|
#if AV1_K_MEANS_DIM == 1
|
|
av1_calc_indices_dim1(data, centroids, indices, &this_dist, n, k);
|
|
#else
|
|
av1_calc_indices_dim2(data, centroids, indices, &this_dist, n, k);
|
|
#endif
|
|
|
|
for (i = 0; i < max_itr; ++i) {
|
|
const int64_t prev_dist = this_dist;
|
|
prev_l = l;
|
|
l = (l == 1) ? 0 : 1;
|
|
|
|
RENAME(calc_centroids)(data, meta_centroids[l], meta_indices[prev_l], n, k);
|
|
#if AV1_K_MEANS_DIM == 1
|
|
av1_calc_indices_dim1(data, meta_centroids[l], meta_indices[l], &this_dist,
|
|
n, k);
|
|
#else
|
|
av1_calc_indices_dim2(data, meta_centroids[l], meta_indices[l], &this_dist,
|
|
n, k);
|
|
#endif
|
|
|
|
if (this_dist > prev_dist) {
|
|
best_l = prev_l;
|
|
break;
|
|
}
|
|
if (!memcmp(meta_centroids[l], meta_centroids[prev_l],
|
|
sizeof(centroids[0]) * k * AV1_K_MEANS_DIM))
|
|
break;
|
|
}
|
|
if (i == max_itr) best_l = l;
|
|
if (best_l != 0) {
|
|
memcpy(centroids, meta_centroids[1],
|
|
sizeof(centroids[0]) * k * AV1_K_MEANS_DIM);
|
|
memcpy(indices, meta_indices[1], sizeof(indices[0]) * n);
|
|
}
|
|
}
|
|
#undef RENAME_
|
|
#undef RENAME
|