4349 lines
179 KiB
C
4349 lines
179 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include "config/aom_dsp_rtcd.h"
|
|
#include "config/av1_rtcd.h"
|
|
|
|
#include "aom_dsp/aom_dsp_common.h"
|
|
#include "aom_dsp/txfm_common.h"
|
|
#include "aom_ports/mem.h"
|
|
|
|
#include "av1/common/blockd.h"
|
|
#include "av1/common/mvref_common.h"
|
|
#include "av1/common/pred_common.h"
|
|
#include "av1/common/reconinter.h"
|
|
#include "av1/common/reconintra.h"
|
|
|
|
#include "av1/encoder/encodemv.h"
|
|
#include "av1/encoder/encoder.h"
|
|
#include "av1/encoder/intra_mode_search.h"
|
|
#include "av1/encoder/model_rd.h"
|
|
#include "av1/encoder/motion_search_facade.h"
|
|
#include "av1/encoder/nonrd_opt.h"
|
|
#include "av1/encoder/rdopt.h"
|
|
#include "av1/encoder/reconinter_enc.h"
|
|
#include "av1/encoder/var_based_part.h"
|
|
|
|
#define CALC_BIASED_RDCOST(rdcost) (7 * (rdcost) >> 3)
|
|
extern int g_pick_inter_mode_cnt;
|
|
/*!\cond */
|
|
typedef struct {
|
|
uint8_t *data;
|
|
int stride;
|
|
int in_use;
|
|
} PRED_BUFFER;
|
|
|
|
typedef struct {
|
|
PRED_BUFFER *best_pred;
|
|
PREDICTION_MODE best_mode;
|
|
TX_SIZE best_tx_size;
|
|
TX_TYPE tx_type;
|
|
MV_REFERENCE_FRAME best_ref_frame;
|
|
MV_REFERENCE_FRAME best_second_ref_frame;
|
|
uint8_t best_mode_skip_txfm;
|
|
uint8_t best_mode_initial_skip_flag;
|
|
int_interpfilters best_pred_filter;
|
|
MOTION_MODE best_motion_mode;
|
|
WarpedMotionParams wm_params;
|
|
int num_proj_ref;
|
|
uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE / 4];
|
|
PALETTE_MODE_INFO pmi;
|
|
int64_t best_sse;
|
|
} BEST_PICKMODE;
|
|
|
|
typedef struct {
|
|
MV_REFERENCE_FRAME ref_frame;
|
|
PREDICTION_MODE pred_mode;
|
|
} REF_MODE;
|
|
|
|
typedef struct {
|
|
MV_REFERENCE_FRAME ref_frame[2];
|
|
PREDICTION_MODE pred_mode;
|
|
} COMP_REF_MODE;
|
|
|
|
typedef struct {
|
|
InterpFilter filter_x;
|
|
InterpFilter filter_y;
|
|
} INTER_FILTER;
|
|
|
|
/*!\brief Structure to store parameters and statistics used in non-rd inter mode
|
|
* evaluation.
|
|
*/
|
|
typedef struct {
|
|
BEST_PICKMODE best_pickmode;
|
|
RD_STATS this_rdc;
|
|
RD_STATS best_rdc;
|
|
int64_t uv_dist[RTC_INTER_MODES][REF_FRAMES];
|
|
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
|
|
unsigned int vars[RTC_INTER_MODES][REF_FRAMES];
|
|
unsigned int ref_costs_single[REF_FRAMES];
|
|
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES];
|
|
int_mv frame_mv_best[MB_MODE_COUNT][REF_FRAMES];
|
|
int single_inter_mode_costs[RTC_INTER_MODES][REF_FRAMES];
|
|
int use_ref_frame_mask[REF_FRAMES];
|
|
uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES];
|
|
} InterModeSearchStateNonrd;
|
|
/*!\endcond */
|
|
|
|
#define NUM_COMP_INTER_MODES_RT (6)
|
|
#define NUM_INTER_MODES 12
|
|
|
|
// GLOBALMV in the set below is in fact ZEROMV as we don't do global ME in RT
|
|
// mode
|
|
static const REF_MODE ref_mode_set[NUM_INTER_MODES] = {
|
|
{ LAST_FRAME, NEARESTMV }, { LAST_FRAME, NEARMV },
|
|
{ LAST_FRAME, GLOBALMV }, { LAST_FRAME, NEWMV },
|
|
{ GOLDEN_FRAME, NEARESTMV }, { GOLDEN_FRAME, NEARMV },
|
|
{ GOLDEN_FRAME, GLOBALMV }, { GOLDEN_FRAME, NEWMV },
|
|
{ ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV },
|
|
{ ALTREF_FRAME, GLOBALMV }, { ALTREF_FRAME, NEWMV },
|
|
};
|
|
|
|
static const COMP_REF_MODE comp_ref_mode_set[NUM_COMP_INTER_MODES_RT] = {
|
|
{ { LAST_FRAME, GOLDEN_FRAME }, GLOBAL_GLOBALMV },
|
|
{ { LAST_FRAME, GOLDEN_FRAME }, NEAREST_NEARESTMV },
|
|
{ { LAST_FRAME, LAST2_FRAME }, GLOBAL_GLOBALMV },
|
|
{ { LAST_FRAME, LAST2_FRAME }, NEAREST_NEARESTMV },
|
|
{ { LAST_FRAME, ALTREF_FRAME }, GLOBAL_GLOBALMV },
|
|
{ { LAST_FRAME, ALTREF_FRAME }, NEAREST_NEARESTMV },
|
|
};
|
|
|
|
static const INTER_FILTER filters_ref_set[9] = {
|
|
{ EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH },
|
|
{ EIGHTTAP_REGULAR, EIGHTTAP_SMOOTH }, { EIGHTTAP_SMOOTH, EIGHTTAP_REGULAR },
|
|
{ MULTITAP_SHARP, MULTITAP_SHARP }, { EIGHTTAP_REGULAR, MULTITAP_SHARP },
|
|
{ MULTITAP_SHARP, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, MULTITAP_SHARP },
|
|
{ MULTITAP_SHARP, EIGHTTAP_SMOOTH }
|
|
};
|
|
|
|
enum {
|
|
// INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV),
|
|
INTER_NEAREST = (1 << NEARESTMV),
|
|
INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV),
|
|
INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV),
|
|
INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV),
|
|
};
|
|
|
|
// The original scan order (default_scan_8x8) is modified according to the extra
|
|
// transpose in hadamard c implementation, i.e., aom_hadamard_lp_8x8_c and
|
|
// aom_hadamard_8x8_c.
|
|
DECLARE_ALIGNED(16, static const int16_t, default_scan_8x8_transpose[64]) = {
|
|
0, 8, 1, 2, 9, 16, 24, 17, 10, 3, 4, 11, 18, 25, 32, 40,
|
|
33, 26, 19, 12, 5, 6, 13, 20, 27, 34, 41, 48, 56, 49, 42, 35,
|
|
28, 21, 14, 7, 15, 22, 29, 36, 43, 50, 57, 58, 51, 44, 37, 30,
|
|
23, 31, 38, 45, 52, 59, 60, 53, 46, 39, 47, 54, 61, 62, 55, 63
|
|
};
|
|
|
|
// The original scan order (av1_default_iscan_8x8) is modified to match
|
|
// hadamard AVX2 implementation, i.e., aom_hadamard_lp_8x8_avx2 and
|
|
// aom_hadamard_8x8_avx2. Since hadamard AVX2 implementation will modify the
|
|
// order of coefficients, such that the normal scan order is no longer
|
|
// guaranteed to scan low coefficients first, therefore we modify the scan order
|
|
// accordingly.
|
|
// Note that this one has to be used together with default_scan_8x8_transpose.
|
|
DECLARE_ALIGNED(16, static const int16_t,
|
|
av1_default_iscan_8x8_transpose[64]) = {
|
|
0, 2, 3, 9, 10, 20, 21, 35, 1, 4, 8, 11, 19, 22, 34, 36,
|
|
5, 7, 12, 18, 23, 33, 37, 48, 6, 13, 17, 24, 32, 38, 47, 49,
|
|
14, 16, 25, 31, 39, 46, 50, 57, 15, 26, 30, 40, 45, 51, 56, 58,
|
|
27, 29, 41, 44, 52, 55, 59, 62, 28, 42, 43, 53, 54, 60, 61, 63
|
|
};
|
|
|
|
// The original scan order (default_scan_16x16) is modified according to the
|
|
// extra transpose in hadamard c implementation in lp case, i.e.,
|
|
// aom_hadamard_lp_16x16_c.
|
|
DECLARE_ALIGNED(16, static const int16_t,
|
|
default_scan_lp_16x16_transpose[256]) = {
|
|
0, 8, 2, 4, 10, 16, 24, 18, 12, 6, 64, 14, 20, 26, 32,
|
|
40, 34, 28, 22, 72, 66, 68, 74, 80, 30, 36, 42, 48, 56, 50,
|
|
44, 38, 88, 82, 76, 70, 128, 78, 84, 90, 96, 46, 52, 58, 1,
|
|
9, 3, 60, 54, 104, 98, 92, 86, 136, 130, 132, 138, 144, 94, 100,
|
|
106, 112, 62, 5, 11, 17, 25, 19, 13, 7, 120, 114, 108, 102, 152,
|
|
146, 140, 134, 192, 142, 148, 154, 160, 110, 116, 122, 65, 15, 21, 27,
|
|
33, 41, 35, 29, 23, 73, 67, 124, 118, 168, 162, 156, 150, 200, 194,
|
|
196, 202, 208, 158, 164, 170, 176, 126, 69, 75, 81, 31, 37, 43, 49,
|
|
57, 51, 45, 39, 89, 83, 77, 71, 184, 178, 172, 166, 216, 210, 204,
|
|
198, 206, 212, 218, 224, 174, 180, 186, 129, 79, 85, 91, 97, 47, 53,
|
|
59, 61, 55, 105, 99, 93, 87, 137, 131, 188, 182, 232, 226, 220, 214,
|
|
222, 228, 234, 240, 190, 133, 139, 145, 95, 101, 107, 113, 63, 121, 115,
|
|
109, 103, 153, 147, 141, 135, 248, 242, 236, 230, 238, 244, 250, 193, 143,
|
|
149, 155, 161, 111, 117, 123, 125, 119, 169, 163, 157, 151, 201, 195, 252,
|
|
246, 254, 197, 203, 209, 159, 165, 171, 177, 127, 185, 179, 173, 167, 217,
|
|
211, 205, 199, 207, 213, 219, 225, 175, 181, 187, 189, 183, 233, 227, 221,
|
|
215, 223, 229, 235, 241, 191, 249, 243, 237, 231, 239, 245, 251, 253, 247,
|
|
255
|
|
};
|
|
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
// The original scan order (default_scan_16x16) is modified according to the
|
|
// extra shift in hadamard c implementation in fp case, i.e.,
|
|
// aom_hadamard_16x16_c. Note that 16x16 lp and fp hadamard generate different
|
|
// outputs, so we handle them separately.
|
|
DECLARE_ALIGNED(16, static const int16_t,
|
|
default_scan_fp_16x16_transpose[256]) = {
|
|
0, 4, 2, 8, 6, 16, 20, 18, 12, 10, 64, 14, 24, 22, 32,
|
|
36, 34, 28, 26, 68, 66, 72, 70, 80, 30, 40, 38, 48, 52, 50,
|
|
44, 42, 84, 82, 76, 74, 128, 78, 88, 86, 96, 46, 56, 54, 1,
|
|
5, 3, 60, 58, 100, 98, 92, 90, 132, 130, 136, 134, 144, 94, 104,
|
|
102, 112, 62, 9, 7, 17, 21, 19, 13, 11, 116, 114, 108, 106, 148,
|
|
146, 140, 138, 192, 142, 152, 150, 160, 110, 120, 118, 65, 15, 25, 23,
|
|
33, 37, 35, 29, 27, 69, 67, 124, 122, 164, 162, 156, 154, 196, 194,
|
|
200, 198, 208, 158, 168, 166, 176, 126, 73, 71, 81, 31, 41, 39, 49,
|
|
53, 51, 45, 43, 85, 83, 77, 75, 180, 178, 172, 170, 212, 210, 204,
|
|
202, 206, 216, 214, 224, 174, 184, 182, 129, 79, 89, 87, 97, 47, 57,
|
|
55, 61, 59, 101, 99, 93, 91, 133, 131, 188, 186, 228, 226, 220, 218,
|
|
222, 232, 230, 240, 190, 137, 135, 145, 95, 105, 103, 113, 63, 117, 115,
|
|
109, 107, 149, 147, 141, 139, 244, 242, 236, 234, 238, 248, 246, 193, 143,
|
|
153, 151, 161, 111, 121, 119, 125, 123, 165, 163, 157, 155, 197, 195, 252,
|
|
250, 254, 201, 199, 209, 159, 169, 167, 177, 127, 181, 179, 173, 171, 213,
|
|
211, 205, 203, 207, 217, 215, 225, 175, 185, 183, 189, 187, 229, 227, 221,
|
|
219, 223, 233, 231, 241, 191, 245, 243, 237, 235, 239, 249, 247, 253, 251,
|
|
255
|
|
};
|
|
#endif
|
|
|
|
// The original scan order (av1_default_iscan_16x16) is modified to match
|
|
// hadamard AVX2 implementation, i.e., aom_hadamard_lp_16x16_avx2.
|
|
// Since hadamard AVX2 implementation will modify the order of coefficients,
|
|
// such that the normal scan order is no longer guaranteed to scan low
|
|
// coefficients first, therefore we modify the scan order accordingly. Note that
|
|
// this one has to be used together with default_scan_lp_16x16_transpose.
|
|
DECLARE_ALIGNED(16, static const int16_t,
|
|
av1_default_iscan_lp_16x16_transpose[256]) = {
|
|
0, 44, 2, 46, 3, 63, 9, 69, 1, 45, 4, 64, 8, 68, 11,
|
|
87, 5, 65, 7, 67, 12, 88, 18, 94, 6, 66, 13, 89, 17, 93,
|
|
24, 116, 14, 90, 16, 92, 25, 117, 31, 123, 15, 91, 26, 118, 30,
|
|
122, 41, 148, 27, 119, 29, 121, 42, 149, 48, 152, 28, 120, 43, 150,
|
|
47, 151, 62, 177, 10, 86, 20, 96, 21, 113, 35, 127, 19, 95, 22,
|
|
114, 34, 126, 37, 144, 23, 115, 33, 125, 38, 145, 52, 156, 32, 124,
|
|
39, 146, 51, 155, 58, 173, 40, 147, 50, 154, 59, 174, 73, 181, 49,
|
|
153, 60, 175, 72, 180, 83, 198, 61, 176, 71, 179, 84, 199, 98, 202,
|
|
70, 178, 85, 200, 97, 201, 112, 219, 36, 143, 54, 158, 55, 170, 77,
|
|
185, 53, 157, 56, 171, 76, 184, 79, 194, 57, 172, 75, 183, 80, 195,
|
|
102, 206, 74, 182, 81, 196, 101, 205, 108, 215, 82, 197, 100, 204, 109,
|
|
216, 131, 223, 99, 203, 110, 217, 130, 222, 140, 232, 111, 218, 129, 221,
|
|
141, 233, 160, 236, 128, 220, 142, 234, 159, 235, 169, 245, 78, 193, 104,
|
|
208, 105, 212, 135, 227, 103, 207, 106, 213, 134, 226, 136, 228, 107, 214,
|
|
133, 225, 137, 229, 164, 240, 132, 224, 138, 230, 163, 239, 165, 241, 139,
|
|
231, 162, 238, 166, 242, 189, 249, 161, 237, 167, 243, 188, 248, 190, 250,
|
|
168, 244, 187, 247, 191, 251, 210, 254, 186, 246, 192, 252, 209, 253, 211,
|
|
255
|
|
};
|
|
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
// The original scan order (av1_default_iscan_16x16) is modified to match
|
|
// hadamard AVX2 implementation, i.e., aom_hadamard_16x16_avx2.
|
|
// Since hadamard AVX2 implementation will modify the order of coefficients,
|
|
// such that the normal scan order is no longer guaranteed to scan low
|
|
// coefficients first, therefore we modify the scan order accordingly. Note that
|
|
// this one has to be used together with default_scan_fp_16x16_transpose.
|
|
DECLARE_ALIGNED(16, static const int16_t,
|
|
av1_default_iscan_fp_16x16_transpose[256]) = {
|
|
0, 44, 2, 46, 1, 45, 4, 64, 3, 63, 9, 69, 8, 68, 11,
|
|
87, 5, 65, 7, 67, 6, 66, 13, 89, 12, 88, 18, 94, 17, 93,
|
|
24, 116, 14, 90, 16, 92, 15, 91, 26, 118, 25, 117, 31, 123, 30,
|
|
122, 41, 148, 27, 119, 29, 121, 28, 120, 43, 150, 42, 149, 48, 152,
|
|
47, 151, 62, 177, 10, 86, 20, 96, 19, 95, 22, 114, 21, 113, 35,
|
|
127, 34, 126, 37, 144, 23, 115, 33, 125, 32, 124, 39, 146, 38, 145,
|
|
52, 156, 51, 155, 58, 173, 40, 147, 50, 154, 49, 153, 60, 175, 59,
|
|
174, 73, 181, 72, 180, 83, 198, 61, 176, 71, 179, 70, 178, 85, 200,
|
|
84, 199, 98, 202, 97, 201, 112, 219, 36, 143, 54, 158, 53, 157, 56,
|
|
171, 55, 170, 77, 185, 76, 184, 79, 194, 57, 172, 75, 183, 74, 182,
|
|
81, 196, 80, 195, 102, 206, 101, 205, 108, 215, 82, 197, 100, 204, 99,
|
|
203, 110, 217, 109, 216, 131, 223, 130, 222, 140, 232, 111, 218, 129, 221,
|
|
128, 220, 142, 234, 141, 233, 160, 236, 159, 235, 169, 245, 78, 193, 104,
|
|
208, 103, 207, 106, 213, 105, 212, 135, 227, 134, 226, 136, 228, 107, 214,
|
|
133, 225, 132, 224, 138, 230, 137, 229, 164, 240, 163, 239, 165, 241, 139,
|
|
231, 162, 238, 161, 237, 167, 243, 166, 242, 189, 249, 188, 248, 190, 250,
|
|
168, 244, 187, 247, 186, 246, 192, 252, 191, 251, 210, 254, 209, 253, 211,
|
|
255
|
|
};
|
|
#endif
|
|
|
|
static INLINE int early_term_inter_search_with_sse(int early_term_idx,
|
|
BLOCK_SIZE bsize,
|
|
int64_t this_sse,
|
|
int64_t best_sse,
|
|
PREDICTION_MODE this_mode) {
|
|
// Aggressiveness to terminate inter mode search early is adjusted based on
|
|
// speed and block size.
|
|
static const double early_term_thresh[4][4] = { { 0.65, 0.65, 0.65, 0.7 },
|
|
{ 0.6, 0.65, 0.85, 0.9 },
|
|
{ 0.5, 0.5, 0.55, 0.6 },
|
|
{ 0.6, 0.75, 0.85, 0.85 } };
|
|
static const double early_term_thresh_newmv_nearestmv[4] = { 0.3, 0.3, 0.3,
|
|
0.3 };
|
|
|
|
const int size_group = size_group_lookup[bsize];
|
|
assert(size_group < 4);
|
|
assert((early_term_idx > 0) && (early_term_idx < EARLY_TERM_INDICES));
|
|
const double threshold =
|
|
((early_term_idx == EARLY_TERM_IDX_4) &&
|
|
(this_mode == NEWMV || this_mode == NEARESTMV))
|
|
? early_term_thresh_newmv_nearestmv[size_group]
|
|
: early_term_thresh[early_term_idx - 1][size_group];
|
|
|
|
// Terminate inter mode search early based on best sse so far.
|
|
if ((early_term_idx > 0) && (threshold * this_sse > best_sse)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static INLINE void init_best_pickmode(BEST_PICKMODE *bp) {
|
|
bp->best_sse = INT64_MAX;
|
|
bp->best_mode = NEARESTMV;
|
|
bp->best_ref_frame = LAST_FRAME;
|
|
bp->best_second_ref_frame = NONE_FRAME;
|
|
bp->best_tx_size = TX_8X8;
|
|
bp->tx_type = DCT_DCT;
|
|
bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
|
|
bp->best_mode_skip_txfm = 0;
|
|
bp->best_mode_initial_skip_flag = 0;
|
|
bp->best_pred = NULL;
|
|
bp->best_motion_mode = SIMPLE_TRANSLATION;
|
|
bp->num_proj_ref = 0;
|
|
memset(&bp->wm_params, 0, sizeof(bp->wm_params));
|
|
memset(&bp->blk_skip, 0, sizeof(bp->blk_skip));
|
|
memset(&bp->pmi, 0, sizeof(bp->pmi));
|
|
}
|
|
|
|
static INLINE int subpel_select(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
|
|
int_mv *mv, MV ref_mv, FULLPEL_MV start_mv,
|
|
bool fullpel_performed_well) {
|
|
const int frame_lowmotion = cpi->rc.avg_frame_low_motion;
|
|
// Reduce MV precision for higher int MV value & frame-level motion
|
|
if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion >= 3) {
|
|
int mv_thresh = 4;
|
|
const int is_low_resoln =
|
|
(cpi->common.width * cpi->common.height <= 320 * 240);
|
|
mv_thresh = (bsize > BLOCK_32X32) ? 2 : (bsize > BLOCK_16X16) ? 4 : 6;
|
|
if (frame_lowmotion > 0 && frame_lowmotion < 40) mv_thresh = 12;
|
|
mv_thresh = (is_low_resoln) ? mv_thresh >> 1 : mv_thresh;
|
|
if (abs(mv->as_fullmv.row) >= mv_thresh ||
|
|
abs(mv->as_fullmv.col) >= mv_thresh)
|
|
return HALF_PEL;
|
|
} else if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion >= 1) {
|
|
int mv_thresh;
|
|
const int th_vals[2][3] = { { 4, 8, 10 }, { 4, 6, 8 } };
|
|
const int th_idx = cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion - 1;
|
|
assert(th_idx >= 0 && th_idx < 2);
|
|
if (frame_lowmotion > 0 && frame_lowmotion < 40)
|
|
mv_thresh = 12;
|
|
else
|
|
mv_thresh = (bsize >= BLOCK_32X32) ? th_vals[th_idx][0]
|
|
: (bsize >= BLOCK_16X16) ? th_vals[th_idx][1]
|
|
: th_vals[th_idx][2];
|
|
if (abs(mv->as_fullmv.row) >= (mv_thresh << 1) ||
|
|
abs(mv->as_fullmv.col) >= (mv_thresh << 1))
|
|
return FULL_PEL;
|
|
else if (abs(mv->as_fullmv.row) >= mv_thresh ||
|
|
abs(mv->as_fullmv.col) >= mv_thresh)
|
|
return HALF_PEL;
|
|
}
|
|
// Reduce MV precision for relatively static (e.g. background), low-complex
|
|
// large areas
|
|
if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 2) {
|
|
const int qband = x->qindex >> (QINDEX_BITS - 2);
|
|
assert(qband < 4);
|
|
if (x->content_state_sb.source_sad_nonrd <= kVeryLowSad &&
|
|
bsize > BLOCK_16X16 && qband != 0) {
|
|
if (x->source_variance < 500)
|
|
return FULL_PEL;
|
|
else if (x->source_variance < 5000)
|
|
return HALF_PEL;
|
|
}
|
|
} else if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 1) {
|
|
if (fullpel_performed_well && ref_mv.row == 0 && ref_mv.col == 0 &&
|
|
start_mv.row == 0 && start_mv.col == 0)
|
|
return HALF_PEL;
|
|
}
|
|
return cpi->sf.mv_sf.subpel_force_stop;
|
|
}
|
|
|
|
static bool use_aggressive_subpel_search_method(
|
|
MACROBLOCK *x, bool use_adaptive_subpel_search,
|
|
const bool fullpel_performed_well) {
|
|
if (!use_adaptive_subpel_search) return false;
|
|
const int qband = x->qindex >> (QINDEX_BITS - 2);
|
|
assert(qband < 4);
|
|
if ((qband > 0) && (fullpel_performed_well ||
|
|
(x->content_state_sb.source_sad_nonrd <= kLowSad) ||
|
|
(x->source_variance < 100)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*!\brief Runs Motion Estimation for a specific block and specific ref frame.
|
|
*
|
|
* \ingroup nonrd_mode_search
|
|
* \callgraph
|
|
* \callergraph
|
|
* Finds the best Motion Vector by running Motion Estimation for a specific
|
|
* block and a specific reference frame. Exits early if RDCost of Full Pel part
|
|
* exceeds best RD Cost fund so far
|
|
* \param[in] cpi Top-level encoder structure
|
|
* \param[in] x Pointer to structure holding all the
|
|
* data for the current macroblock
|
|
* \param[in] bsize Current block size
|
|
* \param[in] mi_row Row index in 4x4 units
|
|
* \param[in] mi_col Column index in 4x4 units
|
|
* \param[in] tmp_mv Pointer to best found New MV
|
|
* \param[in] rate_mv Pointer to Rate of the best new MV
|
|
* \param[in] best_rd_sofar RD Cost of the best mode found so far
|
|
* \param[in] use_base_mv Flag, indicating that tmp_mv holds
|
|
* specific MV to start the search with
|
|
*
|
|
* \return Returns 0 if ME was terminated after Full Pel Search because too
|
|
* high RD Cost. Otherwise returns 1. Best New MV is placed into \c tmp_mv.
