unplugged-system/external/rappor/analysis/R/decode_ngrams.R

378 lines
14 KiB
R
Executable File

# Copyright 2014 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file has functions that aid in the estimation of a distribution when the
# dictionary is unknown. There are functions for estimating pairwise joint
# ngram distributions, pruning out false positives, and combining the two
# steps.
FindPairwiseCandidates <- function(report_data, N, ngram_params, params) {
# Finds the pairwise most likely ngrams.
#
# Args:
# report_data: Object containing data relevant to reports:
# $inds: The indices of reports collected using various pairs
# $cohorts: The cohort of each report
# $map: The map used for all the ngrams
# $reports: The reports used for each ngram and full string
# N: Number of reports collected
# ngram_params: Parameters related to ngram size
# params: Parameter list.
#
# Returns:
# List: list of matrices, list of pairwise distributions.
inds <- report_data$inds
cohorts <- report_data$cohorts
num_ngrams_collected <- ngram_params$num_ngrams_collected
map <- report_data$map
reports <- report_data$reports
# Cycle over all the unique pairs of ngrams being collected
found_candidates <- list()
# Generate the map list to be used for all ngrams
maps <- lapply(1:num_ngrams_collected, function(x) map)
num_candidate_ngrams <- length(inds)
.ComputeDist <- function(i, inds, cohorts, reports, maps, params,
num_ngrams_collected) {
library(glmnet)
ind <- inds[[i]]
cohort_subset <- lapply(1:num_ngrams_collected, function(x)
cohorts[ind])
report_subset <- reports[[i]]
new_dist <- ComputeDistributionEM(report_subset,
cohort_subset,
maps, ignore_other = FALSE,
params = params, estimate_var = FALSE)
new_dist
}
# Compute the pairwise distributions (could be parallelized)
dists <- lapply(seq(num_candidate_ngrams), function(i)
.ComputeDist(i, inds, cohorts, reports, maps,
params, num_ngrams_collected))
dists_null <- sapply(dists, function(x) is.null(x))
if (any(dists_null)) {
return (list(found_candidates = list(), dists = dists))
}
cat("Found the pairwise ngram distributions.\n")
# Find the threshold for choosing "significant" ngram pairs
f <- params$f; q <- params$q; p <- params$p
q2 <- .5 * f * (p + q) + (1 - f) * q
p2 <- .5 * f * (p + q) + (1 - f) * p
std_dev_counts <- sqrt(p2 * (1 - p2) * N) / (q2 - p2)
(threshold <- std_dev_counts / N)
threshold <- 0.04
# Filter joints to remove infrequently co-occurring ngrams.
candidate_strs <- lapply(1:num_candidate_ngrams, function(i) {
fit <- dists[[i]]$fit
edges <- which(fit > threshold, arr.ind = TRUE, FALSE)
# Recover the list of strings that seem significant
found_candidates <- sapply(1:ncol(edges), function(x) {
chunks <- sapply(edges[, x],
function(j) dimnames(fit)[[x]][j])
chunks
})
# sapply returns either "character" vector (for n=1) or a matrix. Convert
# it to a matrix. This can be seen as follows:
#
# > class(sapply(1:5, function(x) "a"))
# [1] "character"
# > class(sapply(1:5, function(x) c("a", "b")))
# [1] "matrix"
found_candidates <- rbind(found_candidates)
# Remove the "others"
others <- which(found_candidates == "Other")
if (length(others) > 0) {
other <- which(found_candidates == "Other", arr.ind = TRUE)[, 1]
# drop = FALSE necessary to keep it a matrix
found_candidates <- found_candidates[-other, , drop = FALSE]
}
found_candidates
})
if (any(lapply(found_candidates, function(x) length(x)) == 0)) {
return (NULL)
}
list(candidate_strs = candidate_strs, dists = dists)
}
FindFeasibleStrings <- function(found_candidates, pairings, num_ngrams,
ngram_size) {
# Uses the list of strings found by the pairwise comparisons to build
# a list of full feasible strings. This relies on the iterative,
# graph-based approach.
#
# Args:
# found_candidates: list of candidates found by each pairwise decoding
# pairings: Matrix of size 2x(num_ngrams choose 2) listing all the
# ngram position pairings.
# num_ngrams: The total number of ngrams per word.
# ngram_size: Number of characters per ngram
#
# Returns:
# List of full string candidates.
# Which ngram pairs are adjacent, i.e. of the form (i,i+1)
adjacent <- sapply(seq(num_ngrams - 1), function(x) {
c(1 + (x - 1) * ngram_size, x * ngram_size + 1)
})
adjacent_pairs <- apply(adjacent, 2, function(x) {
which(apply(pairings, 1, function(y) identical(y, x)))
})
# The first set of candidates are ngrams found in positions 1 and 2
active_cands <- found_candidates[[adjacent_pairs[1]]]
if (class(active_cands) == "list") {
return (list())
} else {
active_cands <- as.data.frame(active_cands)
}
# Now check successive ngrams to find consistent combinations
# i.e. after ngrams 1-2, check 2-3, 3-4, 4-5, etc.
for (i in 2:length(adjacent_pairs)) {
if (nrow(active_cands) == 0) {
return (list())
}
new_cands <- found_candidates[[adjacent_pairs[i]]]
new_cands <- as.data.frame(new_cands)
# Builds the set of possible candidates based only on ascending