|
|
* Rate estimation for this vector is placed to \c rate_mv
|
|
*/
|
|
static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE bsize, int mi_row, int mi_col,
|
|
int_mv *tmp_mv, int *rate_mv,
|
|
int64_t best_rd_sofar, int use_base_mv) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
const int num_planes = av1_num_planes(cm);
|
|
const SPEED_FEATURES *sf = &cpi->sf;
|
|
MB_MODE_INFO *mi = xd->mi[0];
|
|
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
|
|
int step_param = (sf->rt_sf.fullpel_search_step_param)
|
|
? sf->rt_sf.fullpel_search_step_param
|
|
: cpi->mv_search_params.mv_step_param;
|
|
FULLPEL_MV start_mv;
|
|
const int ref = mi->ref_frame[0];
|
|
const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv;
|
|
MV center_mv;
|
|
int dis;
|
|
int rv = 0;
|
|
int cost_list[5];
|
|
int search_subpel = 1;
|
|
const YV12_BUFFER_CONFIG *scaled_ref_frame =
|
|
av1_get_scaled_ref_frame(cpi, ref);
|
|
|
|
if (scaled_ref_frame) {
|
|
int i;
|
|
// Swap out the reference frame for a version that's been scaled to
|
|
// match the resolution of the current frame, allowing the existing
|
|
// motion search code to be used without additional modifications.
|
|
for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
|
|
av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL,
|
|
num_planes);
|
|
}
|
|
|
|
start_mv = get_fullmv_from_mv(&ref_mv);
|
|
|
|
if (!use_base_mv)
|
|
center_mv = ref_mv;
|
|
else
|
|
center_mv = tmp_mv->as_mv;
|
|
|
|
const SEARCH_METHODS search_method = sf->mv_sf.search_method;
|
|
const search_site_config *src_search_sites =
|
|
av1_get_search_site_config(cpi, x, search_method);
|
|
FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
|
|
av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, ¢er_mv,
|
|
src_search_sites,
|
|
/*fine_search_interval=*/0);
|
|
|
|
const unsigned int full_var_rd = av1_full_pixel_search(
|
|
start_mv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list),
|
|
&tmp_mv->as_fullmv, NULL);
|
|
|
|
// calculate the bit cost on motion vector
|
|
MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv);
|
|
|
|
*rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->mv_costs->nmv_joint_cost,
|
|
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
|
|
|
|
// TODO(kyslov) Account for Rate Mode!
|
|
rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar);
|
|
|
|
if (rv && search_subpel) {
|
|
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
|
|
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
|
|
cost_list);
|
|
const bool fullpel_performed_well =
|
|
(bsize == BLOCK_64X64 && full_var_rd * 40 < 62267 * 7) ||
|
|
(bsize == BLOCK_32X32 && full_var_rd * 8 < 42380) ||
|
|
(bsize == BLOCK_16X16 && full_var_rd * 8 < 10127);
|
|
if (sf->rt_sf.reduce_mv_pel_precision_highmotion ||
|
|
sf->rt_sf.reduce_mv_pel_precision_lowcomplex)
|
|
ms_params.forced_stop = subpel_select(cpi, x, bsize, tmp_mv, ref_mv,
|
|
start_mv, fullpel_performed_well);
|
|
|
|
MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv);
|
|
// adaptively downgrade subpel search method based on block properties
|
|
if (use_aggressive_subpel_search_method(
|
|
x, sf->rt_sf.use_adaptive_subpel_search, fullpel_performed_well))
|
|
av1_find_best_sub_pixel_tree_pruned_more(xd, cm, &ms_params,
|
|
subpel_start_mv, &tmp_mv->as_mv,
|
|
&dis, &x->pred_sse[ref], NULL);
|
|
else
|
|
cpi->mv_search_params.find_fractional_mv_step(
|
|
xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis,
|
|
&x->pred_sse[ref], NULL);
|
|
*rate_mv =
|
|
av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->mv_costs->nmv_joint_cost,
|
|
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
|
|
}
|
|
|
|
if (scaled_ref_frame) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
|
|
}
|
|
// The final MV can not be equal to the reference MV as this will trigger an
|
|
// assert later. This can happen if both NEAREST and NEAR modes were skipped.
|
|
rv = (tmp_mv->as_mv.col != ref_mv.col || tmp_mv->as_mv.row != ref_mv.row);
|
|
return rv;
|
|
}
|
|
|
|
/*!\brief Searches for the best New Motion Vector.
|
|
*
|
|
* \ingroup nonrd_mode_search
|
|
* \callgraph
|
|
* \callergraph
|
|
* Finds the best Motion Vector by doing Motion Estimation. Uses reduced
|
|
* complexity ME for non-LAST frames or calls \c combined_motion_search
|
|
* for LAST reference frame
|
|
* \param[in] cpi Top-level encoder structure
|
|
* \param[in] x Pointer to structure holding all the
|
|
* data for the current macroblock
|
|
* \param[in] frame_mv Array that holds MVs for all modes
|
|
* and ref frames
|
|
* \param[in] ref_frame Reference frame for which to find
|
|
* the best New MVs
|
|
* \param[in] gf_temporal_ref Flag, indicating temporal reference
|
|
* for GOLDEN frame
|
|
* \param[in] bsize Current block size
|
|
* \param[in] mi_row Row index in 4x4 units
|
|
* \param[in] mi_col Column index in 4x4 units
|
|
* \param[in] rate_mv Pointer to Rate of the best new MV
|
|
* \param[in] best_rdc Pointer to the RD Cost for the best
|
|
* mode found so far
|
|
*
|
|
* \return Returns -1 if the search was not done, otherwise returns 0.
|
|
* Best New MV is placed into \c frame_mv array, Rate estimation for this
|
|
* vector is placed to \c rate_mv
|
|
*/
|
|
static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x,
|
|
int_mv frame_mv[][REF_FRAMES],
|
|
MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref,
|
|
BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_mv,
|
|
RD_STATS *best_rdc) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
AV1_COMMON *cm = &cpi->common;
|
|
if (ref_frame > LAST_FRAME && cpi->oxcf.rc_cfg.mode == AOM_CBR &&
|
|
gf_temporal_ref) {
|
|
int tmp_sad;
|
|
int dis;
|
|
|
|
if (bsize < BLOCK_16X16) return -1;
|
|
|
|
tmp_sad = av1_int_pro_motion_estimation(
|
|
cpi, x, bsize, mi_row, mi_col,
|
|
&x->mbmi_ext.ref_mv_stack[ref_frame][0].this_mv.as_mv);
|
|
|
|
if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1;
|
|
|
|
frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int;
|
|
int_mv best_mv = mi->mv[0];
|
|
best_mv.as_mv.row >>= 3;
|
|
best_mv.as_mv.col >>= 3;
|
|
MV ref_mv = av1_get_ref_mv(x, 0).as_mv;
|
|
frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
|
|
frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
|
|
|
|
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
|
|
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, NULL);
|
|
if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion ||
|
|
cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex) {
|
|
FULLPEL_MV start_mv = { .row = 0, .col = 0 };
|
|
ms_params.forced_stop =
|
|
subpel_select(cpi, x, bsize, &best_mv, ref_mv, start_mv, false);
|
|
}
|
|
MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
|
|
cpi->mv_search_params.find_fractional_mv_step(
|
|
xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis,
|
|
&x->pred_sse[ref_frame], NULL);
|
|
frame_mv[NEWMV][ref_frame].as_int = best_mv.as_int;
|
|
|
|
// When NEWMV is same as ref_mv from the drl, it is preferred to code the
|
|
// MV as NEARESTMV or NEARMV. In this case, NEWMV needs to be skipped to
|
|
// avoid an assert failure at a later stage. The scenario can occur if
|
|
// NEARESTMV was not evaluated for ALTREF.
|
|
if (frame_mv[NEWMV][ref_frame].as_mv.col == ref_mv.col &&
|
|
frame_mv[NEWMV][ref_frame].as_mv.row == ref_mv.row)
|
|
return -1;
|
|
|
|
*rate_mv = av1_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv,
|
|
x->mv_costs->nmv_joint_cost,
|
|
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
|
|
} else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
|
|
&frame_mv[NEWMV][ref_frame], rate_mv,
|
|
best_rdc->rdcost, 0)) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void estimate_single_ref_frame_costs(const AV1_COMMON *cm,
|
|
const MACROBLOCKD *xd,
|
|
const ModeCosts *mode_costs,
|
|
int segment_id, BLOCK_SIZE bsize,
|
|
unsigned int *ref_costs_single) {
|
|
int seg_ref_active =
|
|
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
|
|
if (seg_ref_active) {
|
|
memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
|
|
} else {
|
|
int intra_inter_ctx = av1_get_intra_inter_context(xd);
|
|
ref_costs_single[INTRA_FRAME] =
|
|
mode_costs->intra_inter_cost[intra_inter_ctx][0];
|
|
unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
|
|
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT &&
|
|
is_comp_ref_allowed(bsize)) {
|
|
const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
|
|
base_cost += mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1];
|
|
}
|
|
ref_costs_single[LAST_FRAME] = base_cost;
|
|
ref_costs_single[GOLDEN_FRAME] = base_cost;
|
|
ref_costs_single[ALTREF_FRAME] = base_cost;
|
|
// add cost for last, golden, altref
|
|
ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[0][0][0];
|
|
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][0][1];
|
|
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][1][0];
|
|
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][0][1];
|
|
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][2][0];
|
|
}
|
|
}
|
|
|
|
static INLINE void set_force_skip_flag(const AV1_COMP *const cpi,
|
|
MACROBLOCK *const x, unsigned int sse,
|
|
int *force_skip) {
|
|
if (x->txfm_search_params.tx_mode_search_type == TX_MODE_SELECT &&
|
|
cpi->sf.rt_sf.tx_size_level_based_on_qstep &&
|
|
cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) {
|
|
const int qstep = x->plane[0].dequant_QTX[1] >> (x->e_mbd.bd - 5);
|
|
const unsigned int qstep_sq = qstep * qstep;
|
|
// If the sse is low for low source variance blocks, mark those as
|
|
// transform skip.
|
|
// Note: Though qstep_sq is based on ac qstep, the threshold is kept
|
|
// low so that reliable early estimate of tx skip can be obtained
|
|
// through its comparison with sse.
|
|
if (sse < qstep_sq && x->source_variance < qstep_sq &&
|
|
x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0)
|
|
*force_skip = 1;
|
|
}
|
|
}
|
|
|
|
#define CAP_TX_SIZE_FOR_BSIZE_GT32(tx_mode_search_type, bsize) \
|
|
(((tx_mode_search_type) != ONLY_4X4 && (bsize) > BLOCK_32X32) ? true : false)
|
|
#define TX_SIZE_FOR_BSIZE_GT32 (TX_16X16)
|
|
|
|
static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
|
|
MACROBLOCK *const x, unsigned int var,
|
|
unsigned int sse, int *force_skip) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
TX_SIZE tx_size;
|
|
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
|
|
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT) {
|
|
int multiplier = 8;
|
|
unsigned int var_thresh = 0;
|
|
unsigned int is_high_var = 1;
|
|
// Use quantizer based thresholds to determine transform size.
|
|
if (cpi->sf.rt_sf.tx_size_level_based_on_qstep) {
|
|
const int qband = x->qindex >> (QINDEX_BITS - 2);
|
|
const int mult[4] = { 8, 7, 6, 5 };
|
|
assert(qband < 4);
|
|
multiplier = mult[qband];
|
|
const int qstep = x->plane[0].dequant_QTX[1] >> (xd->bd - 5);
|
|
const unsigned int qstep_sq = qstep * qstep;
|
|
var_thresh = qstep_sq * 2;
|
|
if (cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) {
|
|
// If the sse is low for low source variance blocks, mark those as
|
|
// transform skip.
|
|
// Note: Though qstep_sq is based on ac qstep, the threshold is kept
|
|
// low so that reliable early estimate of tx skip can be obtained
|
|
// through its comparison with sse.
|
|
if (sse < qstep_sq && x->source_variance < qstep_sq &&
|
|
x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0)
|
|
*force_skip = 1;
|
|
// Further lower transform size based on aq mode only if residual
|
|
// variance is high.
|
|
is_high_var = (var >= var_thresh);
|
|
}
|
|
}
|
|
// Choose larger transform size for blocks where dc component is dominant or
|
|
// the ac component is low.
|
|
if (sse > ((var * multiplier) >> 2) || (var < var_thresh))
|
|
tx_size =
|
|
AOMMIN(max_txsize_lookup[bsize],
|
|
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
|
|
else
|
|
tx_size = TX_8X8;
|
|
|
|
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
|
|
cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && is_high_var)
|
|
tx_size = TX_8X8;
|
|
else if (tx_size > TX_16X16)
|
|
tx_size = TX_16X16;
|
|
} else {
|
|
tx_size =
|
|
AOMMIN(max_txsize_lookup[bsize],
|
|
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
|
|
}
|
|
|
|
if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize))
|
|
tx_size = TX_SIZE_FOR_BSIZE_GT32;
|
|
|
|
return AOMMIN(tx_size, TX_16X16);
|
|
}
|
|
|
|
static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2,
|
|
2, 2, 3, 3, 3, 4,
|
|
4, 4, 5, 5 };
|
|
static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1,
|
|
2, 3, 2, 3, 4, 3,
|
|
4, 5, 4, 5 };
|
|
|
|
static void block_variance(const uint8_t *src, int src_stride,
|
|
const uint8_t *ref, int ref_stride, int w, int h,
|
|
unsigned int *sse, int *sum, int block_size,
|
|
uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) {
|
|
int k = 0;
|
|
*sse = 0;
|
|
*sum = 0;
|
|
|
|
// This function is called for block sizes >= BLOCK_32x32. As per the design
|
|
// the aom_get_var_sse_sum_8x8_quad() processes four 8x8 blocks (in a 8x32)
|
|
// per call. Hence the width and height of the block need to be at least 8 and
|
|
// 32 samples respectively.
|
|
assert(w >= 32);
|
|
assert(h >= 8);
|
|
for (int i = 0; i < h; i += block_size) {
|
|
for (int j = 0; j < w; j += 32) {
|
|
aom_get_var_sse_sum_8x8_quad(
|
|
src + src_stride * i + j, src_stride, ref + ref_stride * i + j,
|
|
ref_stride, &sse8x8[k], &sum8x8[k], sse, sum, &var8x8[k]);
|
|
k += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void block_variance_16x16_dual(const uint8_t *src, int src_stride,
|
|
const uint8_t *ref, int ref_stride, int w,
|
|
int h, unsigned int *sse, int *sum,
|
|
int block_size, uint32_t *sse16x16,
|
|
uint32_t *var16x16) {
|
|
int k = 0;
|
|
*sse = 0;
|
|
*sum = 0;
|
|
// This function is called for block sizes >= BLOCK_32x32. As per the design
|
|
// the aom_get_var_sse_sum_16x16_dual() processes four 16x16 blocks (in a
|
|
// 16x32) per call. Hence the width and height of the block need to be at
|
|
// least 16 and 32 samples respectively.
|
|
assert(w >= 32);
|
|
assert(h >= 16);
|
|
for (int i = 0; i < h; i += block_size) {
|
|
for (int j = 0; j < w; j += 32) {
|
|
aom_get_var_sse_sum_16x16_dual(src + src_stride * i + j, src_stride,
|
|
ref + ref_stride * i + j, ref_stride,
|
|
&sse16x16[k], sse, sum, &var16x16[k]);
|
|
k += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
|
|
unsigned int *sse_i, int *sum_i,
|
|
unsigned int *var_o, unsigned int *sse_o,
|
|
int *sum_o) {
|
|
const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
|
|
const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
|
|
const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
|
|
int i, j, k = 0;
|
|
|
|
for (i = 0; i < nh; i += 2) {
|
|
for (j = 0; j < nw; j += 2) {
|
|
sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
|
|
sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
|
|
sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
|
|
sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
|
|
var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >>
|
|
(b_width_log2_lookup[unit_size] +
|
|
b_height_log2_lookup[unit_size] + 6));
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adjust the ac_thr according to speed, width, height and normalized sum
|
|
static int ac_thr_factor(const int speed, const int width, const int height,
|
|
const int norm_sum) {
|
|
if (speed >= 8 && norm_sum < 5) {
|
|
if (width <= 640 && height <= 480)
|
|
return 4;
|
|
else
|
|
return 2;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// Sets early_term flag based on chroma planes prediction
|
|
static INLINE void set_early_term_based_on_uv_plane(
|
|
AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, MACROBLOCKD *xd, int mi_row,
|
|
int mi_col, int *early_term, int num_blk, const unsigned int *sse_tx,
|
|
const unsigned int *var_tx, int sum, unsigned int var, unsigned int sse) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
const uint32_t dc_quant = p->dequant_QTX[0];
|
|
const uint32_t ac_quant = p->dequant_QTX[1];
|
|
const int64_t dc_thr = dc_quant * dc_quant >> 6;
|
|
int64_t ac_thr = ac_quant * ac_quant >> 6;
|
|
const int bw = b_width_log2_lookup[bsize];
|
|
const int bh = b_height_log2_lookup[bsize];
|
|
int ac_test = 1;
|
|
int dc_test = 1;
|
|
const int norm_sum = abs(sum) >> (bw + bh);
|
|
|
|
#if CONFIG_AV1_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
|
|
cpi->oxcf.speed > 5)
|
|
ac_thr = av1_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level,
|
|
norm_sum, cpi->svc.temporal_layer_id);
|
|
else
|
|
ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum);
|
|
#else
|
|
ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum);
|
|
|
|
#endif
|
|
|
|
for (int k = 0; k < num_blk; k++) {
|
|
// Check if all ac coefficients can be quantized to zero.
|
|
if (!(var_tx[k] < ac_thr || var == 0)) {
|
|
ac_test = 0;
|
|
break;
|
|
}
|
|
// Check if dc coefficient can be quantized to zero.
|
|
if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
|
|
dc_test = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check if chroma can be skipped based on ac and dc test flags.
|
|
if (ac_test && dc_test) {
|
|
int skip_uv[2] = { 0 };
|
|
unsigned int var_uv[2];
|
|
unsigned int sse_uv[2];
|
|
// Transform skipping test in UV planes.
|
|
for (int i = 1; i <= 2; i++) {
|
|
int j = i - 1;
|
|
skip_uv[j] = 1;
|
|
if (x->color_sensitivity[j]) {
|
|
skip_uv[j] = 0;
|
|
struct macroblock_plane *const puv = &x->plane[i];
|
|
struct macroblockd_plane *const puvd = &xd->plane[i];
|
|
const BLOCK_SIZE uv_bsize = get_plane_block_size(
|
|
bsize, puvd->subsampling_x, puvd->subsampling_y);
|
|
// Adjust these thresholds for UV.
|
|
const int64_t uv_dc_thr =
|
|
(puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3;
|
|
const int64_t uv_ac_thr =
|
|
(puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3;
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, i,
|
|
i);
|
|
var_uv[j] = cpi->ppi->fn_ptr[uv_bsize].vf(puv->src.buf, puv->src.stride,
|
|
puvd->dst.buf,
|
|
puvd->dst.stride, &sse_uv[j]);
|
|
if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
|
|
(sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
|
|
skip_uv[j] = 1;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
if (skip_uv[0] & skip_uv[1]) {
|
|
*early_term = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static INLINE void calc_rate_dist_block_param(AV1_COMP *cpi, MACROBLOCK *x,
|
|
RD_STATS *rd_stats,
|
|
int calculate_rd, int *early_term,
|
|
BLOCK_SIZE bsize,
|
|
unsigned int sse) {
|
|
if (calculate_rd) {
|
|
if (!*early_term) {
|
|
const int bw = block_size_wide[bsize];
|
|
const int bh = block_size_high[bsize];
|
|
|
|
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, rd_stats->sse, bw * bh,
|
|
&rd_stats->rate, &rd_stats->dist);
|
|
}
|
|
|
|
if (*early_term) {
|
|
rd_stats->rate = 0;
|
|
rd_stats->dist = sse << 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void model_skip_for_sb_y_large_64(AV1_COMP *cpi, BLOCK_SIZE bsize,
|
|
int mi_row, int mi_col, MACROBLOCK *x,
|
|
MACROBLOCKD *xd, RD_STATS *rd_stats,
|
|
int *early_term, int calculate_rd,
|
|
int64_t best_sse,
|
|
unsigned int *var_output,
|
|
unsigned int var_prune_threshold) {
|
|
// Note our transform coeffs are 8 times an orthogonal transform.
|
|
// Hence quantizer step is also 8 times. To get effective quantizer
|
|
// we need to divide by 8 before sending to modeling function.
|
|
unsigned int sse;
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
int test_skip = 1;
|
|
unsigned int var;
|
|
int sum;
|
|
const int bw = b_width_log2_lookup[bsize];
|
|
const int bh = b_height_log2_lookup[bsize];
|
|
unsigned int sse16x16[64] = { 0 };
|
|
unsigned int var16x16[64] = { 0 };
|
|
assert(xd->mi[0]->tx_size == TX_16X16);
|
|
assert(bsize > BLOCK_32X32);
|
|
|
|
// Calculate variance for whole partition, and also save 16x16 blocks'
|
|
// variance to be used in following transform skipping test.
|
|
block_variance_16x16_dual(p->src.buf, p->src.stride, pd->dst.buf,
|
|
pd->dst.stride, 4 << bw, 4 << bh, &sse, &sum, 16,
|
|
sse16x16, var16x16);
|
|
|
|
var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
|
|
if (var_output) {
|
|
*var_output = var;
|
|
if (*var_output > var_prune_threshold) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
rd_stats->sse = sse;
|
|
// Skipping test
|
|
*early_term = 0;
|
|
set_force_skip_flag(cpi, x, sse, early_term);
|
|
// The code below for setting skip flag assumes transform size of at least
|
|
// 8x8, so force this lower limit on transform.
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search &&
|
|
early_term_inter_search_with_sse(
|
|
cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse,
|
|
mi->mode))
|
|
test_skip = 0;
|
|
|
|
if (*early_term) test_skip = 0;
|
|
|
|
// Evaluate if the partition block is a skippable block in Y plane.
|
|
if (test_skip) {
|
|
const unsigned int *sse_tx = sse16x16;
|
|
const unsigned int *var_tx = var16x16;
|
|
const unsigned int num_block = (1 << (bw + bh - 2)) >> 2;
|
|
set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col,
|
|
early_term, num_block, sse_tx, var_tx, sum,
|
|
var, sse);
|
|
}
|
|
calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize,
|
|
sse);
|
|
}
|
|
|
|
static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize,
|
|
int mi_row, int mi_col, MACROBLOCK *x,
|
|
MACROBLOCKD *xd, RD_STATS *rd_stats,
|
|
int *early_term, int calculate_rd,
|
|
int64_t best_sse,
|
|
unsigned int *var_output,
|
|
unsigned int var_prune_threshold) {
|
|
if (x->force_zeromv_skip_for_blk) {
|
|
*early_term = 1;
|
|
rd_stats->rate = 0;
|
|
rd_stats->dist = 0;
|
|
rd_stats->sse = 0;
|
|
return;
|
|
}
|
|
|
|
// For block sizes greater than 32x32, the transform size is always 16x16.
|
|
// This function avoids calling calculate_variance() for tx_size 16x16 cases
|
|
// by directly populating variance at tx_size level from
|
|
// block_variance_16x16_dual() function.
|
|
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
|
|
if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize)) {
|
|
xd->mi[0]->tx_size = TX_SIZE_FOR_BSIZE_GT32;
|
|
model_skip_for_sb_y_large_64(cpi, bsize, mi_row, mi_col, x, xd, rd_stats,
|
|
early_term, calculate_rd, best_sse, var_output,
|
|
var_prune_threshold);
|
|
return;
|
|
}
|
|
|
|
// Note our transform coeffs are 8 times an orthogonal transform.
|
|
// Hence quantizer step is also 8 times. To get effective quantizer
|
|
// we need to divide by 8 before sending to modeling function.
|
|
unsigned int sse;
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
int test_skip = 1;
|
|
unsigned int var;
|
|
int sum;
|
|
|
|
const int bw = b_width_log2_lookup[bsize];
|
|
const int bh = b_height_log2_lookup[bsize];
|
|
unsigned int sse8x8[256] = { 0 };
|
|
int sum8x8[256] = { 0 };
|
|
unsigned int var8x8[256] = { 0 };
|
|
TX_SIZE tx_size;
|
|
|
|
// Calculate variance for whole partition, and also save 8x8 blocks' variance
|
|
// to be used in following transform skipping test.
|
|
block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
|
|
4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
|
|
var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
|
|
if (var_output) {
|
|
*var_output = var;
|
|
if (*var_output > var_prune_threshold) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
rd_stats->sse = sse;
|
|
// Skipping test
|
|
*early_term = 0;
|
|
tx_size = calculate_tx_size(cpi, bsize, x, var, sse, early_term);
|
|
assert(tx_size <= TX_16X16);
|
|
// The code below for setting skip flag assumes transform size of at least
|
|
// 8x8, so force this lower limit on transform.
|
|
if (tx_size < TX_8X8) tx_size = TX_8X8;
|
|
xd->mi[0]->tx_size = tx_size;
|
|
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search &&
|
|
early_term_inter_search_with_sse(
|
|
cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse,
|
|
mi->mode))
|
|
test_skip = 0;
|
|
|
|
if (*early_term) test_skip = 0;
|
|
|
|
// Evaluate if the partition block is a skippable block in Y plane.
|
|
if (test_skip) {
|
|
unsigned int sse16x16[64] = { 0 };
|
|
int sum16x16[64] = { 0 };
|
|
unsigned int var16x16[64] = { 0 };
|
|
const unsigned int *sse_tx = sse8x8;
|
|
const unsigned int *var_tx = var8x8;
|
|
unsigned int num_blks = 1 << (bw + bh - 2);
|
|
|
|
if (tx_size >= TX_16X16) {
|
|
calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
|
|
sum16x16);
|
|
sse_tx = sse16x16;
|
|
var_tx = var16x16;
|
|
num_blks = num_blks >> 2;
|
|
}
|
|
set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col,
|
|
early_term, num_blks, sse_tx, var_tx, sum,
|
|
var, sse);
|
|
}
|
|
calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize,
|
|
sse);
|
|
}
|
|
|
|
static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
|
|
MACROBLOCK *x, MACROBLOCKD *xd,
|
|
RD_STATS *rd_stats, unsigned int *var_out,
|
|
int calculate_rd, int *early_term) {
|
|
if (x->force_zeromv_skip_for_blk && early_term != NULL) {
|
|
*early_term = 1;
|
|
rd_stats->rate = 0;
|
|
rd_stats->dist = 0;
|
|
rd_stats->sse = 0;
|
|
}
|
|
|
|
// Note our transform coeffs are 8 times an orthogonal transform.
|
|
// Hence quantizer step is also 8 times. To get effective quantizer
|
|
// we need to divide by 8 before sending to modeling function.
|
|
const int ref = xd->mi[0]->ref_frame[0];
|
|
|
|
assert(bsize < BLOCK_SIZES_ALL);
|
|
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
unsigned int sse;
|
|
int rate;
|
|
int64_t dist;
|
|
|
|
unsigned int var = cpi->ppi->fn_ptr[bsize].vf(
|
|
p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse);
|
|
int force_skip = 0;
|
|
xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse, &force_skip);
|
|
if (var_out) {
|
|
*var_out = var;
|
|
}
|
|
|
|
if (calculate_rd && (!force_skip || ref == INTRA_FRAME)) {
|
|
const int bwide = block_size_wide[bsize];
|
|
const int bhigh = block_size_high[bsize];
|
|
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate,
|
|
&dist);
|
|
} else {
|
|
rate = INT_MAX; // this will be overwritten later with block_yrd
|
|
dist = INT_MAX;
|
|
}
|
|
rd_stats->sse = sse;
|
|
x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
|
|
|
|
if (force_skip && ref > INTRA_FRAME) {
|
|
rate = 0;
|
|
dist = (int64_t)sse << 4;
|
|
}
|
|
|
|
assert(rate >= 0);
|
|
|
|
rd_stats->skip_txfm = (rate == 0);
|
|
rate = AOMMIN(rate, INT_MAX);
|
|
rd_stats->rate = rate;
|
|
rd_stats->dist = dist;
|
|
}
|
|
|
|
static INLINE void aom_process_hadamard_lp_8x16(MACROBLOCK *x,
|
|
int max_blocks_high,
|
|
int max_blocks_wide,
|
|
int num_4x4_w, int step,
|
|
int block_step) {
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
const int bw = 4 * num_4x4_w;
|
|
const int num_4x4 = AOMMIN(num_4x4_w, max_blocks_wide);
|
|
int block = 0;
|
|
|
|
for (int r = 0; r < max_blocks_high; r += block_step) {
|
|
for (int c = 0; c < num_4x4; c += 2 * block_step) {
|
|
const int16_t *src_diff = &p->src_diff[(r * bw + c) << 2];
|
|
int16_t *low_coeff = (int16_t *)p->coeff + BLOCK_OFFSET(block);
|
|
aom_hadamard_lp_8x8_dual(src_diff, (ptrdiff_t)bw, low_coeff);
|
|
block += 2 * step;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define DECLARE_BLOCK_YRD_BUFFERS() \
|
|
DECLARE_ALIGNED(64, tran_low_t, dqcoeff_buf[16 * 16]); \
|
|
DECLARE_ALIGNED(64, tran_low_t, qcoeff_buf[16 * 16]); \
|
|
DECLARE_ALIGNED(64, tran_low_t, coeff_buf[16 * 16]); \
|
|
uint16_t eob[1];
|
|
|
|
#define DECLARE_BLOCK_YRD_VARS() \
|
|
/* When is_tx_8x8_dual_applicable is true, we compute the txfm for the \
|
|
* entire bsize and write macroblock_plane::coeff. So low_coeff is kept \
|
|
* as a non-const so we can reassign it to macroblock_plane::coeff. */ \
|
|
int16_t *low_coeff = (int16_t *)coeff_buf; \
|
|
int16_t *const low_qcoeff = (int16_t *)qcoeff_buf; \
|
|
int16_t *const low_dqcoeff = (int16_t *)dqcoeff_buf; \
|
|
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; \
|
|
const int diff_stride = bw;
|
|
|
|
#define DECLARE_LOOP_VARS_BLOCK_YRD() \
|
|
const int16_t *src_diff = &p->src_diff[(r * diff_stride + c) << 2];
|
|
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
#define DECLARE_BLOCK_YRD_HBD_VARS() \
|
|
tran_low_t *const coeff = coeff_buf; \
|
|
tran_low_t *const qcoeff = qcoeff_buf; \
|
|
tran_low_t *const dqcoeff = dqcoeff_buf;
|
|
|
|
static AOM_FORCE_INLINE void update_yrd_loop_vars_hbd(
|
|
MACROBLOCK *x, int *skippable, const int step, const int ncoeffs,
|
|
tran_low_t *const coeff, tran_low_t *const qcoeff,
|
|
tran_low_t *const dqcoeff, RD_STATS *this_rdc, int *eob_cost,
|
|
const int tx_blk_id) {
|
|
const int is_txfm_skip = (ncoeffs == 0);
|
|
*skippable &= is_txfm_skip;
|
|
x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip;
|
|
*eob_cost += get_msb(ncoeffs + 1);
|
|
|
|
int64_t dummy;
|
|
if (ncoeffs == 1)
|
|
this_rdc->rate += (int)abs(qcoeff[0]);
|
|
else if (ncoeffs > 1)
|
|
this_rdc->rate += aom_satd(qcoeff, step << 4);
|
|
|
|
this_rdc->dist += av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2;
|
|
}
|
|
#endif
|
|
static AOM_FORCE_INLINE void update_yrd_loop_vars(
|
|
MACROBLOCK *x, int *skippable, const int step, const int ncoeffs,
|
|
int16_t *const low_coeff, int16_t *const low_qcoeff,
|
|
int16_t *const low_dqcoeff, RD_STATS *this_rdc, int *eob_cost,
|
|
const int tx_blk_id) {
|
|
const int is_txfm_skip = (ncoeffs == 0);
|
|
*skippable &= is_txfm_skip;
|
|
x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip;
|
|
*eob_cost += get_msb(ncoeffs + 1);
|
|
if (ncoeffs == 1)
|
|
this_rdc->rate += (int)abs(low_qcoeff[0]);
|
|
else if (ncoeffs > 1)
|
|
this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4);
|
|
|
|
this_rdc->dist += av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2;
|
|
}
|
|
|
|
/*!\brief Calculates RD Cost using Hadamard transform.
|
|
*
|
|
* \ingroup nonrd_mode_search
|
|
* \callgraph
|
|
* \callergraph
|
|
* Calculates RD Cost using Hadamard transform. For low bit depth this function
|
|
* uses low-precision set of functions (16-bit) and 32 bit for high bit depth
|
|
* \param[in] x Pointer to structure holding all the data for
|
|
the current macroblock
|
|
* \param[in] this_rdc Pointer to calculated RD Cost
|
|
* \param[in] skippable Pointer to a flag indicating possible tx skip
|
|
* \param[in] bsize Current block size
|
|
* \param[in] tx_size Transform size
|
|
* \param[in] is_inter_mode Flag to indicate inter mode
|
|
*
|
|
* \remark Nothing is returned. Instead, calculated RD cost is placed to
|
|
* \c this_rdc. \c skippable flag is set if there is no non-zero quantized
|
|
* coefficients for Hadamard transform
|
|
*/
|
|
static void block_yrd(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable,
|
|
const BLOCK_SIZE bsize, const TX_SIZE tx_size,
|
|
const int is_inter_mode) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
const struct macroblockd_plane *pd = &xd->plane[0];
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
assert(bsize < BLOCK_SIZES_ALL);
|
|
const int num_4x4_w = mi_size_wide[bsize];
|
|
const int num_4x4_h = mi_size_high[bsize];
|
|
const int step = 1 << (tx_size << 1);
|
|
const int block_step = (1 << tx_size);
|
|
const int row_step = step * num_4x4_w >> tx_size;
|
|
int block = 0;
|
|
const int max_blocks_wide =
|
|
num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
|
|
const int max_blocks_high =
|
|
num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
|
|
int eob_cost = 0;
|
|
const int bw = 4 * num_4x4_w;
|
|
const int bh = 4 * num_4x4_h;
|
|
const int use_hbd = is_cur_buf_hbd(xd);
|
|
int num_blk_skip_w = num_4x4_w;
|
|
int sh_blk_skip = 0;
|
|
if (is_inter_mode) {
|
|
num_blk_skip_w = num_4x4_w >> 1;
|
|
sh_blk_skip = 1;
|
|
}
|
|
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
if (use_hbd) {
|
|
aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
|
|
p->src.stride, pd->dst.buf, pd->dst.stride);
|
|
} else {
|
|
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
|
|
pd->dst.buf, pd->dst.stride);
|
|
}
|
|
#else
|
|
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
|
|
pd->dst.buf, pd->dst.stride);
|
|
#endif
|
|
|
|
// Keep the intermediate value on the stack here. Writing directly to
|
|
// skippable causes speed regression due to load-and-store issues in
|
|
// update_yrd_loop_vars.
|
|
int temp_skippable = 1;
|
|
this_rdc->dist = 0;
|
|
this_rdc->rate = 0;
|
|
// For block sizes 8x16 or above, Hadamard txfm of two adjacent 8x8 blocks
|
|
// can be done per function call. Hence the call of Hadamard txfm is
|
|
// abstracted here for the specified cases.
|
|
int is_tx_8x8_dual_applicable =
|
|
(tx_size == TX_8X8 && block_size_wide[bsize] >= 16 &&
|
|
block_size_high[bsize] >= 8);
|
|
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
// As of now, dual implementation of hadamard txfm is available for low
|
|
// bitdepth.
|
|
if (use_hbd) is_tx_8x8_dual_applicable = 0;
|
|
#endif
|
|
|
|
if (is_tx_8x8_dual_applicable) {
|
|
aom_process_hadamard_lp_8x16(x, max_blocks_high, max_blocks_wide, num_4x4_w,
|
|
step, block_step);
|
|
}
|
|
|
|
DECLARE_BLOCK_YRD_BUFFERS()
|
|
DECLARE_BLOCK_YRD_VARS()
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
DECLARE_BLOCK_YRD_HBD_VARS()
|
|
#else
|
|
(void)use_hbd;
|
|
#endif
|
|
|
|
// Keep track of the row and column of the blocks we use so that we know
|
|
// if we are in the unrestricted motion border.
|
|
for (int r = 0; r < max_blocks_high; r += block_step) {
|
|
for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) {
|
|
DECLARE_LOOP_VARS_BLOCK_YRD()
|
|
|
|
switch (tx_size) {
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
case TX_16X16:
|
|
if (use_hbd) {
|
|
aom_hadamard_16x16(src_diff, diff_stride, coeff);
|
|
av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX,
|
|
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
|
|
dqcoeff, p->dequant_QTX, eob,
|
|
// default_scan_fp_16x16_transpose and
|
|
// av1_default_iscan_fp_16x16_transpose have to be
|
|
// used together.
|
|
default_scan_fp_16x16_transpose,
|
|
av1_default_iscan_fp_16x16_transpose);
|
|
} else {
|
|
aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
|
|
av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX,
|
|
p->quant_fp_QTX, low_qcoeff, low_dqcoeff,
|
|
p->dequant_QTX, eob,
|
|
// default_scan_lp_16x16_transpose and
|
|
// av1_default_iscan_lp_16x16_transpose have to be
|
|
// used together.
|
|
default_scan_lp_16x16_transpose,
|
|
av1_default_iscan_lp_16x16_transpose);
|
|
}
|
|
break;
|
|
case TX_8X8:
|
|
if (use_hbd) {
|
|
aom_hadamard_8x8(src_diff, diff_stride, coeff);
|
|
av1_quantize_fp(
|
|
coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
|
|
p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob,
|
|
default_scan_8x8_transpose, av1_default_iscan_8x8_transpose);
|
|
} else {
|
|
if (is_tx_8x8_dual_applicable) {
|
|
// The coeffs are pre-computed for the whole block, so re-assign
|
|
// low_coeff to the appropriate location.
|
|
const int block_offset = BLOCK_OFFSET(block + s);
|
|
low_coeff = (int16_t *)p->coeff + block_offset;
|
|
} else {
|
|
aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
|
|
}
|
|
av1_quantize_lp(
|
|
low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff,
|
|
low_dqcoeff, p->dequant_QTX, eob,
|
|
// default_scan_8x8_transpose and
|
|
// av1_default_iscan_8x8_transpose have to be used together.
|
|
default_scan_8x8_transpose, av1_default_iscan_8x8_transpose);
|
|
}
|
|
break;
|
|
default:
|
|
assert(tx_size == TX_4X4);
|
|
// In tx_size=4x4 case, aom_fdct4x4 and aom_fdct4x4_lp generate
|
|
// normal coefficients order, so we don't need to change the scan
|
|
// order here.
|
|
if (use_hbd) {
|
|
aom_fdct4x4(src_diff, coeff, diff_stride);
|
|
av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX,
|
|
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
|
|
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
|
|
scan_order->iscan);
|
|
} else {
|
|
aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
|
|
av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
|
|
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
|
|
scan_order->scan, scan_order->iscan);
|
|
}
|
|
break;
|
|
#else
|
|
case TX_16X16:
|
|
aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
|
|
av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX,
|
|
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
|
|
default_scan_lp_16x16_transpose,
|
|
av1_default_iscan_lp_16x16_transpose);
|
|
break;
|
|
case TX_8X8:
|
|
if (is_tx_8x8_dual_applicable) {
|
|
// The coeffs are pre-computed for the whole block, so re-assign
|
|
// low_coeff to the appropriate location.
|
|
const int block_offset = BLOCK_OFFSET(block + s);
|
|
low_coeff = (int16_t *)p->coeff + block_offset;
|
|
} else {
|
|
aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
|
|
}
|
|
av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX,
|
|
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
|
|
default_scan_8x8_transpose,
|
|
av1_default_iscan_8x8_transpose);
|
|
break;
|
|
default:
|
|
aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
|
|
av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
|
|
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
|
|
scan_order->scan, scan_order->iscan);
|
|
break;
|
|
#endif
|
|
}
|
|
assert(*eob <= 1024);
|
|
#if CONFIG_AV1_HIGHBITDEPTH
|
|
if (use_hbd)
|
|
update_yrd_loop_vars_hbd(x, &temp_skippable, step, *eob, coeff, qcoeff,
|
|
dqcoeff, this_rdc, &eob_cost,
|
|
(r * num_blk_skip_w + c) >> sh_blk_skip);
|
|
else
|
|
#endif
|
|
update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff,
|
|
low_qcoeff, low_dqcoeff, this_rdc, &eob_cost,
|
|
(r * num_blk_skip_w + c) >> sh_blk_skip);
|
|
}
|
|
block += row_step;
|
|
}
|
|
|
|
this_rdc->skip_txfm = *skippable = temp_skippable;
|
|
if (this_rdc->sse < INT64_MAX) {
|
|
this_rdc->sse = (this_rdc->sse << 6) >> 2;
|
|
if (temp_skippable) {
|
|
this_rdc->dist = 0;
|
|
this_rdc->dist = this_rdc->sse;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If skippable is set, rate gets clobbered later.
|
|
this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
|
|
this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
|
|
}
|
|
|
|
// Explicitly enumerate the cases so the compiler can generate SIMD for the
|
|
// function. According to the disassembler, gcc generates SSE codes for each of
|
|
// the possible block sizes. The hottest case is tx_width 16, which takes up
|
|
// about 8% of the self cycle of av1_nonrd_pick_inter_mode_sb. Since
|
|
// av1_nonrd_pick_inter_mode_sb takes up about 3% of total encoding time, the
|
|
// potential room of improvement for writing AVX2 optimization is only 3% * 8% =
|
|
// 0.24% of total encoding time.
|
|
static AOM_INLINE void scale_square_buf_vals(int16_t *dst, const int tx_width,
|
|
const int16_t *src,
|
|
const int src_stride) {
|
|
#define DO_SCALING \
|
|
do { \
|
|
for (int idy = 0; idy < tx_width; ++idy) { \
|
|
for (int idx = 0; idx < tx_width; ++idx) { \
|
|
dst[idy * tx_width + idx] = src[idy * src_stride + idx] * 8; \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
if (tx_width == 4) {
|
|
DO_SCALING;
|
|
} else if (tx_width == 8) {
|
|
DO_SCALING;
|
|
} else if (tx_width == 16) {
|
|
DO_SCALING;
|
|
} else {
|
|
assert(0);
|
|
}
|
|
|
|
#undef DO_SCALING
|
|
}
|
|
|
|
/*!\brief Calculates RD Cost when the block uses Identity transform.
|
|
* Note that thie function is only for low bit depth encoding, since it
|
|
* is called in real-time mode for now, which sets high bit depth to 0:
|
|
* -DCONFIG_AV1_HIGHBITDEPTH=0
|
|
*
|
|
* \ingroup nonrd_mode_search
|
|
* \callgraph
|
|
* \callergraph
|
|
* Calculates RD Cost. For low bit depth this function
|
|
* uses low-precision set of functions (16-bit) and 32 bit for high bit depth
|
|
* \param[in] x Pointer to structure holding all the data for
|
|
the current macroblock
|
|
* \param[in] this_rdc Pointer to calculated RD Cost
|
|
* \param[in] skippable Pointer to a flag indicating possible tx skip
|
|
* \param[in] bsize Current block size
|
|
* \param[in] tx_size Transform size
|
|
*
|
|
* \remark Nothing is returned. Instead, calculated RD cost is placed to
|
|
* \c this_rdc. \c skippable flag is set if all coefficients are zero.
|
|
*/
|
|
static void block_yrd_idtx(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable,
|
|
const BLOCK_SIZE bsize, const TX_SIZE tx_size) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
const struct macroblockd_plane *pd = &xd->plane[0];
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
assert(bsize < BLOCK_SIZES_ALL);
|
|
const int num_4x4_w = mi_size_wide[bsize];
|
|
const int num_4x4_h = mi_size_high[bsize];
|
|
const int step = 1 << (tx_size << 1);
|
|
const int block_step = (1 << tx_size);
|
|
const int max_blocks_wide =
|
|
num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
|
|
const int max_blocks_high =
|
|
num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
|
|
int eob_cost = 0;
|
|
const int bw = 4 * num_4x4_w;
|
|
const int bh = 4 * num_4x4_h;
|
|
const int num_blk_skip_w = num_4x4_w >> 1;
|
|
const int sh_blk_skip = 1;
|
|
// Keep the intermediate value on the stack here. Writing directly to
|
|
// skippable causes speed regression due to load-and-store issues in
|
|
// update_yrd_loop_vars.
|
|
int temp_skippable = 1;
|
|
int tx_wd = 0;
|
|
switch (tx_size) {
|
|
case TX_64X64:
|
|
assert(0); // Not implemented
|
|
break;
|
|
case TX_32X32:
|
|
assert(0); // Not used
|
|
break;
|
|
case TX_16X16: tx_wd = 16; break;
|
|
case TX_8X8: tx_wd = 8; break;
|
|
default:
|
|
assert(tx_size == TX_4X4);
|
|
tx_wd = 4;
|
|
break;
|
|
}
|
|
this_rdc->dist = 0;
|
|
this_rdc->rate = 0;
|
|
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
|
|
pd->dst.buf, pd->dst.stride);
|
|
// Keep track of the row and column of the blocks we use so that we know
|
|
// if we are in the unrestricted motion border.
|
|
DECLARE_BLOCK_YRD_BUFFERS()
|
|
DECLARE_BLOCK_YRD_VARS()
|
|
for (int r = 0; r < max_blocks_high; r += block_step) {
|
|
for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) {
|
|
DECLARE_LOOP_VARS_BLOCK_YRD()
|
|
scale_square_buf_vals(low_coeff, tx_wd, src_diff, diff_stride);
|
|
av1_quantize_lp(low_coeff, tx_wd * tx_wd, p->round_fp_QTX,
|
|
p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX,
|
|
eob, scan_order->scan, scan_order->iscan);
|
|
assert(*eob <= 1024);
|
|
update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff,
|
|
low_qcoeff, low_dqcoeff, this_rdc, &eob_cost,
|
|
(r * num_blk_skip_w + c) >> sh_blk_skip);
|
|
}
|
|
}
|
|
this_rdc->skip_txfm = *skippable = temp_skippable;
|
|
if (this_rdc->sse < INT64_MAX) {
|
|
this_rdc->sse = (this_rdc->sse << 6) >> 2;
|
|
if (temp_skippable) {
|
|
this_rdc->dist = 0;
|
|
this_rdc->dist = this_rdc->sse;
|
|
return;
|
|
}
|
|
}
|
|
// If skippable is set, rate gets clobbered later.
|
|
this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
|
|
this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
|
|
}
|
|
|
|
static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode,
|
|
MV_REFERENCE_FRAME ref_frame0,
|
|
MV_REFERENCE_FRAME ref_frame1,
|
|
const AV1_COMMON *cm) {
|
|
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
|
|
mbmi->ref_mv_idx = 0;
|
|
mbmi->mode = pred_mode;
|
|
mbmi->uv_mode = UV_DC_PRED;
|
|
mbmi->ref_frame[0] = ref_frame0;
|
|
mbmi->ref_frame[1] = ref_frame1;
|
|
pmi->palette_size[0] = 0;
|
|
pmi->palette_size[1] = 0;
|
|
mbmi->filter_intra_mode_info.use_filter_intra = 0;
|
|
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
|
|
mbmi->motion_mode = SIMPLE_TRANSLATION;
|
|
mbmi->num_proj_ref = 1;
|
|
mbmi->interintra_mode = 0;
|
|
set_default_interp_filters(mbmi, cm->features.interp_filter);
|
|
}
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
|
|
int mode_index) {
|
|
#else
|
|
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
|
|
#endif // CONFIG_INTERNAL_STATS
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
|
|
|
|
// Take a snapshot of the coding context so it can be
|
|
// restored if we decide to encode this way
|
|
ctx->rd_stats.skip_txfm = txfm_info->skip_txfm;
|
|
|
|
ctx->skippable = txfm_info->skip_txfm;
|
|
#if CONFIG_INTERNAL_STATS
|
|
ctx->best_mode_index = mode_index;
|
|
#endif // CONFIG_INTERNAL_STATS
|
|
ctx->mic = *xd->mi[0];
|
|
ctx->skippable = txfm_info->skip_txfm;
|
|
av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
|
|
av1_ref_frame_type(xd->mi[0]->ref_frame));
|
|
}
|
|
|
|
static int get_pred_buffer(PRED_BUFFER *p, int len) {
|
|
for (int i = 0; i < len; i++) {
|
|
if (!p[i].in_use) {
|
|
p[i].in_use = 1;
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void free_pred_buffer(PRED_BUFFER *p) {
|
|
if (p != NULL) p->in_use = 0;
|
|
}
|
|
|
|
static INLINE int get_drl_cost(const PREDICTION_MODE this_mode,
|
|
const int ref_mv_idx,
|
|
const MB_MODE_INFO_EXT *mbmi_ext,
|
|
const int (*const drl_mode_cost0)[2],
|
|
int8_t ref_frame_type) {
|
|
int cost = 0;
|
|
if (this_mode == NEWMV || this_mode == NEW_NEWMV) {
|
|
for (int idx = 0; idx < 2; ++idx) {
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
|
|
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
|
|
cost += drl_mode_cost0[drl_ctx][ref_mv_idx != idx];
|
|
if (ref_mv_idx == idx) return cost;
|
|
}
|
|
}
|
|
return cost;
|
|
}
|
|
|
|
if (have_nearmv_in_inter_mode(this_mode)) {
|
|
for (int idx = 1; idx < 3; ++idx) {
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
|
|
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
|
|
cost += drl_mode_cost0[drl_ctx][ref_mv_idx != (idx - 1)];
|
|
if (ref_mv_idx == (idx - 1)) return cost;
|
|
}
|
|
}
|
|
return cost;
|
|
}
|
|
return cost;
|
|
}
|
|
|
|
static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode,
|
|
int16_t mode_context) {
|
|
if (is_inter_compound_mode(mode)) {
|
|
return mode_costs
|
|
->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
|
|
}
|
|
|
|
int mode_cost = 0;
|
|
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
|
|
|
|
assert(is_inter_mode(mode));
|
|
|
|
if (mode == NEWMV) {
|
|
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0];
|
|
return mode_cost;
|
|
} else {
|
|
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1];
|
|
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
|
|
|
|
if (mode == GLOBALMV) {
|
|
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0];
|
|
return mode_cost;
|
|
} else {
|
|
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1];
|
|
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
|
|
mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
|
|
return mode_cost;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode,
|
|
RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row,
|
|
int mv_col, int speed, uint32_t spatial_variance,
|
|
CONTENT_STATE_SB content_state_sb) {
|
|
// Bias against MVs associated with NEWMV mode that are very different from
|
|
// top/left neighbors.
|
|
if (this_mode == NEWMV) {
|
|
int al_mv_average_row;
|
|
int al_mv_average_col;
|
|
int row_diff, col_diff;
|
|
int above_mv_valid = 0;
|
|
int left_mv_valid = 0;
|
|
int above_row = INVALID_MV_ROW_COL, above_col = INVALID_MV_ROW_COL;
|
|
int left_row = INVALID_MV_ROW_COL, left_col = INVALID_MV_ROW_COL;
|
|
if (bsize >= BLOCK_64X64 && content_state_sb.source_sad_nonrd != kHighSad &&
|
|
spatial_variance < 300 &&
|
|
(mv_row > 16 || mv_row < -16 || mv_col > 16 || mv_col < -16)) {
|
|
this_rdc->rdcost = this_rdc->rdcost << 2;
|
|
return;
|
|
}
|
|
if (xd->above_mbmi) {
|
|
above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV;
|
|
above_row = xd->above_mbmi->mv[0].as_mv.row;
|
|
above_col = xd->above_mbmi->mv[0].as_mv.col;
|
|
}
|
|
if (xd->left_mbmi) {
|
|
left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV;
|
|
left_row = xd->left_mbmi->mv[0].as_mv.row;
|
|
left_col = xd->left_mbmi->mv[0].as_mv.col;
|
|
}
|
|
if (above_mv_valid && left_mv_valid) {
|
|
al_mv_average_row = (above_row + left_row + 1) >> 1;
|
|
al_mv_average_col = (above_col + left_col + 1) >> 1;
|
|
} else if (above_mv_valid) {
|
|
al_mv_average_row = above_row;
|
|
al_mv_average_col = above_col;
|
|
} else if (left_mv_valid) {
|
|
al_mv_average_row = left_row;
|
|
al_mv_average_col = left_col;
|
|
} else {
|
|
al_mv_average_row = al_mv_average_col = 0;
|
|
}
|
|
row_diff = al_mv_average_row - mv_row;
|
|
col_diff = al_mv_average_col - mv_col;
|
|
if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) {
|
|
if (bsize >= BLOCK_32X32)
|
|
this_rdc->rdcost = this_rdc->rdcost << 1;
|
|
else
|
|
this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
|
|
}
|
|
} else {
|
|
// Bias for speed >= 8 for low spatial variance.
|
|
if (speed >= 8 && spatial_variance < 150 &&
|
|
(mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64))
|
|
this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
|
|
}
|
|
}
|
|
|
|
static int64_t model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize,
|
|
MACROBLOCK *x, MACROBLOCKD *xd,
|
|
RD_STATS *this_rdc, int start_plane,
|
|
int stop_plane) {
|
|
// Note our transform coeffs are 8 times an orthogonal transform.
|
|
// Hence quantizer step is also 8 times. To get effective quantizer
|
|
// we need to divide by 8 before sending to modeling function.
|
|
unsigned int sse;
|
|
int rate;
|
|
int64_t dist;
|
|
int i;
|
|
int64_t tot_sse = 0;
|
|
|
|
this_rdc->rate = 0;
|
|
this_rdc->dist = 0;
|
|
this_rdc->skip_txfm = 0;
|
|
|
|
for (i = start_plane; i <= stop_plane; ++i) {
|
|
struct macroblock_plane *const p = &x->plane[i];
|
|
struct macroblockd_plane *const pd = &xd->plane[i];
|
|
const uint32_t dc_quant = p->dequant_QTX[0];
|
|
const uint32_t ac_quant = p->dequant_QTX[1];
|
|
const BLOCK_SIZE bs = plane_bsize;
|
|
unsigned int var;
|
|
if (!x->color_sensitivity[i - 1]) continue;
|
|
|
|
var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
|
|
pd->dst.stride, &sse);
|
|
assert(sse >= var);
|
|
tot_sse += sse;
|
|
|
|
av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
|
|
dc_quant >> 3, &rate, &dist);
|
|
|
|
this_rdc->rate += rate >> 1;
|
|
this_rdc->dist += dist << 3;
|
|
|
|
av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
|
|
&rate, &dist);
|
|
|
|
this_rdc->rate += rate;
|
|
this_rdc->dist += dist << 4;
|
|
}
|
|
|
|
if (this_rdc->rate == 0) {
|
|
this_rdc->skip_txfm = 1;
|
|
}
|
|
|
|
if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >=
|
|
RDCOST(x->rdmult, 0, tot_sse << 4)) {
|
|
this_rdc->rate = 0;
|
|
this_rdc->dist = tot_sse << 4;
|
|
this_rdc->skip_txfm = 1;
|
|
}
|
|
|
|
return tot_sse;
|
|
}
|
|
|
|
/*!\cond */
|
|
struct estimate_block_intra_args {
|
|
AV1_COMP *cpi;
|
|
MACROBLOCK *x;
|
|
PREDICTION_MODE mode;
|
|
int skippable;
|
|
RD_STATS *rdc;
|
|
};
|
|
/*!\endcond */
|
|
|
|
/*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case.
|
|
*
|
|
* \ingroup nonrd_mode_search
|
|
* \callgraph
|
|
* \callergraph
|
|
* Calculates RD Cost for an intra mode for a single TX block using Hadamard
|
|
* transform.
|
|
* \param[in] plane Color plane
|
|
* \param[in] block Index of a TX block in a prediction block
|
|
* \param[in] row Row of a current TX block
|
|
* \param[in] col Column of a current TX block
|
|
* \param[in] plane_bsize Block size of a current prediction block
|
|
* \param[in] tx_size Transform size
|
|
* \param[in] arg Pointer to a structure that holds parameters
|
|
* for intra mode search
|
|
*
|
|
* \remark Nothing is returned. Instead, best mode and RD Cost of the best mode
|
|
* are set in \c args->rdc and \c args->mode
|
|
*/
|
|
static void estimate_block_intra(int plane, int block, int row, int col,
|
|
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
|
|
void *arg) {
|
|
struct estimate_block_intra_args *const args = arg;
|
|
AV1_COMP *const cpi = args->cpi;
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = args->x;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
struct macroblock_plane *const p = &x->plane[plane];
|
|
struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
|
|
uint8_t *const src_buf_base = p->src.buf;
|
|
uint8_t *const dst_buf_base = pd->dst.buf;
|
|
const int64_t src_stride = p->src.stride;
|
|
const int64_t dst_stride = pd->dst.stride;
|
|
RD_STATS this_rdc;
|
|
|
|
(void)block;
|
|
(void)plane_bsize;
|
|
|
|
av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
|
|
av1_invalid_rd_stats(&this_rdc);
|
|
|
|
p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
|
|
pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
|
|
|
|
if (plane == 0) {
|
|
block_yrd(x, &this_rdc, &args->skippable, bsize_tx,
|
|
AOMMIN(tx_size, TX_16X16), 0);
|
|
} else {
|
|
model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, plane, plane);
|
|
}
|
|
|
|
p->src.buf = src_buf_base;
|
|
pd->dst.buf = dst_buf_base;
|
|
args->rdc->rate += this_rdc.rate;
|
|
args->rdc->dist += this_rdc.dist;
|
|
}
|
|
|
|
static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE bsize,
|
|
MV_REFERENCE_FRAME ref_frame,
|
|
THR_MODES best_mode_idx,
|
|
PREDICTION_MODE mode) {
|
|
const THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
|
|
const BLOCK_SIZE min_size = AOMMAX(bsize - 3, BLOCK_4X4);
|
|
const BLOCK_SIZE max_size = AOMMIN(bsize + 6, BLOCK_128X128);
|
|
for (BLOCK_SIZE bs = min_size; bs <= max_size; bs += 3) {
|
|
int *freq_fact = &x->thresh_freq_fact[bs][thr_mode_idx];
|
|
if (thr_mode_idx == best_mode_idx) {
|
|
*freq_fact -= (*freq_fact >> 4);
|
|
} else {
|
|
*freq_fact =
|
|
AOMMIN(*freq_fact + RD_THRESH_INC,
|
|
cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_AV1_TEMPORAL_DENOISING
|
|
static void av1_pickmode_ctx_den_update(
|
|
AV1_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig,
|
|
unsigned int ref_frame_cost[REF_FRAMES],
|
|
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int reuse_inter_pred,
|
|
BEST_PICKMODE *bp) {
|
|
ctx_den->zero_last_cost_orig = zero_last_cost_orig;
|
|
ctx_den->ref_frame_cost = ref_frame_cost;
|
|
ctx_den->frame_mv = frame_mv;
|
|
ctx_den->reuse_inter_pred = reuse_inter_pred;
|
|
ctx_den->best_tx_size = bp->best_tx_size;
|
|
ctx_den->best_mode = bp->best_mode;
|
|
ctx_den->best_ref_frame = bp->best_ref_frame;
|
|
ctx_den->best_pred_filter = bp->best_pred_filter;
|
|
ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm;
|
|
}
|
|
|
|
static void recheck_zeromv_after_denoising(
|
|
AV1_COMP *cpi, MB_MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd,
|
|
AV1_DENOISER_DECISION decision, AV1_PICKMODE_CTX_DEN *ctx_den,
|
|
struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_STATS *best_rdc,
|
|
BEST_PICKMODE *best_pickmode, BLOCK_SIZE bsize, int mi_row, int mi_col) {
|
|
// If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on
|
|
// denoised result. Only do this under noise conditions, and if rdcost of
|
|
// ZEROMV on original source is not significantly higher than rdcost of best
|
|
// mode.
|
|
if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow &&
|
|
ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) &&
|
|
((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) ||
|
|
(ctx_den->best_ref_frame == GOLDEN_FRAME &&
|
|
cpi->svc.number_spatial_layers == 1 &&
|
|
decision == FILTER_ZEROMV_BLOCK))) {
|
|
// Check if we should pick ZEROMV on denoised signal.
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
RD_STATS this_rdc;
|
|
const ModeCosts *mode_costs = &x->mode_costs;
|
|
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
|
|
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
|
|
|
|
mi->mode = GLOBALMV;
|
|
mi->ref_frame[0] = LAST_FRAME;
|
|
mi->ref_frame[1] = NONE_FRAME;
|
|
set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
|
|
mi->mv[0].as_int = 0;
|
|
mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
|
|
xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0];
|
|
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
|
|
unsigned int var;
|
|
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, &var, 1, NULL);
|
|
|
|
const int16_t mode_ctx =
|
|
av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
|
|
this_rdc.rate += cost_mv_ref(mode_costs, GLOBALMV, mode_ctx);
|
|
|
|
this_rdc.rate += ctx_den->ref_frame_cost[LAST_FRAME];
|
|
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
|
|
txfm_info->skip_txfm = this_rdc.skip_txfm;
|
|
// Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source
|
|
// is higher than best_ref mode (on original source).
|
|
if (this_rdc.rdcost > best_rdc->rdcost) {
|
|
this_rdc = *best_rdc;
|
|
mi->mode = best_pickmode->best_mode;
|
|
mi->ref_frame[0] = best_pickmode->best_ref_frame;
|
|
set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
|
|
mi->interp_filters = best_pickmode->best_pred_filter;
|
|
if (best_pickmode->best_ref_frame == INTRA_FRAME) {
|
|
mi->mv[0].as_int = INVALID_MV;
|
|
} else {
|
|
mi->mv[0].as_int = ctx_den
|
|
->frame_mv[best_pickmode->best_mode]
|
|
[best_pickmode->best_ref_frame]
|
|
.as_int;
|
|
if (ctx_den->reuse_inter_pred) {
|
|
xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0];
|
|
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
|
|
}
|
|
}
|
|
mi->tx_size = best_pickmode->best_tx_size;
|
|
txfm_info->skip_txfm = best_pickmode->best_mode_skip_txfm;
|
|
} else {
|
|
ctx_den->best_ref_frame = LAST_FRAME;
|
|
*best_rdc = this_rdc;
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_AV1_TEMPORAL_DENOISING
|
|
|
|
#define FILTER_SEARCH_SIZE 2
|
|
|
|
/*!\brief Searches for the best interpolation filter
|
|
*
|
|
* \ingroup nonrd_mode_search
|
|
* \callgraph
|
|
* \callergraph
|
|
* Iterates through subset of possible interpolation filters (EIGHTTAP_REGULAR,
|
|
* EIGTHTAP_SMOOTH, MULTITAP_SHARP, depending on FILTER_SEARCH_SIZE) and selects
|
|
* the one that gives lowest RD cost. RD cost is calculated using curvfit model.
|
|
* Support for dual filters (different filters in the x & y directions) is
|
|
* allowed if sf.interp_sf.disable_dual_filter = 0.
|
|
*
|
|
* \param[in] cpi Top-level encoder structure
|
|
* \param[in] x Pointer to structure holding all the
|
|
* data for the current macroblock
|
|
* \param[in] this_rdc Pointer to calculated RD Cost
|
|
* \param[in] inter_pred_params_sr Pointer to structure holding parameters of
|
|
inter prediction for single reference
|
|
* \param[in] mi_row Row index in 4x4 units
|
|
* \param[in] mi_col Column index in 4x4 units
|
|
* \param[in] tmp_buffer Pointer to a temporary buffer for
|
|
* prediction re-use
|
|
* \param[in] bsize Current block size
|
|
* \param[in] reuse_inter_pred Flag, indicating prediction re-use
|
|
* \param[out] this_mode_pred Pointer to store prediction buffer
|
|
* for prediction re-use
|
|
* \param[out] this_early_term Flag, indicating that transform can be
|
|
* skipped
|
|
* \param[out] var The residue variance of the current
|
|
* predictor.
|
|
* \param[in] use_model_yrd_large Flag, indicating special logic to handle
|
|
* large blocks
|
|
* \param[in] best_sse Best sse so far.
|
|
* \param[in] comp_pred Flag, indicating compound mode.
|
|
*
|
|
* \remark Nothing is returned. Instead, calculated RD cost is placed to
|
|
* \c this_rdc and best filter is placed to \c mi->interp_filters. In case
|
|
* \c reuse_inter_pred flag is set, this function also outputs
|
|
* \c this_mode_pred. Also \c this_early_temp is set if transform can be
|
|
* skipped
|
|
*/
|
|
static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
|
|
InterPredParams *inter_pred_params_sr, int mi_row,
|
|
int mi_col, PRED_BUFFER *tmp_buffer,
|
|
BLOCK_SIZE bsize, int reuse_inter_pred,
|
|
PRED_BUFFER **this_mode_pred,
|
|
int *this_early_term, unsigned int *var,
|
|
int use_model_yrd_large, int64_t best_sse,
|
|
int comp_pred) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
const int bw = block_size_wide[bsize];
|
|
int dim_factor =
|
|
(cpi->sf.interp_sf.disable_dual_filter == 0) ? FILTER_SEARCH_SIZE : 1;
|
|
RD_STATS pf_rd_stats[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 };
|
|
TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 };
|
|
PRED_BUFFER *current_pred = *this_mode_pred;
|
|
int best_skip = 0;
|
|
int best_early_term = 0;
|
|
int64_t best_cost = INT64_MAX;
|
|
int best_filter_index = -1;
|
|
|
|
SubpelParams subpel_params;
|
|
// Initialize inter prediction params at mode level for single reference
|
|
// mode.
|
|
if (!comp_pred)
|
|
init_inter_mode_params(&mi->mv[0].as_mv, inter_pred_params_sr,
|
|
&subpel_params, xd->block_ref_scale_factors[0],
|
|
pd->pre->width, pd->pre->height);
|
|
for (int i = 0; i < FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE; ++i) {
|
|
int64_t cost;
|
|
if (cpi->sf.interp_sf.disable_dual_filter &&
|
|
filters_ref_set[i].filter_x != filters_ref_set[i].filter_y)
|
|
continue;
|
|
mi->interp_filters.as_filters.x_filter = filters_ref_set[i].filter_x;
|
|
mi->interp_filters.as_filters.y_filter = filters_ref_set[i].filter_y;
|
|
if (!comp_pred)
|
|
av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr,
|
|
&subpel_params);
|
|
else
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0);
|
|
unsigned int curr_var = UINT_MAX;
|
|
if (use_model_yrd_large)
|
|
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
|
|
&pf_rd_stats[i], this_early_term, 1, best_sse,
|
|
&curr_var, UINT_MAX);
|
|
else
|
|
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], &curr_var, 1, NULL);
|
|
pf_rd_stats[i].rate += av1_get_switchable_rate(
|
|
x, xd, cm->features.interp_filter, cm->seq_params->enable_dual_filter);
|
|
cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist);
|
|
pf_tx_size[i] = mi->tx_size;
|
|
if (cost < best_cost) {
|
|
*var = curr_var;
|
|
best_filter_index = i;
|
|
best_cost = cost;
|
|
best_skip = pf_rd_stats[i].skip_txfm;
|
|
best_early_term = *this_early_term;
|
|
if (reuse_inter_pred) {
|
|
if (*this_mode_pred != current_pred) {
|
|
free_pred_buffer(*this_mode_pred);
|
|
*this_mode_pred = current_pred;
|
|
}
|
|
current_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)];
|
|
pd->dst.buf = current_pred->data;
|
|
pd->dst.stride = bw;
|
|
}
|
|
}
|
|
}
|
|
assert(best_filter_index >= 0 &&
|
|
best_filter_index < dim_factor * FILTER_SEARCH_SIZE);
|
|
if (reuse_inter_pred && *this_mode_pred != current_pred)
|
|
free_pred_buffer(current_pred);
|
|
|
|
mi->interp_filters.as_filters.x_filter =
|
|
filters_ref_set[best_filter_index].filter_x;
|
|
mi->interp_filters.as_filters.y_filter =
|
|
filters_ref_set[best_filter_index].filter_y;
|
|
mi->tx_size = pf_tx_size[best_filter_index];
|
|
this_rdc->rate = pf_rd_stats[best_filter_index].rate;
|
|
this_rdc->dist = pf_rd_stats[best_filter_index].dist;
|
|
this_rdc->sse = pf_rd_stats[best_filter_index].sse;
|
|
this_rdc->skip_txfm = (best_skip || best_early_term);
|
|
*this_early_term = best_early_term;
|
|
if (reuse_inter_pred) {
|
|
pd->dst.buf = (*this_mode_pred)->data;
|
|
pd->dst.stride = (*this_mode_pred)->stride;
|
|
} else if (best_filter_index < dim_factor * FILTER_SEARCH_SIZE - 1) {
|
|
if (!comp_pred)
|
|
av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr,
|
|
&subpel_params);
|
|
else
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0);
|
|
}
|
|
}
|
|
#if !CONFIG_REALTIME_ONLY
|
|
#define MOTION_MODE_SEARCH_SIZE 2
|
|
|
|
static AOM_INLINE int is_warped_mode_allowed(const AV1_COMP *cpi,
|
|
MACROBLOCK *const x,
|
|
const MB_MODE_INFO *mbmi) {
|
|
const FeatureFlags *const features = &cpi->common.features;
|
|
const MACROBLOCKD *xd = &x->e_mbd;
|
|
|
|
if (cpi->sf.inter_sf.extra_prune_warped) return 0;
|
|
if (has_second_ref(mbmi)) return 0;
|
|
MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
|
|
|
|
if (features->switchable_motion_mode) {
|
|
// Determine which motion modes to search if more than SIMPLE_TRANSLATION
|
|
// is allowed.
|
|
last_motion_mode_allowed = motion_mode_allowed(
|
|
xd->global_motion, xd, mbmi, features->allow_warped_motion);
|
|
}
|
|
|
|
if (last_motion_mode_allowed == WARPED_CAUSAL) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void calc_num_proj_ref(AV1_COMP *cpi, MACROBLOCK *x, MB_MODE_INFO *mi) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const FeatureFlags *const features = &cm->features;
|
|
|
|
mi->num_proj_ref = 1;
|
|
WARP_SAMPLE_INFO *const warp_sample_info =
|
|
&x->warp_sample_info[mi->ref_frame[0]];
|
|
int *pts0 = warp_sample_info->pts;
|
|
int *pts_inref0 = warp_sample_info->pts_inref;
|
|
MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
|
|
|
|
if (features->switchable_motion_mode) {
|
|
// Determine which motion modes to search if more than SIMPLE_TRANSLATION
|
|
// is allowed.
|
|
last_motion_mode_allowed = motion_mode_allowed(
|
|
xd->global_motion, xd, mi, features->allow_warped_motion);
|
|
}
|
|
|
|
if (last_motion_mode_allowed == WARPED_CAUSAL) {
|
|
if (warp_sample_info->num < 0) {
|
|
warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0);
|
|
}
|
|
mi->num_proj_ref = warp_sample_info->num;
|
|
}
|
|
}
|
|
|
|
static void search_motion_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
int *this_early_term, int use_model_yrd_large,
|
|
int *rate_mv, int64_t best_sse) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const FeatureFlags *const features = &cm->features;
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
RD_STATS pf_rd_stats[MOTION_MODE_SEARCH_SIZE] = { 0 };
|
|
int best_skip = 0;
|
|
int best_early_term = 0;
|
|
int64_t best_cost = INT64_MAX;
|
|
int best_mode_index = -1;
|
|
const int interp_filter = features->interp_filter;
|
|
|
|
const MOTION_MODE motion_modes[MOTION_MODE_SEARCH_SIZE] = {
|
|
SIMPLE_TRANSLATION, WARPED_CAUSAL
|
|
};
|
|
int mode_search_size = is_warped_mode_allowed(cpi, x, mi) ? 2 : 1;
|
|
|
|
WARP_SAMPLE_INFO *const warp_sample_info =
|
|
&x->warp_sample_info[mi->ref_frame[0]];
|
|
int *pts0 = warp_sample_info->pts;
|
|
int *pts_inref0 = warp_sample_info->pts_inref;
|
|
|
|
const int total_samples = mi->num_proj_ref;
|
|
if (total_samples == 0) {
|
|
// Do not search WARPED_CAUSAL if there are no samples to use to determine
|
|
// warped parameters.
|
|
mode_search_size = 1;
|
|
}
|
|
|
|
const MB_MODE_INFO base_mbmi = *mi;
|
|
MB_MODE_INFO best_mbmi;
|
|
|
|
for (int i = 0; i < mode_search_size; ++i) {
|
|
int64_t cost = INT64_MAX;
|
|
MOTION_MODE motion_mode = motion_modes[i];
|
|
*mi = base_mbmi;
|
|
mi->motion_mode = motion_mode;
|
|
if (motion_mode == SIMPLE_TRANSLATION) {
|
|
mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
|
|
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0);
|
|
if (use_model_yrd_large)
|
|
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
|
|
&pf_rd_stats[i], this_early_term, 1, best_sse,
|
|
NULL, UINT_MAX);
|
|
else
|
|
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], NULL, 1, NULL);
|
|
pf_rd_stats[i].rate +=
|
|
av1_get_switchable_rate(x, xd, cm->features.interp_filter,
|
|
cm->seq_params->enable_dual_filter);
|
|
cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist);
|
|
} else if (motion_mode == WARPED_CAUSAL) {
|
|
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
|
|
const ModeCosts *mode_costs = &x->mode_costs;
|
|
mi->wm_params.wmtype = DEFAULT_WMTYPE;
|
|
mi->interp_filters =
|
|
av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
|
|
|
|
memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
|
|
memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
|
|
// Select the samples according to motion vector difference
|
|
if (mi->num_proj_ref > 1) {
|
|
mi->num_proj_ref = av1_selectSamples(&mi->mv[0].as_mv, pts, pts_inref,
|
|
mi->num_proj_ref, bsize);
|
|
}
|
|
|
|
// Compute the warped motion parameters with a least squares fit
|
|
// using the collected samples
|
|
if (!av1_find_projection(mi->num_proj_ref, pts, pts_inref, bsize,
|
|
mi->mv[0].as_mv.row, mi->mv[0].as_mv.col,
|
|
&mi->wm_params, mi_row, mi_col)) {
|
|
if (mi->mode == NEWMV) {
|
|
const int_mv mv0 = mi->mv[0];
|
|
const WarpedMotionParams wm_params0 = mi->wm_params;
|
|
const int num_proj_ref0 = mi->num_proj_ref;
|
|
|
|
const int_mv ref_mv = av1_get_ref_mv(x, 0);
|
|
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
|
|
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize,
|
|
&ref_mv.as_mv, NULL);
|
|
|
|
// Refine MV in a small range.
|
|
av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0,
|
|
total_samples);
|
|
if (mi->mv[0].as_int == ref_mv.as_int) {
|
|
continue;
|
|
}
|
|
|
|
if (mv0.as_int != mi->mv[0].as_int) {
|
|
// Keep the refined MV and WM parameters.
|
|
int tmp_rate_mv = av1_mv_bit_cost(
|
|
&mi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost,
|
|
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
|
|
*rate_mv = tmp_rate_mv;
|
|
} else {
|
|
// Restore the old MV and WM parameters.
|
|
mi->mv[0] = mv0;
|
|
mi->wm_params = wm_params0;
|
|
mi->num_proj_ref = num_proj_ref0;
|
|
}
|
|
}
|
|
// Build the warped predictor
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
|
|
av1_num_planes(cm) - 1);
|
|
if (use_model_yrd_large)
|
|
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
|
|
&pf_rd_stats[i], this_early_term, 1,
|
|
best_sse, NULL, UINT_MAX);
|
|
else
|
|
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], NULL, 1, NULL);
|
|
|
|
pf_rd_stats[i].rate +=
|
|
mode_costs->motion_mode_cost[bsize][mi->motion_mode];
|
|
cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist);
|
|
} else {
|
|
cost = INT64_MAX;
|
|
}
|
|
}
|
|
if (cost < best_cost) {
|
|
best_mode_index = i;
|
|
best_cost = cost;
|
|
best_skip = pf_rd_stats[i].skip_txfm;
|
|
best_early_term = *this_early_term;
|
|
best_mbmi = *mi;
|
|
}
|
|
}
|
|
assert(best_mode_index >= 0 && best_mode_index < FILTER_SEARCH_SIZE);
|
|
|
|
*mi = best_mbmi;
|
|
this_rdc->rate = pf_rd_stats[best_mode_index].rate;
|
|
this_rdc->dist = pf_rd_stats[best_mode_index].dist;
|
|
this_rdc->sse = pf_rd_stats[best_mode_index].sse;
|
|
this_rdc->skip_txfm = (best_skip || best_early_term);
|
|
*this_early_term = best_early_term;
|
|
if (best_mode_index < FILTER_SEARCH_SIZE - 1) {
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0);
|
|
}
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
#define COLLECT_PICK_MODE_STAT 0
|
|
#define COLLECT_NON_SQR_STAT 0
|
|
|
|
#if COLLECT_PICK_MODE_STAT
|
|
#include "aom_ports/aom_timer.h"
|
|
typedef struct _mode_search_stat {
|
|
int32_t num_blocks[BLOCK_SIZES];
|
|
int64_t total_block_times[BLOCK_SIZES];
|
|
int32_t num_searches[BLOCK_SIZES][MB_MODE_COUNT];
|
|
int32_t num_nonskipped_searches[BLOCK_SIZES][MB_MODE_COUNT];
|
|
int64_t search_times[BLOCK_SIZES][MB_MODE_COUNT];
|
|
int64_t nonskipped_search_times[BLOCK_SIZES][MB_MODE_COUNT];
|
|
int64_t ms_time[BLOCK_SIZES][MB_MODE_COUNT];
|
|
int64_t ifs_time[BLOCK_SIZES][MB_MODE_COUNT];
|
|
int64_t model_rd_time[BLOCK_SIZES][MB_MODE_COUNT];
|
|
int64_t txfm_time[BLOCK_SIZES][MB_MODE_COUNT];
|
|
struct aom_usec_timer timer1;
|
|
struct aom_usec_timer timer2;
|
|
struct aom_usec_timer bsize_timer;
|
|
} mode_search_stat;
|
|
|
|
static mode_search_stat ms_stat;
|
|
|
|
static AOM_INLINE void print_stage_time(const char *stage_name,
|
|
int64_t stage_time,
|
|
int64_t total_time) {
|
|
printf(" %s: %ld (%f%%)\n", stage_name, stage_time,
|
|
100 * stage_time / (float)total_time);
|
|
}
|
|
|
|
static void print_time(const mode_search_stat *const ms_stat,
|
|
const BLOCK_SIZE bsize, const int mi_rows,
|
|
const int mi_cols, const int mi_row, const int mi_col) {
|
|
if ((mi_row + mi_size_high[bsize] >= mi_rows) &&
|
|
(mi_col + mi_size_wide[bsize] >= mi_cols)) {
|
|
int64_t total_time = 0l;
|
|
int32_t total_blocks = 0;
|
|
for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) {
|
|
total_time += ms_stat->total_block_times[bs];
|
|
total_blocks += ms_stat->num_blocks[bs];
|
|
}
|
|
|
|
printf("\n");
|
|
for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) {
|
|
if (ms_stat->num_blocks[bs] == 0) {
|
|
continue;
|
|
}
|
|
if (!COLLECT_NON_SQR_STAT && block_size_wide[bs] != block_size_high[bs]) {
|
|
continue;
|
|
}
|
|
|
|
printf("BLOCK_%dX%d Num %d, Time: %ld (%f%%), Avg_time %f:\n",
|
|
block_size_wide[bs], block_size_high[bs], ms_stat->num_blocks[bs],
|
|
ms_stat->total_block_times[bs],
|
|
100 * ms_stat->total_block_times[bs] / (float)total_time,
|
|
(float)ms_stat->total_block_times[bs] / ms_stat->num_blocks[bs]);
|
|
for (int j = 0; j < MB_MODE_COUNT; j++) {
|
|
if (ms_stat->nonskipped_search_times[bs][j] == 0) {
|
|
continue;
|
|
}
|
|
|
|
int64_t total_mode_time = ms_stat->nonskipped_search_times[bs][j];
|
|
printf(" Mode %d, %d/%d tps %f\n", j,
|
|
ms_stat->num_nonskipped_searches[bs][j],
|
|
ms_stat->num_searches[bs][j],
|
|
ms_stat->num_nonskipped_searches[bs][j] > 0
|
|
? (float)ms_stat->nonskipped_search_times[bs][j] /
|
|
ms_stat->num_nonskipped_searches[bs][j]
|
|
: 0l);
|
|
if (j >= INTER_MODE_START) {
|
|
total_mode_time = ms_stat->ms_time[bs][j] + ms_stat->ifs_time[bs][j] +
|
|
ms_stat->model_rd_time[bs][j] +
|
|
ms_stat->txfm_time[bs][j];
|
|
print_stage_time("Motion Search Time", ms_stat->ms_time[bs][j],
|
|
total_time);
|
|
print_stage_time("Filter Search Time", ms_stat->ifs_time[bs][j],
|
|
total_time);
|
|
print_stage_time("Model RD Time", ms_stat->model_rd_time[bs][j],
|
|
total_time);
|
|
print_stage_time("Tranfm Search Time", ms_stat->txfm_time[bs][j],
|
|
total_time);
|
|
}
|
|
print_stage_time("Total Mode Time", total_mode_time, total_time);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks);
|
|
}
|
|
}
|
|
#endif // COLLECT_PICK_MODE_STAT
|
|
|
|
static void compute_intra_yprediction(const AV1_COMMON *cm,
|
|
PREDICTION_MODE mode, BLOCK_SIZE bsize,
|
|
MACROBLOCK *x, MACROBLOCKD *xd) {
|
|
const SequenceHeader *seq_params = cm->seq_params;
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
uint8_t *const src_buf_base = p->src.buf;
|
|
uint8_t *const dst_buf_base = pd->dst.buf;
|
|
const int src_stride = p->src.stride;
|
|
const int dst_stride = pd->dst.stride;
|
|
int plane = 0;
|
|
int row, col;
|
|
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
|
|
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
|
|
// transform size varies per plane, look it up in a common way.
|
|
const TX_SIZE tx_size = max_txsize_lookup[bsize];
|
|
const BLOCK_SIZE plane_bsize =
|
|
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
|
|
// If mb_to_right_edge is < 0 we are in a situation in which
|
|
// the current block size extends into the UMV and we won't
|
|
// visit the sub blocks that are wholly within the UMV.
|
|
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
|
|
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
|
|
// Keep track of the row and column of the blocks we use so that we know
|
|
// if we are in the unrestricted motion border.
|
|
for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
|
|
// Skip visiting the sub blocks that are wholly within the UMV.
|
|
for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
|
|
p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
|
|
pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
|
|
av1_predict_intra_block(
|
|
xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
|
|
block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0,
|
|
FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride,
|
|
0, 0, plane);
|
|
}
|
|
}
|
|
p->src.buf = src_buf_base;
|
|
pd->dst.buf = dst_buf_base;
|
|
}
|
|
|
|
void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost,
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
RD_STATS this_rdc, best_rdc;
|
|
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
|
|
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
|
|
const TX_SIZE intra_tx_size =
|
|
AOMMIN(max_txsize_lookup[bsize],
|
|
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
|
|
int *bmode_costs;
|
|
PREDICTION_MODE best_mode = DC_PRED;
|
|
const MB_MODE_INFO *above_mi = xd->above_mbmi;
|
|
const MB_MODE_INFO *left_mi = xd->left_mbmi;
|
|
const PREDICTION_MODE A = av1_above_block_mode(above_mi);
|
|
const PREDICTION_MODE L = av1_left_block_mode(left_mi);
|
|
const int above_ctx = intra_mode_context[A];
|
|
const int left_ctx = intra_mode_context[L];
|
|
bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx];
|
|
|
|
av1_invalid_rd_stats(&best_rdc);
|
|
av1_invalid_rd_stats(&this_rdc);
|
|
|
|
init_mbmi(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm);
|
|
mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV;
|
|
|
|
// Change the limit of this loop to add other intra prediction
|
|
// mode tests.
|
|
for (int i = 0; i < 4; ++i) {
|
|
PREDICTION_MODE this_mode = intra_mode_list[i];
|
|
|
|
// As per the statistics generated for intra mode evaluation in the nonrd
|
|
// path, it is found that the probability of H_PRED mode being the winner is
|
|
// very less when the best mode so far is V_PRED (out of DC_PRED and
|
|
// V_PRED). If V_PRED is the winner mode out of DC_PRED and V_PRED, it could
|
|
// imply the presence of a vertically dominant pattern. Hence, H_PRED mode
|
|
// is not evaluated.
|
|
if (cpi->sf.rt_sf.prune_h_pred_using_best_mode_so_far &&
|
|
this_mode == H_PRED && best_mode == V_PRED)
|
|
continue;
|
|
|
|
this_rdc.dist = this_rdc.rate = 0;
|
|
args.mode = this_mode;
|
|
args.skippable = 1;
|
|
args.rdc = &this_rdc;
|
|
mi->tx_size = intra_tx_size;
|
|
mi->mode = this_mode;
|
|
av1_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra,
|
|
&args);
|
|
const int skip_ctx = av1_get_skip_txfm_context(xd);
|
|
if (args.skippable) {
|
|
this_rdc.rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
|
|
} else {
|
|
this_rdc.rate += x->mode_costs.skip_txfm_cost[skip_ctx][0];
|
|
}
|
|
this_rdc.rate += bmode_costs[this_mode];
|
|
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
|
|
|
|
if (this_rdc.rdcost < best_rdc.rdcost) {
|
|
best_rdc = this_rdc;
|
|
best_mode = this_mode;
|
|
if (!this_rdc.skip_txfm) {
|
|
memset(ctx->blk_skip, 0,
|
|
sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
|
|
}
|
|
}
|
|
}
|
|
|
|
mi->mode = best_mode;
|
|
// Keep DC for UV since mode test is based on Y channel only.
|
|
mi->uv_mode = UV_DC_PRED;
|
|
*rd_cost = best_rdc;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
store_coding_context(x, ctx, mi->mode);
|
|
#else
|
|
store_coding_context(x, ctx);
|
|
#endif // CONFIG_INTERNAL_STATS
|
|
}
|
|
|
|
static AOM_INLINE int is_same_gf_and_last_scale(AV1_COMMON *cm) {
|
|
struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME);
|
|
struct scale_factors *const sf_golden =
|
|
get_ref_scale_factors(cm, GOLDEN_FRAME);
|
|
return ((sf_last->x_scale_fp == sf_golden->x_scale_fp) &&
|
|
(sf_last->y_scale_fp == sf_golden->y_scale_fp));
|
|
}
|
|
|
|
static AOM_INLINE void get_ref_frame_use_mask(AV1_COMP *cpi, MACROBLOCK *x,
|
|
MB_MODE_INFO *mi, int mi_row,
|
|
int mi_col, int bsize,
|
|
int gf_temporal_ref,
|
|
int use_ref_frame[],
|
|
int *force_skip_low_temp_var) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
const struct segmentation *const seg = &cm->seg;
|
|
const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64);
|
|
|
|
// When the ref_frame_config is used to set the reference frame structure
|
|
// then the usage of alt_ref is determined by the ref_frame_flags
|
|
// (and not the speed feature use_nonrd_altref_frame).
|
|
int use_alt_ref_frame = cpi->ppi->rtc_ref.set_ref_frame_config ||
|
|
cpi->sf.rt_sf.use_nonrd_altref_frame;
|
|
|
|
int use_golden_ref_frame = 1;
|
|
int use_last_ref_frame = 1;
|
|
|
|
// When the ref_frame_config is used to set the reference frame structure:
|
|
// check if LAST is used as a reference. And only remove golden and altref
|
|
// references below if last is used as a reference.
|
|
if (cpi->ppi->rtc_ref.set_ref_frame_config)
|
|
use_last_ref_frame =
|
|
cpi->ref_frame_flags & AOM_LAST_FLAG ? use_last_ref_frame : 0;
|
|
|
|
// frame_since_golden is not used when user sets the referene structure.
|
|
if (!cpi->ppi->rtc_ref.set_ref_frame_config && use_last_ref_frame &&
|
|
cpi->rc.frames_since_golden == 0 && gf_temporal_ref) {
|
|
use_golden_ref_frame = 0;
|
|
}
|
|
|
|
if (use_last_ref_frame && cpi->sf.rt_sf.short_circuit_low_temp_var &&
|
|
x->nonrd_prune_ref_frame_search) {
|
|
if (is_small_sb)
|
|
*force_skip_low_temp_var = av1_get_force_skip_low_temp_var_small_sb(
|
|
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
|
|
else
|
|
*force_skip_low_temp_var = av1_get_force_skip_low_temp_var(
|
|
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
|
|
// If force_skip_low_temp_var is set, skip golden reference.
|
|
if (*force_skip_low_temp_var) {
|
|
use_golden_ref_frame = 0;
|
|
use_alt_ref_frame = 0;
|
|
}
|
|
}
|
|
|
|
if (use_last_ref_frame &&
|
|
(x->nonrd_prune_ref_frame_search > 2 || x->force_zeromv_skip_for_blk ||
|
|
(x->nonrd_prune_ref_frame_search > 1 && bsize > BLOCK_64X64))) {
|
|
use_golden_ref_frame = 0;
|
|
use_alt_ref_frame = 0;
|
|
}
|
|
|
|
if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
|
|
get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) {
|
|
use_golden_ref_frame = 1;
|
|
use_alt_ref_frame = 0;
|
|
}
|
|
|
|
// Skip golden reference if color is set, on flat blocks with motion.
|
|
// For screen: always skip golden (if color_sensitivity_sb_g is set)
|
|
// except when x->nonrd_prune_ref_frame_search = 0. This latter flag
|
|
// may be set in the variance partition when golden is a much better
|
|
// reference than last, in which case it may not be worth skipping
|
|
// golden completely.
|
|
if (((cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
|
|
x->nonrd_prune_ref_frame_search != 0) ||
|
|
(x->source_variance < 500 &&
|
|
x->content_state_sb.source_sad_nonrd > kLowSad)) &&
|
|
(x->color_sensitivity_sb_g[0] == 1 || x->color_sensitivity_sb_g[1] == 1))
|
|
use_golden_ref_frame = 0;
|
|
|
|
// For non-screen: if golden and altref are not being selected as references
|
|
// (use_golden_ref_frame/use_alt_ref_frame = 0) check to allow golden back
|
|
// based on the sad of nearest/nearmv of LAST ref. If this block sad is large,
|
|
// keep golden as reference. Only do this for the agrressive pruning mode and
|
|
// avoid it when color is set for golden reference.
|
|
if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN &&
|
|
(cpi->ref_frame_flags & AOM_LAST_FLAG) && !use_golden_ref_frame &&
|
|
!use_alt_ref_frame && x->pred_mv_sad[LAST_FRAME] != INT_MAX &&
|
|
x->nonrd_prune_ref_frame_search > 2 &&
|
|
x->color_sensitivity_sb_g[0] == 0 && x->color_sensitivity_sb_g[1] == 0) {
|
|
int thr = (cm->width * cm->height >= 640 * 360) ? 100 : 150;
|
|
int pred = x->pred_mv_sad[LAST_FRAME] >>
|
|
(b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
|
|
if (pred > thr) use_golden_ref_frame = 1;
|
|
}
|
|
|
|
use_alt_ref_frame =
|
|
cpi->ref_frame_flags & AOM_ALT_FLAG ? use_alt_ref_frame : 0;
|
|
use_golden_ref_frame =
|
|
cpi->ref_frame_flags & AOM_GOLD_FLAG ? use_golden_ref_frame : 0;
|
|
|
|
// For spatial layers: enable golden ref if it is set by user and
|
|
// corresponds to the lower spatial layer.
|
|
if (cpi->svc.spatial_layer_id > 0 && (cpi->ref_frame_flags & AOM_GOLD_FLAG) &&
|
|
x->content_state_sb.source_sad_nonrd < kHighSad) {
|
|
const int buffslot_golden =
|
|
cpi->ppi->rtc_ref.ref_idx[GOLDEN_FRAME - LAST_FRAME];
|
|
if (cpi->svc.buffer_time_index[buffslot_golden] ==
|
|
cpi->svc.current_superframe)
|
|
use_golden_ref_frame = 1;
|
|
}
|
|
|
|
use_ref_frame[ALTREF_FRAME] = use_alt_ref_frame;
|
|
use_ref_frame[GOLDEN_FRAME] = use_golden_ref_frame;
|
|
use_ref_frame[LAST_FRAME] = use_last_ref_frame;
|
|
// For now keep this assert on, but we should remove it for svc mode,
|
|
// as the user may want to generate an intra-only frame (no inter-modes).
|
|
// Remove this assert in subsequent CL when nonrd_pickmode is tested for the
|
|
// case of intra-only frame (no references enabled).
|
|
assert(use_last_ref_frame || use_golden_ref_frame || use_alt_ref_frame);
|
|
}
|
|
|
|
// Checks whether Intra mode needs to be pruned based on
|
|
// 'intra_y_mode_bsize_mask_nrd' and 'prune_hv_pred_modes_using_blksad'
|
|
// speed features.
|
|
static INLINE bool is_prune_intra_mode(AV1_COMP *cpi, int mode_index,
|
|
int force_intra_check, BLOCK_SIZE bsize,
|
|
uint8_t segment_id,
|
|
SOURCE_SAD source_sad_nonrd,
|
|
uint8_t color_sensitivity[2]) {
|
|
const PREDICTION_MODE this_mode = intra_mode_list[mode_index];
|
|
if (mode_index > 2 || force_intra_check == 0) {
|
|
if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize]))
|
|
return true;
|
|
|
|
if (this_mode == DC_PRED) return false;
|
|
|
|
if (!cpi->sf.rt_sf.prune_hv_pred_modes_using_src_sad) return false;
|
|
|
|
const bool has_color_sensitivity =
|
|
color_sensitivity[0] && color_sensitivity[1];
|
|
if (has_color_sensitivity &&
|
|
(cpi->rc.frame_source_sad > 1.1 * cpi->rc.avg_source_sad ||
|
|
cyclic_refresh_segment_id_boosted(segment_id) ||
|
|
source_sad_nonrd > kMedSad))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*!\brief Estimates best intra mode for inter mode search
|
|
*
|
|
* \ingroup nonrd_mode_search
|
|
* \callgraph
|
|
* \callergraph
|
|
*
|
|
* Using heuristics based on best inter mode, block size, and other decides
|
|
* whether to check intra modes. If so, estimates and selects best intra mode
|
|
* from the reduced set of intra modes (max 4 intra modes checked)
|
|
*
|
|
* \param[in] cpi Top-level encoder structure
|
|
* \param[in] x Pointer to structure holding all the
|
|
* data for the current macroblock
|
|
* \param[in] bsize Current block size
|
|
* \param[in] best_early_term Flag, indicating that TX for the
|
|
* best inter mode was skipped
|
|
* \param[in] ref_cost_intra Cost of signalling intra mode
|
|
* \param[in] reuse_prediction Flag, indicating prediction re-use
|
|
* \param[in] orig_dst Original destination buffer
|
|
* \param[in] tmp_buffers Pointer to a temporary buffers for
|
|
* prediction re-use
|
|
* \param[out] this_mode_pred Pointer to store prediction buffer
|
|
* for prediction re-use
|
|
* \param[in] best_rdc Pointer to RD cost for the best
|
|
* selected intra mode
|
|
* \param[in] best_pickmode Pointer to a structure containing
|
|
* best mode picked so far
|
|
* \param[in] ctx Pointer to structure holding coding
|
|
* contexts and modes for the block
|
|
*
|
|
* \remark Nothing is returned. Instead, calculated RD cost is placed to
|
|
* \c best_rdc and best selected mode is placed to \c best_pickmode
|
|
*/
|
|
static void estimate_intra_mode(
|
|
AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int best_early_term,
|
|
unsigned int ref_cost_intra, int reuse_prediction, struct buf_2d *orig_dst,
|
|
PRED_BUFFER *tmp_buffers, PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc,
|
|
BEST_PICKMODE *best_pickmode, PICK_MODE_CONTEXT *ctx) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
|
|
const unsigned char segment_id = mi->segment_id;
|
|
const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
|
|
const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
|
|
const bool is_screen_content =
|
|
cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN;
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
|
|
const CommonQuantParams *quant_params = &cm->quant_params;
|
|
|
|
RD_STATS this_rdc;
|
|
|
|
int intra_cost_penalty = av1_get_intra_cost_penalty(
|
|
quant_params->base_qindex, quant_params->y_dc_delta_q,
|
|
cm->seq_params->bit_depth);
|
|
int64_t inter_mode_thresh =
|
|
RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0);
|
|
int perform_intra_pred = cpi->sf.rt_sf.check_intra_pred_nonrd;
|
|
int force_intra_check = 0;
|
|
// For spatial enhancement layer: turn off intra prediction if the
|
|
// previous spatial layer as golden ref is not chosen as best reference.
|
|
// only do this for temporal enhancement layer and on non-key frames.
|
|
if (cpi->svc.spatial_layer_id > 0 &&
|
|
best_pickmode->best_ref_frame != GOLDEN_FRAME &&
|
|
cpi->svc.temporal_layer_id > 0 &&
|
|
!cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
|
|
perform_intra_pred = 0;
|
|
|
|
int do_early_exit_rdthresh = 1;
|
|
|
|
uint32_t spatial_var_thresh = 50;
|
|
int motion_thresh = 32;
|
|
// Adjust thresholds to make intra mode likely tested if the other
|
|
// references (golden, alt) are skipped/not checked. For now always
|
|
// adjust for svc mode.
|
|
if (cpi->ppi->use_svc || (cpi->sf.rt_sf.use_nonrd_altref_frame == 0 &&
|
|
cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0)) {
|
|
spatial_var_thresh = 150;
|
|
motion_thresh = 0;
|
|
}
|
|
|
|
// Some adjustments to checking intra mode based on source variance.
|
|
if (x->source_variance < spatial_var_thresh) {
|
|
// If the best inter mode is large motion or non-LAST ref reduce intra cost
|
|
// penalty, so intra mode is more likely tested.
|
|
if (best_rdc->rdcost != INT64_MAX &&
|
|
(best_pickmode->best_ref_frame != LAST_FRAME ||
|
|
abs(mi->mv[0].as_mv.row) >= motion_thresh ||
|
|
abs(mi->mv[0].as_mv.col) >= motion_thresh)) {
|
|
intra_cost_penalty = intra_cost_penalty >> 2;
|
|
inter_mode_thresh =
|
|
RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0);
|
|
do_early_exit_rdthresh = 0;
|
|
}
|
|
if ((x->source_variance < AOMMAX(50, (spatial_var_thresh >> 1)) &&
|
|
x->content_state_sb.source_sad_nonrd >= kHighSad) ||
|
|
(is_screen_content && x->source_variance < 50 &&
|
|
((bsize >= BLOCK_32X32 &&
|
|
x->content_state_sb.source_sad_nonrd != kZeroSad) ||
|
|
x->color_sensitivity[0] == 1 || x->color_sensitivity[1] == 1)))
|
|
force_intra_check = 1;
|
|
// For big blocks worth checking intra (since only DC will be checked),
|
|
// even if best_early_term is set.
|
|
if (bsize >= BLOCK_32X32) best_early_term = 0;
|
|
} else if (cpi->sf.rt_sf.source_metrics_sb_nonrd &&
|
|
x->content_state_sb.source_sad_nonrd <= kLowSad) {
|
|
perform_intra_pred = 0;
|
|
}
|
|
|
|
if (best_rdc->skip_txfm && best_pickmode->best_mode_initial_skip_flag) {
|
|
if (cpi->sf.rt_sf.skip_intra_pred == 1 && best_pickmode->best_mode != NEWMV)
|
|
perform_intra_pred = 0;
|
|
else if (cpi->sf.rt_sf.skip_intra_pred == 2)
|
|
perform_intra_pred = 0;
|
|
}
|
|
|
|
if (!(best_rdc->rdcost == INT64_MAX || force_intra_check ||
|
|
(perform_intra_pred && !best_early_term &&
|
|
bsize <= cpi->sf.part_sf.max_intra_bsize))) {
|
|
return;
|
|
}
|
|
|
|
// Early exit based on RD cost calculated using known rate. When
|
|
// is_screen_content is true, more bias is given to intra modes. Hence,
|
|
// considered conservative threshold in early exit for the same.
|
|
const int64_t known_rd = is_screen_content
|
|
? CALC_BIASED_RDCOST(inter_mode_thresh)
|
|
: inter_mode_thresh;
|
|
if (known_rd > best_rdc->rdcost) return;
|
|
|
|
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
|
|
TX_SIZE intra_tx_size = AOMMIN(
|
|
AOMMIN(max_txsize_lookup[bsize],
|
|
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
|
|
TX_16X16);
|
|
if (is_screen_content && cpi->rc.high_source_sad &&
|
|
x->source_variance > spatial_var_thresh && bsize <= BLOCK_16X16)
|
|
intra_tx_size = TX_4X4;
|
|
|
|
PRED_BUFFER *const best_pred = best_pickmode->best_pred;
|
|
if (reuse_prediction && best_pred != NULL) {
|
|
const int bh = block_size_high[bsize];
|
|
const int bw = block_size_wide[bsize];
|
|
if (best_pred->data == orig_dst->buf) {
|
|
*this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)];
|
|
aom_convolve_copy(best_pred->data, best_pred->stride,
|
|
(*this_mode_pred)->data, (*this_mode_pred)->stride, bw,
|
|
bh);
|
|
best_pickmode->best_pred = *this_mode_pred;
|
|
}
|
|
}
|
|
pd->dst = *orig_dst;
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
const PREDICTION_MODE this_mode = intra_mode_list[i];
|
|
const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
|
|
const int64_t mode_rd_thresh = rd_threshes[mode_index];
|
|
|
|
if (is_prune_intra_mode(cpi, i, force_intra_check, bsize, segment_id,
|
|
x->content_state_sb.source_sad_nonrd,
|
|
x->color_sensitivity))
|
|
continue;
|
|
|
|
if (is_screen_content && cpi->sf.rt_sf.source_metrics_sb_nonrd) {
|
|
// For spatially flat blocks with zero motion only check
|
|
// DC mode.
|
|
if (x->content_state_sb.source_sad_nonrd == kZeroSad &&
|
|
x->source_variance == 0 && this_mode != DC_PRED)
|
|
continue;
|
|
// Only test Intra for big blocks if spatial_variance is small.
|
|
else if (bsize > BLOCK_32X32 && x->source_variance > 50)
|
|
continue;
|
|
}
|
|
|
|
if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh,
|
|
rd_thresh_freq_fact[mode_index]) &&
|
|
(do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) {
|
|
continue;
|
|
}
|
|
const BLOCK_SIZE uv_bsize = get_plane_block_size(
|
|
bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
|
|
|
|
mi->mode = this_mode;
|
|
mi->ref_frame[0] = INTRA_FRAME;
|
|
mi->ref_frame[1] = NONE_FRAME;
|
|
|
|
av1_invalid_rd_stats(&this_rdc);
|
|
args.mode = this_mode;
|
|
args.skippable = 1;
|
|
args.rdc = &this_rdc;
|
|
mi->tx_size = intra_tx_size;
|
|
compute_intra_yprediction(cm, this_mode, bsize, x, xd);
|
|
// Look into selecting tx_size here, based on prediction residual.
|
|
block_yrd(x, &this_rdc, &args.skippable, bsize, mi->tx_size, 0);
|
|
// TODO(kyslov@) Need to account for skippable
|
|
if (x->color_sensitivity[0]) {
|
|
av1_foreach_transformed_block_in_plane(xd, uv_bsize, 1,
|
|
estimate_block_intra, &args);
|
|
}
|
|
if (x->color_sensitivity[1]) {
|
|
av1_foreach_transformed_block_in_plane(xd, uv_bsize, 2,
|
|
estimate_block_intra, &args);
|
|
}
|
|
|
|
int mode_cost = 0;
|
|
if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) {
|
|
mode_cost +=
|
|
x->mode_costs.angle_delta_cost[this_mode - V_PRED]
|
|
[MAX_ANGLE_DELTA +
|
|
mi->angle_delta[PLANE_TYPE_Y]];
|
|
}
|
|
if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
|
|
mode_cost += x->mode_costs.filter_intra_cost[bsize][0];
|
|
}
|
|
this_rdc.rate += ref_cost_intra;
|
|
this_rdc.rate += intra_cost_penalty;
|
|
this_rdc.rate += mode_cost;
|
|
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
|
|
|
|
if (is_screen_content && cpi->sf.rt_sf.source_metrics_sb_nonrd) {
|
|
// For blocks with low spatial variance and color sad,
|
|
// favor the intra-modes, only on scene/slide change.
|
|
if (cpi->rc.high_source_sad && x->source_variance < 800 &&
|
|
(x->color_sensitivity[0] || x->color_sensitivity[1]))
|
|
this_rdc.rdcost = CALC_BIASED_RDCOST(this_rdc.rdcost);
|
|
// Otherwise bias against intra for blocks with zero
|
|
// motion and no color, on non-scene/slide changes.
|
|
else if (!cpi->rc.high_source_sad && x->source_variance > 0 &&
|
|
x->content_state_sb.source_sad_nonrd == kZeroSad &&
|
|
x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0)
|
|
this_rdc.rdcost = (3 * this_rdc.rdcost) >> 1;
|
|
}
|
|
|
|
if (this_rdc.rdcost < best_rdc->rdcost) {
|
|
*best_rdc = this_rdc;
|
|
best_pickmode->best_mode = this_mode;
|
|
best_pickmode->best_tx_size = mi->tx_size;
|
|
best_pickmode->best_ref_frame = INTRA_FRAME;
|
|
best_pickmode->best_second_ref_frame = NONE;
|
|
best_pickmode->best_mode_skip_txfm = this_rdc.skip_txfm;
|
|
if (!this_rdc.skip_txfm) {
|
|
memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip,
|
|
sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
|
|
}
|
|
mi->uv_mode = this_mode;
|
|
mi->mv[0].as_int = INVALID_MV;
|
|
mi->mv[1].as_int = INVALID_MV;
|
|
}
|
|
}
|
|
mi->tx_size = best_pickmode->best_tx_size;
|
|
}
|
|
|
|
static AOM_INLINE int is_filter_search_enabled_blk(
|
|
AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
int segment_id, int cb_pred_filter_search, InterpFilter *filt_select) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
// filt search disabled
|
|
if (!cpi->sf.rt_sf.use_nonrd_filter_search) return 0;
|
|
// filt search purely based on mode properties
|
|
if (!cb_pred_filter_search) return 1;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int enable_interp_search = 0;
|
|
if (!(xd->left_mbmi && xd->above_mbmi)) {
|
|
// neighbors info unavailable
|
|
enable_interp_search = 2;
|
|
} else if (!(is_inter_block(xd->left_mbmi) &&
|
|
is_inter_block(xd->above_mbmi))) {
|
|
// neighbor is INTRA
|
|
enable_interp_search = 2;
|
|
} else if (xd->left_mbmi->interp_filters.as_int !=
|
|
xd->above_mbmi->interp_filters.as_int) {
|
|
// filters are different
|
|
enable_interp_search = 2;
|
|
} else if ((cb_pred_filter_search == 1) &&
|
|
(xd->left_mbmi->interp_filters.as_filters.x_filter !=
|
|
EIGHTTAP_REGULAR)) {
|
|
// not regular
|
|
enable_interp_search = 2;
|
|
} else {
|
|
// enable prediction based on chessboard pattern
|
|
if (xd->left_mbmi->interp_filters.as_filters.x_filter == EIGHTTAP_SMOOTH)
|
|
*filt_select = EIGHTTAP_SMOOTH;
|
|
const int bsl = mi_size_wide_log2[bsize];
|
|
enable_interp_search =
|
|
(bool)((((mi_row + mi_col) >> bsl) +
|
|
get_chessboard_index(cm->current_frame.frame_number)) &
|
|
0x1);
|
|
if (cyclic_refresh_segment_id_boosted(segment_id)) enable_interp_search = 1;
|
|
}
|
|
return enable_interp_search;
|
|
}
|
|
|
|
static AOM_INLINE int skip_mode_by_threshold(
|
|
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, int_mv mv,
|
|
int frames_since_golden, const int *const rd_threshes,
|
|
const int *const rd_thresh_freq_fact, int64_t best_cost, int best_skip,
|
|
int extra_shift) {
|
|
int skip_this_mode = 0;
|
|
const THR_MODES mode_index = mode_idx[ref_frame][INTER_OFFSET(mode)];
|
|
int64_t mode_rd_thresh =
|
|
best_skip ? ((int64_t)rd_threshes[mode_index]) << (extra_shift + 1)
|
|
: ((int64_t)rd_threshes[mode_index]) << extra_shift;
|
|
|
|
// Increase mode_rd_thresh value for non-LAST for improved encoding
|
|
// speed
|
|
if (ref_frame != LAST_FRAME) {
|
|
mode_rd_thresh = mode_rd_thresh << 1;
|
|
if (ref_frame == GOLDEN_FRAME && frames_since_golden > 4)
|
|
mode_rd_thresh = mode_rd_thresh << (extra_shift + 1);
|
|
}
|
|
|
|
if (rd_less_than_thresh(best_cost, mode_rd_thresh,
|
|
rd_thresh_freq_fact[mode_index]))
|
|
if (mv.as_int != 0) skip_this_mode = 1;
|
|
|
|
return skip_this_mode;
|
|
}
|
|
|
|
static AOM_INLINE int skip_mode_by_low_temp(
|
|
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
|
|
CONTENT_STATE_SB content_state_sb, int_mv mv, int force_skip_low_temp_var) {
|
|
// Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var
|
|
// is set. If nearestmv for golden frame is 0, zeromv mode will be skipped
|
|
// later.
|
|
if (force_skip_low_temp_var && ref_frame != LAST_FRAME && mv.as_int != 0) {
|
|
return 1;
|
|
}
|
|
|
|
if (content_state_sb.source_sad_nonrd != kHighSad && bsize >= BLOCK_64X64 &&
|
|
force_skip_low_temp_var && mode == NEWMV) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static AOM_INLINE int skip_mode_by_bsize_and_ref_frame(
|
|
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
|
|
int extra_prune, unsigned int sse_zeromv_norm, int more_prune) {
|
|
const unsigned int thresh_skip_golden = 500;
|
|
|
|
if (ref_frame != LAST_FRAME && sse_zeromv_norm < thresh_skip_golden &&
|
|
mode == NEWMV)
|
|
return 1;
|
|
|
|
if (bsize == BLOCK_128X128 && mode == NEWMV) return 1;
|
|
|
|
// Skip testing non-LAST if this flag is set.
|
|
if (extra_prune) {
|
|
if (extra_prune > 1 && ref_frame != LAST_FRAME &&
|
|
(bsize > BLOCK_16X16 && mode == NEWMV))
|
|
return 1;
|
|
|
|
if (ref_frame != LAST_FRAME && mode == NEARMV) return 1;
|
|
|
|
if (more_prune && bsize >= BLOCK_32X32 && mode == NEARMV) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void set_color_sensitivity(AV1_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE bsize, int y_sad,
|
|
unsigned int source_variance,
|
|
struct buf_2d yv12_mb[MAX_MB_PLANE]) {
|
|
const int subsampling_x = cpi->common.seq_params->subsampling_x;
|
|
const int subsampling_y = cpi->common.seq_params->subsampling_y;
|
|
int factor = (bsize >= BLOCK_32X32) ? 2 : 3;
|
|
int shift = 3;
|
|
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
|
|
cpi->rc.high_source_sad) {
|
|
factor = 1;
|
|
shift = 6;
|
|
}
|
|
NOISE_LEVEL noise_level = kLow;
|
|
int norm_sad =
|
|
y_sad >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
|
|
unsigned int thresh_spatial = (cpi->common.width > 1920) ? 5000 : 1000;
|
|
// If the spatial source variance is high and the normalized y_sad
|
|
// is low, then y-channel is likely good for mode estimation, so keep
|
|
// color_sensitivity off. For low noise content for now, since there is
|
|
// some bdrate regression for noisy color clip.
|
|
if (cpi->noise_estimate.enabled)
|
|
noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate);
|
|
if (noise_level == kLow && source_variance > thresh_spatial &&
|
|
cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && norm_sad < 50) {
|
|
x->color_sensitivity[0] = 0;
|
|
x->color_sensitivity[1] = 0;
|
|
return;
|
|
}
|
|
const int num_planes = av1_num_planes(&cpi->common);
|
|
for (int i = 1; i < num_planes; ++i) {
|
|
if (x->color_sensitivity[i - 1] == 2 || source_variance < 50) {
|
|
struct macroblock_plane *const p = &x->plane[i];
|
|
const BLOCK_SIZE bs =
|
|
get_plane_block_size(bsize, subsampling_x, subsampling_y);
|
|
|
|
const int uv_sad = cpi->ppi->fn_ptr[bs].sdf(
|
|
p->src.buf, p->src.stride, yv12_mb[i].buf, yv12_mb[i].stride);
|
|
|
|
const int norm_uv_sad =
|
|
uv_sad >> (b_width_log2_lookup[bs] + b_height_log2_lookup[bs]);
|
|
x->color_sensitivity[i - 1] =
|
|
uv_sad > (factor * (y_sad >> shift)) && norm_uv_sad > 40;
|
|
if (source_variance < 50 && norm_uv_sad > 100)
|
|
x->color_sensitivity[i - 1] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void setup_compound_prediction(const AV1_COMMON *cm, MACROBLOCK *x,
|
|
struct buf_2d yv12_mb[8][MAX_MB_PLANE],
|
|
const int *use_ref_frame_mask,
|
|
const MV_REFERENCE_FRAME *rf,
|
|
int *ref_mv_idx) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = xd->mi[0];
|
|
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
|
|
MV_REFERENCE_FRAME ref_frame_comp;
|
|
if (!use_ref_frame_mask[rf[1]]) {
|
|
// Need to setup pred_block, if it hasn't been done in find_predictors.
|
|
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, rf[1]);
|
|
const int num_planes = av1_num_planes(cm);
|
|
if (yv12 != NULL) {
|
|
const struct scale_factors *const sf =
|
|
get_ref_scale_factors_const(cm, rf[1]);
|
|
av1_setup_pred_block(xd, yv12_mb[rf[1]], yv12, sf, sf, num_planes);
|
|
}
|
|
}
|
|
ref_frame_comp = av1_ref_frame_type(rf);
|
|
mbmi_ext->mode_context[ref_frame_comp] = 0;
|
|
mbmi_ext->ref_mv_count[ref_frame_comp] = UINT8_MAX;
|
|
av1_find_mv_refs(cm, xd, mbmi, ref_frame_comp, mbmi_ext->ref_mv_count,
|
|
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
|
|
mbmi_ext->mode_context);
|
|
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_comp);
|
|
*ref_mv_idx = mbmi->ref_mv_idx + 1;
|
|
}
|
|
|
|
static void set_compound_mode(MACROBLOCK *x, int ref_frame, int ref_frame2,
|
|
int ref_mv_idx,
|
|
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],
|
|
PREDICTION_MODE this_mode) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
mi->ref_frame[0] = ref_frame;
|
|
mi->ref_frame[1] = ref_frame2;
|
|
mi->compound_idx = 1;
|
|
mi->comp_group_idx = 0;
|
|
mi->interinter_comp.type = COMPOUND_AVERAGE;
|
|
MV_REFERENCE_FRAME ref_frame_comp = av1_ref_frame_type(mi->ref_frame);
|
|
if (this_mode == GLOBAL_GLOBALMV) {
|
|
frame_mv[this_mode][ref_frame].as_int = 0;
|
|
frame_mv[this_mode][ref_frame2].as_int = 0;
|
|
} else if (this_mode == NEAREST_NEARESTMV) {
|
|
frame_mv[this_mode][ref_frame].as_int =
|
|
xd->ref_mv_stack[ref_frame_comp][0].this_mv.as_int;
|
|
frame_mv[this_mode][ref_frame2].as_int =
|
|
xd->ref_mv_stack[ref_frame_comp][0].comp_mv.as_int;
|
|
} else if (this_mode == NEAR_NEARMV) {
|
|
frame_mv[this_mode][ref_frame].as_int =
|
|
xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].this_mv.as_int;
|
|
frame_mv[this_mode][ref_frame2].as_int =
|
|
xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].comp_mv.as_int;
|
|
}
|
|
}
|
|
|
|
// Prune compound mode if the single mode variance is lower than a fixed
|
|
// percentage of the median value.
|
|
static bool skip_comp_based_on_var(
|
|
const unsigned int (*single_vars)[REF_FRAMES], BLOCK_SIZE bsize) {
|
|
unsigned int best_var = UINT_MAX;
|
|
for (int cur_mode_idx = 0; cur_mode_idx < RTC_INTER_MODES; cur_mode_idx++) {
|
|
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
|
|
best_var = AOMMIN(best_var, single_vars[cur_mode_idx][ref_idx]);
|
|
}
|
|
}
|
|
const unsigned int thresh_64 = (unsigned int)(0.57356805f * 8659);
|
|
const unsigned int thresh_32 = (unsigned int)(0.23964763f * 4281);
|
|
|
|
// Currently, the thresh for 128 and 16 are not well-tuned. We are using the
|
|
// results from 64 and 32 as an heuristic.
|
|
switch (bsize) {
|
|
case BLOCK_128X128: return best_var < 4 * thresh_64;
|
|
case BLOCK_64X64: return best_var < thresh_64;
|
|
case BLOCK_32X32: return best_var < thresh_32;
|
|
case BLOCK_16X16: return best_var < thresh_32 / 4;
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
static AOM_FORCE_INLINE void fill_single_inter_mode_costs(
|
|
int (*single_inter_mode_costs)[REF_FRAMES], const int num_inter_modes,
|
|
const REF_MODE *reference_mode_set, const ModeCosts *mode_costs,
|
|
const int16_t *mode_context) {
|
|
bool ref_frame_used[REF_FRAMES] = { false };
|
|
for (int idx = 0; idx < num_inter_modes; idx++) {
|
|
ref_frame_used[reference_mode_set[idx].ref_frame] = true;
|
|
}
|
|
|
|
for (int this_ref_frame = LAST_FRAME; this_ref_frame < REF_FRAMES;
|
|
this_ref_frame++) {
|
|
if (!ref_frame_used[this_ref_frame]) {
|
|
continue;
|
|
}
|
|
|
|
const MV_REFERENCE_FRAME rf[2] = { this_ref_frame, NONE_FRAME };
|
|
const int16_t mode_ctx = av1_mode_context_analyzer(mode_context, rf);
|
|
for (PREDICTION_MODE this_mode = NEARESTMV; this_mode <= NEWMV;
|
|
this_mode++) {
|
|
single_inter_mode_costs[INTER_OFFSET(this_mode)][this_ref_frame] =
|
|
cost_mv_ref(mode_costs, this_mode, mode_ctx);
|
|
}
|
|
}
|
|
}
|
|
|
|
static AOM_INLINE bool is_globalmv_better(
|
|
PREDICTION_MODE this_mode, MV_REFERENCE_FRAME ref_frame, int rate_mv,
|
|
const ModeCosts *mode_costs,
|
|
const int (*single_inter_mode_costs)[REF_FRAMES],
|
|
const MB_MODE_INFO_EXT *mbmi_ext) {
|
|
const int globalmv_mode_cost =
|
|
single_inter_mode_costs[INTER_OFFSET(GLOBALMV)][ref_frame];
|
|
int this_mode_cost =
|
|
rate_mv + single_inter_mode_costs[INTER_OFFSET(this_mode)][ref_frame];
|
|
if (this_mode == NEWMV || this_mode == NEARMV) {
|
|
const MV_REFERENCE_FRAME rf[2] = { ref_frame, NONE_FRAME };
|
|
this_mode_cost += get_drl_cost(
|
|
NEWMV, 0, mbmi_ext, mode_costs->drl_mode_cost0, av1_ref_frame_type(rf));
|
|
}
|
|
return this_mode_cost > globalmv_mode_cost;
|
|
}
|
|
|
|
// Set up the mv/ref_frames etc based on the comp_index. Returns 1 if it
|
|
// succeeds, 0 if it fails.
|
|
static AOM_INLINE int setup_compound_params_from_comp_idx(
|
|
const AV1_COMP *cpi, MACROBLOCK *x, struct buf_2d yv12_mb[8][MAX_MB_PLANE],
|
|
PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *ref_frame,
|
|
MV_REFERENCE_FRAME *ref_frame2, int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],
|
|
const int *use_ref_frame_mask, int comp_index,
|
|
bool comp_use_zero_zeromv_only, MV_REFERENCE_FRAME *last_comp_ref_frame) {
|
|
const MV_REFERENCE_FRAME *rf = comp_ref_mode_set[comp_index].ref_frame;
|
|
*this_mode = comp_ref_mode_set[comp_index].pred_mode;
|
|
*ref_frame = rf[0];
|
|
*ref_frame2 = rf[1];
|
|
assert(*ref_frame == LAST_FRAME);
|
|
assert(*this_mode == GLOBAL_GLOBALMV || *this_mode == NEAREST_NEARESTMV);
|
|
if (comp_use_zero_zeromv_only && *this_mode != GLOBAL_GLOBALMV) {
|
|
return 0;
|
|
}
|
|
if (*ref_frame2 == GOLDEN_FRAME &&
|
|
(cpi->sf.rt_sf.ref_frame_comp_nonrd[0] == 0 ||
|
|
!(cpi->ref_frame_flags & AOM_GOLD_FLAG))) {
|
|
return 0;
|
|
} else if (*ref_frame2 == LAST2_FRAME &&
|
|
(cpi->sf.rt_sf.ref_frame_comp_nonrd[1] == 0 ||
|
|
!(cpi->ref_frame_flags & AOM_LAST2_FLAG))) {
|
|
return 0;
|
|
} else if (*ref_frame2 == ALTREF_FRAME &&
|
|
(cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 0 ||
|
|
!(cpi->ref_frame_flags & AOM_ALT_FLAG))) {
|
|
return 0;
|
|
}
|
|
int ref_mv_idx = 0;
|
|
if (*last_comp_ref_frame != rf[1]) {
|
|
// Only needs to be done once per reference pair.
|
|
setup_compound_prediction(&cpi->common, x, yv12_mb, use_ref_frame_mask, rf,
|
|
&ref_mv_idx);
|
|
*last_comp_ref_frame = rf[1];
|
|
}
|
|
set_compound_mode(x, *ref_frame, *ref_frame2, ref_mv_idx, frame_mv,
|
|
*this_mode);
|
|
if (*this_mode != GLOBAL_GLOBALMV &&
|
|
frame_mv[*this_mode][*ref_frame].as_int == 0 &&
|
|
frame_mv[*this_mode][*ref_frame2].as_int == 0) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static AOM_INLINE bool previous_mode_performed_poorly(
|
|
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame,
|
|
const unsigned int (*vars)[REF_FRAMES],
|
|
const int64_t (*uv_dist)[REF_FRAMES]) {
|
|
unsigned int best_var = UINT_MAX;
|
|
int64_t best_uv_dist = INT64_MAX;
|
|
for (int midx = 0; midx < RTC_INTER_MODES; midx++) {
|
|
best_var = AOMMIN(best_var, vars[midx][ref_frame]);
|
|
best_uv_dist = AOMMIN(best_uv_dist, uv_dist[midx][ref_frame]);
|
|
}
|
|
assert(best_var != UINT_MAX && "Invalid variance data.");
|
|
const float mult = 1.125f;
|
|
bool var_bad = mult * best_var < vars[INTER_OFFSET(mode)][ref_frame];
|
|
if (uv_dist[INTER_OFFSET(mode)][ref_frame] < INT64_MAX &&
|
|
best_uv_dist != uv_dist[INTER_OFFSET(mode)][ref_frame]) {
|
|
// If we have chroma info, then take it into account
|
|
var_bad &= mult * best_uv_dist < uv_dist[INTER_OFFSET(mode)][ref_frame];
|
|
}
|
|
return var_bad;
|
|
}
|
|
|
|
static AOM_INLINE bool prune_compoundmode_with_singlemode_var(
|
|
PREDICTION_MODE compound_mode, MV_REFERENCE_FRAME ref_frame,
|
|
MV_REFERENCE_FRAME ref_frame2, const int_mv (*frame_mv)[REF_FRAMES],
|
|
const uint8_t (*mode_checked)[REF_FRAMES],
|
|
const unsigned int (*vars)[REF_FRAMES],
|
|
const int64_t (*uv_dist)[REF_FRAMES]) {
|
|
const PREDICTION_MODE single_mode0 = compound_ref0_mode(compound_mode);
|
|
const PREDICTION_MODE single_mode1 = compound_ref1_mode(compound_mode);
|
|
|
|
bool first_ref_valid = false, second_ref_valid = false;
|
|
bool first_ref_bad = false, second_ref_bad = false;
|
|
if (mode_checked[single_mode0][ref_frame] &&
|
|
frame_mv[single_mode0][ref_frame].as_int ==
|
|
frame_mv[compound_mode][ref_frame].as_int &&
|
|
vars[INTER_OFFSET(single_mode0)][ref_frame] < UINT_MAX) {
|
|
first_ref_valid = true;
|
|
first_ref_bad =
|
|
previous_mode_performed_poorly(single_mode0, ref_frame, vars, uv_dist);
|
|
}
|
|
if (mode_checked[single_mode1][ref_frame2] &&
|
|
frame_mv[single_mode1][ref_frame2].as_int ==
|
|
frame_mv[compound_mode][ref_frame2].as_int &&
|
|
vars[INTER_OFFSET(single_mode1)][ref_frame2] < UINT_MAX) {
|
|
second_ref_valid = true;
|
|
second_ref_bad =
|
|
previous_mode_performed_poorly(single_mode1, ref_frame2, vars, uv_dist);
|
|
}
|
|
if (first_ref_valid && second_ref_valid) {
|
|
return first_ref_bad && second_ref_bad;
|
|
} else if (first_ref_valid || second_ref_valid) {
|
|
return first_ref_bad || second_ref_bad;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Function to setup parameters used for inter mode evaluation.
|
|
static AOM_FORCE_INLINE void set_params_nonrd_pick_inter_mode(
|
|
AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state,
|
|
TileDataEnc *tile_data, PICK_MODE_CONTEXT *ctx, RD_STATS *rd_cost,
|
|
int *force_skip_low_temp_var, int *skip_pred_mv, const int mi_row,
|
|
const int mi_col, const int gf_temporal_ref, const unsigned char segment_id,
|
|
BLOCK_SIZE bsize
|
|
#if CONFIG_AV1_TEMPORAL_DENOISING
|
|
,
|
|
int denoise_svc_pickmode
|
|
#endif
|
|
) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
const ModeCosts *mode_costs = &x->mode_costs;
|
|
(void)ctx;
|
|
|
|
for (int idx = 0; idx < RTC_INTER_MODES; idx++) {
|
|
for (int ref = 0; ref < REF_FRAMES; ref++) {
|
|
search_state->vars[idx][ref] = UINT_MAX;
|
|
search_state->uv_dist[idx][ref] = INT64_MAX;
|
|
}
|
|
}
|
|
|
|
x->color_sensitivity[0] = x->color_sensitivity_sb[0];
|
|
x->color_sensitivity[1] = x->color_sensitivity_sb[1];
|
|
init_best_pickmode(&search_state->best_pickmode);
|
|
|
|
estimate_single_ref_frame_costs(cm, xd, mode_costs, segment_id, bsize,
|
|
search_state->ref_costs_single);
|
|
|
|
memset(&search_state->mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES);
|
|
|
|
txfm_info->skip_txfm = 0;
|
|
|
|
// initialize mode decisions
|
|
av1_invalid_rd_stats(&search_state->best_rdc);
|
|
av1_invalid_rd_stats(&search_state->this_rdc);
|
|
av1_invalid_rd_stats(rd_cost);
|
|
for (int i = 0; i < REF_FRAMES; ++i) {
|
|
x->warp_sample_info[i].num = -1;
|
|
}
|
|
|
|
mi->bsize = bsize;
|
|
mi->ref_frame[0] = NONE_FRAME;
|
|
mi->ref_frame[1] = NONE_FRAME;
|
|
|
|
#if CONFIG_AV1_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity > 0) {
|
|
// if (cpi->ppi->use_svc) denoise_svc_pickmode =
|
|
// av1_denoise_svc_non_key(cpi);
|
|
if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode)
|
|
av1_denoiser_reset_frame_stats(ctx);
|
|
}
|
|
#endif
|
|
|
|
if (cpi->ref_frame_flags & AOM_LAST_FLAG)
|
|
find_predictors(cpi, x, LAST_FRAME, search_state->frame_mv, tile_data,
|
|
search_state->yv12_mb, bsize, *force_skip_low_temp_var,
|
|
x->force_zeromv_skip_for_blk);
|
|
|
|
get_ref_frame_use_mask(cpi, x, mi, mi_row, mi_col, bsize, gf_temporal_ref,
|
|
search_state->use_ref_frame_mask,
|
|
force_skip_low_temp_var);
|
|
|
|
*skip_pred_mv =
|
|
x->force_zeromv_skip_for_blk ||
|
|
(x->nonrd_prune_ref_frame_search > 2 && x->color_sensitivity[0] != 2 &&
|
|
x->color_sensitivity[1] != 2);
|
|
|
|
// Start at LAST_FRAME + 1.
|
|
for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME + 1;
|
|
ref_frame_iter <= ALTREF_FRAME; ++ref_frame_iter) {
|
|
if (search_state->use_ref_frame_mask[ref_frame_iter]) {
|
|
find_predictors(cpi, x, ref_frame_iter, search_state->frame_mv, tile_data,
|
|
search_state->yv12_mb, bsize, *force_skip_low_temp_var,
|
|
*skip_pred_mv);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Function to check the inter mode can be skipped based on mode statistics and
|
|
// speed features settings.
|
|
static AOM_FORCE_INLINE bool skip_inter_mode_nonrd(
|
|
AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state,
|
|
int64_t *thresh_sad_pred, int *force_mv_inter_layer, int *comp_pred,
|
|
PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *last_comp_ref_frame,
|
|
MV_REFERENCE_FRAME *ref_frame, MV_REFERENCE_FRAME *ref_frame2, int idx,
|
|
int svc_mv_col, int svc_mv_row, int force_skip_low_temp_var,
|
|
unsigned int sse_zeromv_norm, const int num_inter_modes,
|
|
const unsigned char segment_id, BLOCK_SIZE bsize,
|
|
bool comp_use_zero_zeromv_only, bool check_globalmv) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
const struct segmentation *const seg = &cm->seg;
|
|
const SVC *const svc = &cpi->svc;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
|
|
if (idx >= num_inter_modes) {
|
|
const int comp_index = idx - num_inter_modes;
|
|
if (!setup_compound_params_from_comp_idx(
|
|
cpi, x, search_state->yv12_mb, this_mode, ref_frame, ref_frame2,
|
|
search_state->frame_mv, search_state->use_ref_frame_mask,
|
|
comp_index, comp_use_zero_zeromv_only, last_comp_ref_frame)) {
|
|
return true;
|
|
}
|
|
*comp_pred = 1;
|
|
} else {
|
|
*this_mode = ref_mode_set[idx].pred_mode;
|
|
*ref_frame = ref_mode_set[idx].ref_frame;
|
|
*ref_frame2 = NONE_FRAME;
|
|
}
|
|
|
|
if (!*comp_pred && search_state->mode_checked[*this_mode][*ref_frame]) {
|
|
return true;
|
|
}
|
|
|
|
if (!check_globalmv && *this_mode == GLOBALMV) {
|
|
return true;
|
|
}
|
|
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_start(&ms_stat.timer1);
|
|
ms_stat.num_searches[bsize][*this_mode]++;
|
|
#endif
|
|
mi->mode = *this_mode;
|
|
mi->ref_frame[0] = *ref_frame;
|
|
mi->ref_frame[1] = *ref_frame2;
|
|
|
|
if (!search_state->use_ref_frame_mask[*ref_frame]) return true;
|
|
|
|
if (x->force_zeromv_skip_for_blk &&
|
|
((!(*this_mode == NEARESTMV &&
|
|
search_state->frame_mv[*this_mode][*ref_frame].as_int == 0) &&
|
|
*this_mode != GLOBALMV) ||
|
|
*ref_frame != LAST_FRAME))
|
|
return true;
|
|
|
|
if (cpi->sf.rt_sf.prune_compoundmode_with_singlemode_var && *comp_pred &&
|
|
prune_compoundmode_with_singlemode_var(
|
|
*this_mode, *ref_frame, *ref_frame2, search_state->frame_mv,
|
|
search_state->mode_checked, search_state->vars,
|
|
search_state->uv_dist)) {
|
|
return true;
|
|
}
|
|
|
|
*force_mv_inter_layer = 0;
|
|
if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 &&
|
|
((*ref_frame == LAST_FRAME && svc->skip_mvsearch_last) ||
|
|
(*ref_frame == GOLDEN_FRAME && svc->skip_mvsearch_gf) ||
|
|
(*ref_frame == ALTREF_FRAME && svc->skip_mvsearch_altref))) {
|
|
// Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row),
|
|
// otherwise set NEWMV to (svc_mv_col, svc_mv_row).
|
|
// Skip newmv and filter search.
|
|
*force_mv_inter_layer = 1;
|
|
if (*this_mode == NEWMV) {
|
|
search_state->frame_mv[*this_mode][*ref_frame].as_mv.col = svc_mv_col;
|
|
search_state->frame_mv[*this_mode][*ref_frame].as_mv.row = svc_mv_row;
|
|
} else if (search_state->frame_mv[*this_mode][*ref_frame].as_mv.col !=
|
|
svc_mv_col ||
|
|
search_state->frame_mv[*this_mode][*ref_frame].as_mv.row !=
|
|
svc_mv_row) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If the segment reference frame feature is enabled then do nothing if the
|
|
// current ref frame is not allowed.
|
|
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
|
|
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)(*ref_frame))
|
|
return true;
|
|
|
|
// For screen content: for base spatial layer only for now.
|
|
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
|
|
cpi->svc.spatial_layer_id == 0) {
|
|
// If source_sad is computed: skip non-zero motion
|
|
// check for stationary (super)blocks. Otherwise if superblock
|
|
// has motion skip the modes with zero motion for flat blocks,
|
|
// and color is not set.
|
|
// For the latter condition: the same condition should apply
|
|
// to newmv if (0, 0), so this latter condition is repeated
|
|
// below after search_new_mv.
|
|
if (cpi->sf.rt_sf.source_metrics_sb_nonrd) {
|
|
if ((search_state->frame_mv[*this_mode][*ref_frame].as_int != 0 &&
|
|
x->content_state_sb.source_sad_nonrd == kZeroSad) ||
|
|
(search_state->frame_mv[*this_mode][*ref_frame].as_int == 0 &&
|
|
x->content_state_sb.source_sad_nonrd != kZeroSad &&
|
|
((x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) ||
|
|
cpi->rc.high_source_sad) &&
|
|
x->source_variance == 0))
|
|
return true;
|
|
}
|
|
// Skip NEWMV search for flat blocks.
|
|
if (*this_mode == NEWMV && x->source_variance < 100) return true;
|
|
// Skip non-LAST for color on flat blocks.
|
|
if (*ref_frame > LAST_FRAME && x->source_variance == 0 &&
|
|
(x->color_sensitivity[0] == 1 || x->color_sensitivity[1] == 1))
|
|
return true;
|
|
}
|
|
|
|
if (skip_mode_by_bsize_and_ref_frame(
|
|
*this_mode, *ref_frame, bsize, x->nonrd_prune_ref_frame_search,
|
|
sse_zeromv_norm, cpi->sf.rt_sf.nonrd_aggressive_skip))
|
|
return true;
|
|
|
|
if (skip_mode_by_low_temp(*this_mode, *ref_frame, bsize, x->content_state_sb,
|
|
search_state->frame_mv[*this_mode][*ref_frame],
|
|
force_skip_low_temp_var))
|
|
return true;
|
|
|
|
// Disable this drop out case if the ref frame segment level feature is
|
|
// enabled for this segment. This is to prevent the possibility that we
|
|
// end up unable to pick any mode.
|
|
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
|
|
// Check for skipping GOLDEN and ALTREF based pred_mv_sad.
|
|
if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0 &&
|
|
x->pred_mv_sad[*ref_frame] != INT_MAX && *ref_frame != LAST_FRAME) {
|
|
if ((int64_t)(x->pred_mv_sad[*ref_frame]) > *thresh_sad_pred) return true;
|
|
}
|
|
}
|
|
|
|
// Check for skipping NEARMV based on pred_mv_sad.
|
|
if (*this_mode == NEARMV && x->pred_mv1_sad[*ref_frame] != INT_MAX &&
|
|
x->pred_mv1_sad[*ref_frame] > (x->pred_mv0_sad[*ref_frame] << 1))
|
|
return true;
|
|
|
|
if (!*comp_pred) {
|
|
if (skip_mode_by_threshold(
|
|
*this_mode, *ref_frame,
|
|
search_state->frame_mv[*this_mode][*ref_frame],
|
|
cpi->rc.frames_since_golden, cpi->rd.threshes[segment_id][bsize],
|
|
x->thresh_freq_fact[bsize], search_state->best_rdc.rdcost,
|
|
search_state->best_pickmode.best_mode_skip_txfm,
|
|
(cpi->sf.rt_sf.nonrd_aggressive_skip ? 1 : 0)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data,
|
|
MACROBLOCK *x, RD_STATS *rd_cost,
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
|
|
AV1_COMMON *const cm = &cpi->common;
|
|
SVC *const svc = &cpi->svc;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mi = xd->mi[0];
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
|
|
const InterpFilter filter_ref = cm->features.interp_filter;
|
|
const InterpFilter default_interp_filter = EIGHTTAP_REGULAR;
|
|
MV_REFERENCE_FRAME ref_frame, ref_frame2;
|
|
const unsigned char segment_id = mi->segment_id;
|
|
int best_early_term = 0;
|
|
int force_skip_low_temp_var = 0;
|
|
unsigned int sse_zeromv_norm = UINT_MAX;
|
|
int skip_pred_mv = 0;
|
|
const int num_inter_modes = NUM_INTER_MODES;
|
|
bool check_globalmv = cpi->sf.rt_sf.check_globalmv_on_single_ref;
|
|
PRED_BUFFER tmp_buffer[4];
|
|
DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 128 * 128]);
|
|
PRED_BUFFER *this_mode_pred = NULL;
|
|
const int reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd &&
|
|
cm->seq_params->bit_depth == AOM_BITS_8;
|
|
InterModeSearchStateNonrd search_state;
|
|
av1_zero(search_state.use_ref_frame_mask);
|
|
|
|
const int bh = block_size_high[bsize];
|
|
const int bw = block_size_wide[bsize];
|
|
const int pixels_in_block = bh * bw;
|
|
const int num_8x8_blocks = ctx->num_4x4_blk / 4;
|
|
struct buf_2d orig_dst = pd->dst;
|
|
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
|
|
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_start(&ms_stat.bsize_timer);
|
|
#endif
|
|
int64_t thresh_sad_pred = INT64_MAX;
|
|
const int mi_row = xd->mi_row;
|
|
const int mi_col = xd->mi_col;
|
|
int svc_mv_col = 0;
|
|
int svc_mv_row = 0;
|
|
int force_mv_inter_layer = 0;
|
|
bool comp_use_zero_zeromv_only = 0;
|
|
int tot_num_comp_modes = NUM_COMP_INTER_MODES_RT;
|
|
#if CONFIG_AV1_TEMPORAL_DENOISING
|
|
const int denoise_recheck_zeromv = 1;
|
|
AV1_PICKMODE_CTX_DEN ctx_den;
|
|
int64_t zero_last_cost_orig = INT64_MAX;
|
|
int denoise_svc_pickmode = 1;
|
|
const int resize_pending = is_frame_resize_pending(cpi);
|
|
#endif
|
|
const ModeCosts *mode_costs = &x->mode_costs;
|
|
|
|
if (reuse_inter_pred) {
|
|
for (int i = 0; i < 3; i++) {
|
|
tmp_buffer[i].data = &pred_buf[pixels_in_block * i];
|
|
tmp_buffer[i].stride = bw;
|
|
tmp_buffer[i].in_use = 0;
|
|
}
|
|
tmp_buffer[3].data = pd->dst.buf;
|
|
tmp_buffer[3].stride = pd->dst.stride;
|
|
tmp_buffer[3].in_use = 0;
|
|
}
|
|
|
|
const int gf_temporal_ref = is_same_gf_and_last_scale(cm);
|
|
|
|
// If the lower spatial layer uses an averaging filter for downsampling
|
|
// (phase = 8), the target decimated pixel is shifted by (1/2, 1/2) relative
|
|
// to source, so use subpel motion vector to compensate. The nonzero motion
|
|
// is half pixel shifted to left and top, so (-4, -4). This has more effect
|
|
// on higher resolutions, so condition it on that for now.
|
|
if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 &&
|
|
svc->downsample_filter_phase[svc->spatial_layer_id - 1] == 8 &&
|
|
cm->width * cm->height > 640 * 480) {
|
|
svc_mv_col = -4;
|
|
svc_mv_row = -4;
|
|
}
|
|
|
|
// Setup parameters used for inter mode evaluation.
|
|
set_params_nonrd_pick_inter_mode(
|
|
cpi, x, &search_state, tile_data, ctx, rd_cost, &force_skip_low_temp_var,
|
|
&skip_pred_mv, mi_row, mi_col, gf_temporal_ref, segment_id, bsize
|
|
#if CONFIG_AV1_TEMPORAL_DENOISING
|
|
,
|
|
denoise_svc_pickmode
|
|
#endif
|
|
);
|
|
|
|
if (cpi->sf.rt_sf.use_comp_ref_nonrd && is_comp_ref_allowed(bsize)) {
|
|
// Only search compound if bsize \gt BLOCK_16X16.
|
|
if (bsize > BLOCK_16X16) {
|
|
comp_use_zero_zeromv_only =
|
|
cpi->sf.rt_sf.check_only_zero_zeromv_on_large_blocks;
|
|
} else {
|
|
tot_num_comp_modes = 0;
|
|
}
|
|
} else {
|
|
tot_num_comp_modes = 0;
|
|
}
|
|
|
|
if (x->pred_mv_sad[LAST_FRAME] != INT_MAX) {
|
|
thresh_sad_pred = ((int64_t)x->pred_mv_sad[LAST_FRAME]) << 1;
|
|
// Increase threshold for less aggressive pruning.
|
|
if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search == 1)
|
|
thresh_sad_pred += (x->pred_mv_sad[LAST_FRAME] >> 2);
|
|
}
|
|
|
|
const int use_model_yrd_large = get_model_rd_flag(cpi, xd, bsize);
|
|
|
|
// decide block-level interp filter search flags:
|
|
// filter_search_enabled_blk:
|
|
// 0: disabled
|
|
// 1: filter search depends on mode properties
|
|
// 2: filter search forced since prediction is unreliable
|
|
// cb_pred_filter_search 0: disabled cb prediction
|
|
InterpFilter filt_select = EIGHTTAP_REGULAR;
|
|
const int cb_pred_filter_search =
|
|
x->content_state_sb.source_sad_nonrd > kVeryLowSad
|
|
? cpi->sf.interp_sf.cb_pred_filter_search
|
|
: 0;
|
|
const int filter_search_enabled_blk =
|
|
is_filter_search_enabled_blk(cpi, x, mi_row, mi_col, bsize, segment_id,
|
|
cb_pred_filter_search, &filt_select);
|
|
|
|
#if COLLECT_PICK_MODE_STAT
|
|
ms_stat.num_blocks[bsize]++;
|
|
#endif
|
|
init_mbmi(mi, DC_PRED, NONE_FRAME, NONE_FRAME, cm);
|
|
mi->tx_size = AOMMIN(
|
|
AOMMIN(max_txsize_lookup[bsize],
|
|
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
|
|
TX_16X16);
|
|
|
|
fill_single_inter_mode_costs(search_state.single_inter_mode_costs,
|
|
num_inter_modes, ref_mode_set, mode_costs,
|
|
mbmi_ext->mode_context);
|
|
|
|
MV_REFERENCE_FRAME last_comp_ref_frame = NONE_FRAME;
|
|
|
|
// Initialize inter prediction params at block level for single reference
|
|
// mode.
|
|
InterPredParams inter_pred_params_sr;
|
|
init_inter_block_params(&inter_pred_params_sr, pd->width, pd->height,
|
|
mi_row * MI_SIZE, mi_col * MI_SIZE, pd->subsampling_x,
|
|
pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd),
|
|
/*is_intrabc=*/0);
|
|
inter_pred_params_sr.conv_params =
|
|
get_conv_params(/*do_average=*/0, AOM_PLANE_Y, xd->bd);
|
|
|
|
for (int idx = 0; idx < num_inter_modes + tot_num_comp_modes; ++idx) {
|
|
// If we are at the first compound mode, and the single modes already
|
|
// perform well, then end the search.
|
|
if (cpi->sf.rt_sf.skip_compound_based_on_var && idx == num_inter_modes &&
|
|
skip_comp_based_on_var(search_state.vars, bsize)) {
|
|
break;
|
|
}
|
|
|
|
int rate_mv = 0;
|
|
int is_skippable;
|
|
int this_early_term = 0;
|
|
int skip_this_mv = 0;
|
|
int comp_pred = 0;
|
|
unsigned int var = UINT_MAX;
|
|
PREDICTION_MODE this_mode;
|
|
RD_STATS nonskip_rdc;
|
|
av1_invalid_rd_stats(&nonskip_rdc);
|
|
memset(txfm_info->blk_skip, 0,
|
|
sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks);
|
|
|
|
// Check the inter mode can be skipped based on mode statistics and speed
|
|
// features settings.
|
|
if (skip_inter_mode_nonrd(
|
|
cpi, x, &search_state, &thresh_sad_pred, &force_mv_inter_layer,
|
|
&comp_pred, &this_mode, &last_comp_ref_frame, &ref_frame,
|
|
&ref_frame2, idx, svc_mv_col, svc_mv_row, force_skip_low_temp_var,
|
|
sse_zeromv_norm, num_inter_modes, segment_id, bsize,
|
|
comp_use_zero_zeromv_only, check_globalmv))
|
|
continue;
|
|
|
|
// Select prediction reference frames.
|
|
for (int i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].pre[0] = search_state.yv12_mb[ref_frame][i];
|
|
if (comp_pred) xd->plane[i].pre[1] = search_state.yv12_mb[ref_frame2][i];
|
|
}
|
|
|
|
mi->ref_frame[0] = ref_frame;
|
|
mi->ref_frame[1] = ref_frame2;
|
|
set_ref_ptrs(cm, xd, ref_frame, ref_frame2);
|
|
|
|
if (this_mode == NEWMV && !force_mv_inter_layer) {
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_start(&ms_stat.timer2);
|
|
#endif
|
|
const bool skip_newmv = search_new_mv(
|
|
cpi, x, search_state.frame_mv, ref_frame, gf_temporal_ref, bsize,
|
|
mi_row, mi_col, &rate_mv, &search_state.best_rdc);
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_mark(&ms_stat.timer2);
|
|
ms_stat.ms_time[bsize][this_mode] +=
|
|
aom_usec_timer_elapsed(&ms_stat.timer2);
|
|
#endif
|
|
if (skip_newmv) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
for (PREDICTION_MODE inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV;
|
|
inter_mv_mode++) {
|
|
if (inter_mv_mode == this_mode) continue;
|
|
if (!comp_pred && search_state.mode_checked[inter_mv_mode][ref_frame] &&
|
|
search_state.frame_mv[this_mode][ref_frame].as_int ==
|
|
search_state.frame_mv[inter_mv_mode][ref_frame].as_int) {
|
|
skip_this_mv = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (skip_this_mv && !comp_pred) continue;
|
|
|
|
// For screen: for spatially flat blocks with non-zero motion,
|
|
// skip newmv if the motion vector is (0, 0), and color is not set.
|
|
if (this_mode == NEWMV &&
|
|
cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
|
|
cpi->svc.spatial_layer_id == 0 &&
|
|
cpi->sf.rt_sf.source_metrics_sb_nonrd) {
|
|
if (search_state.frame_mv[this_mode][ref_frame].as_int == 0 &&
|
|
x->content_state_sb.source_sad_nonrd != kZeroSad &&
|
|
((x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) ||
|
|
cpi->rc.high_source_sad) &&
|
|
x->source_variance == 0)
|
|
continue;
|
|
}
|
|
|
|
mi->mode = this_mode;
|
|
mi->mv[0].as_int = search_state.frame_mv[this_mode][ref_frame].as_int;
|
|
mi->mv[1].as_int = 0;
|
|
if (comp_pred)
|
|
mi->mv[1].as_int = search_state.frame_mv[this_mode][ref_frame2].as_int;
|
|
|
|
if (reuse_inter_pred) {
|
|
if (!this_mode_pred) {
|
|
this_mode_pred = &tmp_buffer[3];
|
|
} else {
|
|
this_mode_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)];
|
|
pd->dst.buf = this_mode_pred->data;
|
|
pd->dst.stride = bw;
|
|
}
|
|
}
|
|
|
|
if (idx == 0 && !skip_pred_mv) {
|
|
// Set color sensitivity on first tested mode only.
|
|
// Use y-sad already computed in find_predictors: take the sad with motion
|
|
// vector closest to 0; the uv-sad computed below in set_color_sensitivity
|
|
// is for zeromv.
|
|
// For screen: first check if golden reference is being used, if so,
|
|
// force color_sensitivity on if the color sensitivity for sb_g is on.
|
|
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
|
|
search_state.use_ref_frame_mask[GOLDEN_FRAME]) {
|
|
if (x->color_sensitivity_sb_g[0] == 1) x->color_sensitivity[0] = 1;
|
|
if (x->color_sensitivity_sb_g[1] == 1) x->color_sensitivity[1] = 1;
|
|
} else {
|
|
int y_sad = x->pred_mv0_sad[LAST_FRAME];
|
|
if (x->pred_mv1_sad[LAST_FRAME] != INT_MAX &&
|
|
(abs(search_state.frame_mv[NEARMV][LAST_FRAME].as_mv.col) +
|
|
abs(search_state.frame_mv[NEARMV][LAST_FRAME].as_mv.row)) <
|
|
(abs(search_state.frame_mv[NEARESTMV][LAST_FRAME].as_mv.col) +
|
|
abs(search_state.frame_mv[NEARESTMV][LAST_FRAME].as_mv.row)))
|
|
y_sad = x->pred_mv1_sad[LAST_FRAME];
|
|
set_color_sensitivity(cpi, x, bsize, y_sad, x->source_variance,
|
|
search_state.yv12_mb[LAST_FRAME]);
|
|
}
|
|
}
|
|
mi->motion_mode = SIMPLE_TRANSLATION;
|
|
#if !CONFIG_REALTIME_ONLY
|
|
if (cpi->oxcf.motion_mode_cfg.allow_warped_motion) {
|
|
calc_num_proj_ref(cpi, x, mi);
|
|
}
|
|
#endif
|
|
// set variance threshold for compound more pruning
|
|
unsigned int var_threshold = UINT_MAX;
|
|
if (cpi->sf.rt_sf.prune_compoundmode_with_singlecompound_var && comp_pred &&
|
|
use_model_yrd_large) {
|
|
const PREDICTION_MODE single_mode0 = compound_ref0_mode(this_mode);
|
|
const PREDICTION_MODE single_mode1 = compound_ref1_mode(this_mode);
|
|
var_threshold =
|
|
AOMMIN(var_threshold,
|
|
search_state.vars[INTER_OFFSET(single_mode0)][ref_frame]);
|
|
var_threshold =
|
|
AOMMIN(var_threshold,
|
|
search_state.vars[INTER_OFFSET(single_mode1)][ref_frame2]);
|
|
}
|
|
// decide interpolation filter, build prediction signal, get sse
|
|
const bool is_mv_subpel =
|
|
(mi->mv[0].as_mv.row & 0x07) || (mi->mv[0].as_mv.col & 0x07);
|
|
const bool enable_filt_search_this_mode =
|
|
(filter_search_enabled_blk == 2)
|
|
? true
|
|
: (filter_search_enabled_blk && !force_mv_inter_layer &&
|
|
!comp_pred &&
|
|
(ref_frame == LAST_FRAME || !x->nonrd_prune_ref_frame_search));
|
|
if (is_mv_subpel && enable_filt_search_this_mode) {
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_start(&ms_stat.timer2);
|
|
#endif
|
|
search_filter_ref(cpi, x, &search_state.this_rdc, &inter_pred_params_sr,
|
|
mi_row, mi_col, tmp_buffer, bsize, reuse_inter_pred,
|
|
&this_mode_pred, &this_early_term, &var,
|
|
use_model_yrd_large,
|
|
search_state.best_pickmode.best_sse, comp_pred);
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_mark(&ms_stat.timer2);
|
|
ms_stat.ifs_time[bsize][this_mode] +=
|
|
aom_usec_timer_elapsed(&ms_stat.timer2);
|
|
#endif
|
|
#if !CONFIG_REALTIME_ONLY
|
|
} else if (cpi->oxcf.motion_mode_cfg.allow_warped_motion &&
|
|
this_mode == NEWMV) {
|
|
search_motion_mode(cpi, x, &search_state.this_rdc, mi_row, mi_col, bsize,
|
|
&this_early_term, use_model_yrd_large, &rate_mv,
|
|
search_state.best_pickmode.best_sse);
|
|
if (this_mode == NEWMV) {
|
|
search_state.frame_mv[this_mode][ref_frame] = mi->mv[0];
|
|
}
|
|
#endif
|
|
} else {
|
|
mi->interp_filters =
|
|
(filter_ref == SWITCHABLE)
|
|
? av1_broadcast_interp_filter(default_interp_filter)
|
|
: av1_broadcast_interp_filter(filter_ref);
|
|
if (force_mv_inter_layer)
|
|
mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
|
|
|
|
// If it is sub-pel motion and cb_pred_filter_search is enabled, select
|
|
// the pre-decided filter
|
|
if (is_mv_subpel && cb_pred_filter_search)
|
|
mi->interp_filters = av1_broadcast_interp_filter(filt_select);
|
|
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_start(&ms_stat.timer2);
|
|
#endif
|
|
if (!comp_pred) {
|
|
SubpelParams subpel_params;
|
|
// Initialize inter mode level params for single reference mode.
|
|
init_inter_mode_params(&mi->mv[0].as_mv, &inter_pred_params_sr,
|
|
&subpel_params, xd->block_ref_scale_factors[0],
|
|
pd->pre->width, pd->pre->height);
|
|
av1_enc_build_inter_predictor_y_nonrd(xd, &inter_pred_params_sr,
|
|
&subpel_params);
|
|
} else {
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
|
|
0);
|
|
}
|
|
|
|
if (use_model_yrd_large) {
|
|
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
|
|
&search_state.this_rdc, &this_early_term, 0,
|
|
search_state.best_pickmode.best_sse, &var,
|
|
var_threshold);
|
|
} else {
|
|
model_rd_for_sb_y(cpi, bsize, x, xd, &search_state.this_rdc, &var, 0,
|
|
&this_early_term);
|
|
}
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_mark(&ms_stat.timer2);
|
|
ms_stat.model_rd_time[bsize][this_mode] +=
|
|
aom_usec_timer_elapsed(&ms_stat.timer2);
|
|
#endif
|
|
}
|
|
// update variance for single mode
|
|
if (!comp_pred) {
|
|
search_state.vars[INTER_OFFSET(this_mode)][ref_frame] = var;
|
|
if (search_state.frame_mv[this_mode][ref_frame].as_int == 0) {
|
|
search_state.vars[INTER_OFFSET(GLOBALMV)][ref_frame] = var;
|
|
}
|
|
}
|
|
// prune compound mode based on single mode var threshold
|
|
if (comp_pred && var > var_threshold) {
|
|
if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
|
|
continue;
|
|
}
|
|
|
|
if (ref_frame == LAST_FRAME &&
|
|
search_state.frame_mv[this_mode][ref_frame].as_int == 0) {
|
|
sse_zeromv_norm = (unsigned int)(search_state.this_rdc.sse >>
|
|
(b_width_log2_lookup[bsize] +
|
|
b_height_log2_lookup[bsize]));
|
|
}
|
|
|
|
if (cpi->sf.rt_sf.sse_early_term_inter_search &&
|
|
early_term_inter_search_with_sse(
|
|
cpi->sf.rt_sf.sse_early_term_inter_search, bsize,
|
|
search_state.this_rdc.sse, search_state.best_pickmode.best_sse,
|
|
this_mode)) {
|
|
if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
|
|
continue;
|
|
}
|
|
|
|
#if COLLECT_PICK_MODE_STAT
|
|
ms_stat.num_nonskipped_searches[bsize][this_mode]++;
|
|
#endif
|
|
|
|
const int skip_ctx = av1_get_skip_txfm_context(xd);
|
|
const int skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][1];
|
|
const int no_skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][0];
|
|
const int64_t sse_y = search_state.this_rdc.sse;
|
|
if (this_early_term) {
|
|
search_state.this_rdc.skip_txfm = 1;
|
|
search_state.this_rdc.rate = skip_txfm_cost;
|
|
search_state.this_rdc.dist = search_state.this_rdc.sse << 4;
|
|
} else {
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_start(&ms_stat.timer2);
|
|
#endif
|
|
block_yrd(x, &search_state.this_rdc, &is_skippable, bsize, mi->tx_size,
|
|
1);
|
|
if (search_state.this_rdc.skip_txfm ||
|
|
RDCOST(x->rdmult, search_state.this_rdc.rate,
|
|
search_state.this_rdc.dist) >=
|
|
RDCOST(x->rdmult, 0, search_state.this_rdc.sse)) {
|
|
if (!search_state.this_rdc.skip_txfm) {
|
|
// Need to store "real" rdc for possible future use if UV rdc
|
|
// disallows tx skip
|
|
nonskip_rdc = search_state.this_rdc;
|
|
nonskip_rdc.rate += no_skip_txfm_cost;
|
|
}
|
|
search_state.this_rdc.rate = skip_txfm_cost;
|
|
search_state.this_rdc.skip_txfm = 1;
|
|
search_state.this_rdc.dist = search_state.this_rdc.sse;
|
|
} else {
|
|
search_state.this_rdc.rate += no_skip_txfm_cost;
|
|
}
|
|
if ((x->color_sensitivity[0] || x->color_sensitivity[1])) {
|
|
RD_STATS rdc_uv;
|
|
const BLOCK_SIZE uv_bsize = get_plane_block_size(
|
|
bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
|
|
if (x->color_sensitivity[0]) {
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
|
|
AOM_PLANE_U, AOM_PLANE_U);
|
|
}
|
|
if (x->color_sensitivity[1]) {
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
|
|
AOM_PLANE_V, AOM_PLANE_V);
|
|
}
|
|
const int64_t sse_uv =
|
|
model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, 1, 2);
|
|
search_state.this_rdc.sse += sse_uv;
|
|
// Restore Y rdc if UV rdc disallows txfm skip
|
|
if (search_state.this_rdc.skip_txfm && !rdc_uv.skip_txfm &&
|
|
nonskip_rdc.rate != INT_MAX)
|
|
search_state.this_rdc = nonskip_rdc;
|
|
if (!comp_pred) {
|
|
search_state.uv_dist[INTER_OFFSET(this_mode)][ref_frame] =
|
|
rdc_uv.dist;
|
|
}
|
|
search_state.this_rdc.rate += rdc_uv.rate;
|
|
search_state.this_rdc.dist += rdc_uv.dist;
|
|
search_state.this_rdc.skip_txfm =
|
|
search_state.this_rdc.skip_txfm && rdc_uv.skip_txfm;
|
|
}
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_mark(&ms_stat.timer2);
|
|
ms_stat.txfm_time[bsize][this_mode] +=
|
|
aom_usec_timer_elapsed(&ms_stat.timer2);
|
|
#endif
|
|
}
|
|
PREDICTION_MODE this_best_mode = this_mode;
|
|
|
|
// TODO(kyslov) account for UV prediction cost
|
|
search_state.this_rdc.rate += rate_mv;
|
|
if (comp_pred) {
|
|
const int16_t mode_ctx =
|
|
av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
|
|
search_state.this_rdc.rate +=
|
|
cost_mv_ref(mode_costs, this_mode, mode_ctx);
|
|
} else {
|
|
// If the current mode has zeromv but is not GLOBALMV, compare the rate
|
|
// cost. If GLOBALMV is cheaper, use GLOBALMV instead.
|
|
if (this_mode != GLOBALMV &&
|
|
search_state.frame_mv[this_mode][ref_frame].as_int ==
|
|
search_state.frame_mv[GLOBALMV][ref_frame].as_int) {
|
|
if (is_globalmv_better(this_mode, ref_frame, rate_mv, mode_costs,
|
|
search_state.single_inter_mode_costs,
|
|
mbmi_ext)) {
|
|
this_best_mode = GLOBALMV;
|
|
}
|
|
}
|
|
|
|
search_state.this_rdc.rate +=
|
|
search_state
|
|
.single_inter_mode_costs[INTER_OFFSET(this_best_mode)][ref_frame];
|
|
}
|
|
|
|
if (!comp_pred && search_state.frame_mv[this_mode][ref_frame].as_int == 0 &&
|
|
var < UINT_MAX) {
|
|
search_state.vars[INTER_OFFSET(GLOBALMV)][ref_frame] = var;
|
|
}
|
|
|
|
search_state.this_rdc.rate += search_state.ref_costs_single[ref_frame];
|
|
|
|
search_state.this_rdc.rdcost = RDCOST(x->rdmult, search_state.this_rdc.rate,
|
|
search_state.this_rdc.dist);
|
|
if (cpi->oxcf.rc_cfg.mode == AOM_CBR && !comp_pred) {
|
|
newmv_diff_bias(
|
|
xd, this_best_mode, &search_state.this_rdc, bsize,
|
|
search_state.frame_mv[this_best_mode][ref_frame].as_mv.row,
|
|
search_state.frame_mv[this_best_mode][ref_frame].as_mv.col,
|
|
cpi->speed, x->source_variance, x->content_state_sb);
|
|
}
|
|
#if CONFIG_AV1_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode &&
|
|
cpi->denoiser.denoising_level > kDenLowLow) {
|
|
av1_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx);
|
|
// Keep track of zero_last cost.
|
|
if (ref_frame == LAST_FRAME &&
|
|
search_state.frame_mv[this_mode][ref_frame].as_int == 0)
|
|
zero_last_cost_orig = search_state.this_rdc.rdcost;
|
|
}
|
|
#else
|
|
(void)sse_y;
|
|
#endif
|
|
|
|
search_state.mode_checked[this_mode][ref_frame] = 1;
|
|
search_state.mode_checked[this_best_mode][ref_frame] = 1;
|
|
|
|
if (check_globalmv) {
|
|
int32_t abs_mv =
|
|
abs(search_state.frame_mv[this_best_mode][ref_frame].as_mv.row) +
|
|
abs(search_state.frame_mv[this_best_mode][ref_frame].as_mv.col);
|
|
// Early exit check: if the magnitude of this_best_mode's mv is small
|
|
// enough, we skip GLOBALMV check in the next loop iteration.
|
|
if (abs_mv < 2) {
|
|
check_globalmv = false;
|
|
}
|
|
}
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_mark(&ms_stat.timer1);
|
|
ms_stat.nonskipped_search_times[bsize][this_mode] +=
|
|
aom_usec_timer_elapsed(&ms_stat.timer1);
|
|
#endif
|
|
if (search_state.this_rdc.rdcost < search_state.best_rdc.rdcost) {
|
|
search_state.best_rdc = search_state.this_rdc;
|
|
best_early_term = this_early_term;
|
|
search_state.best_pickmode.best_sse = sse_y;
|
|
search_state.best_pickmode.best_mode = this_best_mode;
|
|
search_state.best_pickmode.best_motion_mode = mi->motion_mode;
|
|
search_state.best_pickmode.wm_params = mi->wm_params;
|
|
search_state.best_pickmode.num_proj_ref = mi->num_proj_ref;
|
|
search_state.best_pickmode.best_pred_filter = mi->interp_filters;
|
|
search_state.best_pickmode.best_tx_size = mi->tx_size;
|
|
search_state.best_pickmode.best_ref_frame = ref_frame;
|
|
search_state.best_pickmode.best_second_ref_frame = ref_frame2;
|
|
search_state.best_pickmode.best_mode_skip_txfm =
|
|
search_state.this_rdc.skip_txfm;
|
|
search_state.best_pickmode.best_mode_initial_skip_flag =
|
|
(nonskip_rdc.rate == INT_MAX && search_state.this_rdc.skip_txfm);
|
|
if (!search_state.best_pickmode.best_mode_skip_txfm) {
|
|
memcpy(search_state.best_pickmode.blk_skip, txfm_info->blk_skip,
|
|
sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks);
|
|
}
|
|
|
|
// This is needed for the compound modes.
|
|
search_state.frame_mv_best[this_best_mode][ref_frame].as_int =
|
|
search_state.frame_mv[this_best_mode][ref_frame].as_int;
|
|
if (ref_frame2 > NONE_FRAME) {
|
|
search_state.frame_mv_best[this_best_mode][ref_frame2].as_int =
|
|
search_state.frame_mv[this_best_mode][ref_frame2].as_int;
|
|
}
|
|
|
|
if (reuse_inter_pred) {
|
|
free_pred_buffer(search_state.best_pickmode.best_pred);
|
|
search_state.best_pickmode.best_pred = this_mode_pred;
|
|
}
|
|
} else {
|
|
if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
|
|
}
|
|
if (best_early_term && (idx > 0 || cpi->sf.rt_sf.nonrd_aggressive_skip)) {
|
|
txfm_info->skip_txfm = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mi->mode = search_state.best_pickmode.best_mode;
|
|
mi->motion_mode = search_state.best_pickmode.best_motion_mode;
|
|
mi->wm_params = search_state.best_pickmode.wm_params;
|
|
mi->num_proj_ref = search_state.best_pickmode.num_proj_ref;
|
|
mi->interp_filters = search_state.best_pickmode.best_pred_filter;
|
|
mi->tx_size = search_state.best_pickmode.best_tx_size;
|
|
memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size));
|
|
mi->ref_frame[0] = search_state.best_pickmode.best_ref_frame;
|
|
mi->mv[0].as_int =
|
|
search_state
|
|
.frame_mv_best[search_state.best_pickmode.best_mode]
|
|
[search_state.best_pickmode.best_ref_frame]
|
|
.as_int;
|
|
mi->mv[1].as_int = 0;
|
|
if (search_state.best_pickmode.best_second_ref_frame > INTRA_FRAME) {
|
|
mi->ref_frame[1] = search_state.best_pickmode.best_second_ref_frame;
|
|
mi->mv[1].as_int =
|
|
search_state
|
|
.frame_mv_best[search_state.best_pickmode.best_mode]
|
|
[search_state.best_pickmode.best_second_ref_frame]
|
|
.as_int;
|
|
}
|
|
// Perform intra prediction search, if the best SAD is above a certain
|
|
// threshold.
|
|
mi->angle_delta[PLANE_TYPE_Y] = 0;
|
|
mi->angle_delta[PLANE_TYPE_UV] = 0;
|
|
mi->filter_intra_mode_info.use_filter_intra = 0;
|
|
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_start(&ms_stat.timer1);
|
|
ms_stat.num_searches[bsize][DC_PRED]++;
|
|
ms_stat.num_nonskipped_searches[bsize][DC_PRED]++;
|
|
#endif
|
|
|
|
if (!x->force_zeromv_skip_for_blk)
|
|
estimate_intra_mode(cpi, x, bsize, best_early_term,
|
|
search_state.ref_costs_single[INTRA_FRAME],
|
|
reuse_inter_pred, &orig_dst, tmp_buffer,
|
|
&this_mode_pred, &search_state.best_rdc,
|
|
&search_state.best_pickmode, ctx);
|
|
|
|
int skip_idtx_palette =
|
|
(x->color_sensitivity[0] || x->color_sensitivity[1]) &&
|
|
x->content_state_sb.source_sad_nonrd != kZeroSad &&
|
|
!cpi->rc.high_source_sad;
|
|
|
|
// Check for IDTX: based only on Y channel, so avoid when color_sensitivity
|
|
// is set.
|
|
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && !skip_idtx_palette &&
|
|
!cpi->oxcf.txfm_cfg.use_inter_dct_only && !x->force_zeromv_skip_for_blk &&
|
|
is_inter_mode(search_state.best_pickmode.best_mode) &&
|
|
(!cpi->sf.rt_sf.prune_idtx_nonrd ||
|
|
(cpi->sf.rt_sf.prune_idtx_nonrd && bsize <= BLOCK_32X32 &&
|
|
search_state.best_pickmode.best_mode_skip_txfm != 1 &&
|
|
x->source_variance > 200))) {
|
|
RD_STATS idtx_rdc;
|
|
av1_init_rd_stats(&idtx_rdc);
|
|
int is_skippable;
|
|
this_mode_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)];
|
|
pd->dst.buf = this_mode_pred->data;
|
|
pd->dst.stride = bw;
|
|
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0);
|
|
block_yrd_idtx(x, &idtx_rdc, &is_skippable, bsize, mi->tx_size);
|
|
int64_t idx_rdcost = RDCOST(x->rdmult, idtx_rdc.rate, idtx_rdc.dist);
|
|
if (idx_rdcost < search_state.best_rdc.rdcost) {
|
|
// Keep the skip_txfm off if the color_sensitivity is set.
|
|
if (x->color_sensitivity[0] || x->color_sensitivity[1])
|
|
idtx_rdc.skip_txfm = 0;
|
|
search_state.best_pickmode.tx_type = IDTX;
|
|
search_state.best_rdc.rdcost = idx_rdcost;
|
|
search_state.best_pickmode.best_mode_skip_txfm = idtx_rdc.skip_txfm;
|
|
if (!idtx_rdc.skip_txfm) {
|
|
memcpy(search_state.best_pickmode.blk_skip, txfm_info->blk_skip,
|
|
sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks);
|
|
}
|
|
xd->tx_type_map[0] = search_state.best_pickmode.tx_type;
|
|
memset(ctx->tx_type_map, search_state.best_pickmode.tx_type,
|
|
ctx->num_4x4_blk);
|
|
memset(xd->tx_type_map, search_state.best_pickmode.tx_type,
|
|
ctx->num_4x4_blk);
|
|
}
|
|
pd->dst = orig_dst;
|
|
}
|
|
|
|
int try_palette =
|
|
!skip_idtx_palette && cpi->oxcf.tool_cfg.enable_palette &&
|
|
av1_allow_palette(cpi->common.features.allow_screen_content_tools,
|
|
mi->bsize);
|
|
try_palette = try_palette &&
|
|
is_mode_intra(search_state.best_pickmode.best_mode) &&
|
|
x->source_variance > 0 && !x->force_zeromv_skip_for_blk &&
|
|
(cpi->rc.high_source_sad || x->source_variance > 500);
|
|
|
|
if (try_palette) {
|
|
const unsigned int intra_ref_frame_cost =
|
|
search_state.ref_costs_single[INTRA_FRAME];
|
|
|
|
av1_search_palette_mode_luma(cpi, x, bsize, intra_ref_frame_cost, ctx,
|
|
&search_state.this_rdc,
|
|
search_state.best_rdc.rdcost);
|
|
if (search_state.this_rdc.rdcost < search_state.best_rdc.rdcost) {
|
|
search_state.best_pickmode.pmi = mi->palette_mode_info;
|
|
search_state.best_pickmode.best_mode = DC_PRED;
|
|
mi->mv[0].as_int = 0;
|
|
search_state.best_rdc.rate = search_state.this_rdc.rate;
|
|
search_state.best_rdc.dist = search_state.this_rdc.dist;
|
|
search_state.best_rdc.rdcost = search_state.this_rdc.rdcost;
|
|
search_state.best_pickmode.best_mode_skip_txfm =
|
|
search_state.this_rdc.skip_txfm;
|
|
// Keep the skip_txfm off if the color_sensitivity is set.
|
|
if (x->color_sensitivity[0] || x->color_sensitivity[1])
|
|
search_state.this_rdc.skip_txfm = 0;
|
|
if (!search_state.this_rdc.skip_txfm) {
|
|
memcpy(ctx->blk_skip, txfm_info->blk_skip,
|
|
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
|
|
}
|
|
if (xd->tx_type_map[0] != DCT_DCT)
|
|
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
|
|
}
|
|
}
|
|
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_mark(&ms_stat.timer1);
|
|
ms_stat.nonskipped_search_times[bsize][DC_PRED] +=
|
|
aom_usec_timer_elapsed(&ms_stat.timer1);
|
|
#endif
|
|
|
|
pd->dst = orig_dst;
|
|
if (try_palette) mi->palette_mode_info = search_state.best_pickmode.pmi;
|
|
mi->mode = search_state.best_pickmode.best_mode;
|
|
mi->ref_frame[0] = search_state.best_pickmode.best_ref_frame;
|
|
mi->ref_frame[1] = search_state.best_pickmode.best_second_ref_frame;
|
|
txfm_info->skip_txfm = search_state.best_pickmode.best_mode_skip_txfm;
|
|
if (!txfm_info->skip_txfm) {
|
|
// For inter modes: copy blk_skip from best_pickmode, which is
|
|
// defined for 8x8 blocks. If palette or intra mode was selected
|
|
// as best then blk_skip is already copied into the ctx.
|
|
if (search_state.best_pickmode.best_mode >= INTRA_MODE_END)
|
|
memcpy(ctx->blk_skip, search_state.best_pickmode.blk_skip,
|
|
sizeof(search_state.best_pickmode.blk_skip[0]) * num_8x8_blocks);
|
|
}
|
|
if (has_second_ref(mi)) {
|
|
mi->comp_group_idx = 0;
|
|
mi->compound_idx = 1;
|
|
mi->interinter_comp.type = COMPOUND_AVERAGE;
|
|
}
|
|
|
|
if (!is_inter_block(mi)) {
|
|
mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS);
|
|
}
|
|
|
|
if (reuse_inter_pred && search_state.best_pickmode.best_pred != NULL) {
|
|
PRED_BUFFER *const best_pred = search_state.best_pickmode.best_pred;
|
|
if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) {
|
|
aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
|
|
pd->dst.stride, bw, bh);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_AV1_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity > 0 && resize_pending == 0 &&
|
|
denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow &&
|
|
cpi->denoiser.reset == 0) {
|
|
AV1_DENOISER_DECISION decision = COPY_BLOCK;
|
|
ctx->sb_skip_denoising = 0;
|
|
av1_pickmode_ctx_den_update(
|
|
&ctx_den, zero_last_cost_orig, search_state.ref_costs_single,
|
|
search_state.frame_mv, reuse_inter_pred, &search_state.best_pickmode);
|
|
av1_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision,
|
|
gf_temporal_ref);
|
|
if (denoise_recheck_zeromv)
|
|
recheck_zeromv_after_denoising(
|
|
cpi, mi, x, xd, decision, &ctx_den, search_state.yv12_mb,
|
|
&search_state.best_rdc, &search_state.best_pickmode, bsize, mi_row,
|
|
mi_col);
|
|
search_state.best_pickmode.best_ref_frame = ctx_den.best_ref_frame;
|
|
}
|
|
#endif
|
|
|
|
if (cpi->sf.inter_sf.adaptive_rd_thresh && !has_second_ref(mi)) {
|
|
THR_MODES best_mode_idx =
|
|
mode_idx[search_state.best_pickmode.best_ref_frame]
|
|
[mode_offset(mi->mode)];
|
|
if (search_state.best_pickmode.best_ref_frame == INTRA_FRAME) {
|
|
// Only consider the modes that are included in the intra_mode_list.
|
|
int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE);
|
|
for (int i = 0; i < intra_modes; i++) {
|
|
update_thresh_freq_fact(cpi, x, bsize, INTRA_FRAME, best_mode_idx,
|
|
intra_mode_list[i]);
|
|
}
|
|
} else {
|
|
PREDICTION_MODE this_mode;
|
|
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
|
|
update_thresh_freq_fact(cpi, x, bsize,
|
|
search_state.best_pickmode.best_ref_frame,
|
|
best_mode_idx, this_mode);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
store_coding_context(x, ctx, mi->mode);
|
|
#else
|
|
store_coding_context(x, ctx);
|
|
#endif // CONFIG_INTERNAL_STATS
|
|
|
|
#if COLLECT_PICK_MODE_STAT
|
|
aom_usec_timer_mark(&ms_stat.bsize_timer);
|
|
ms_stat.total_block_times[bsize] +=
|
|
aom_usec_timer_elapsed(&ms_stat.bsize_timer);
|
|
print_time(&ms_stat, bsize, cm->mi_params.mi_rows, cm->mi_params.mi_cols,
|
|
mi_row, mi_col);
|
|
#endif // COLLECT_PICK_MODE_STAT
|
|
|
|
*rd_cost = search_state.best_rdc;
|
|
}
|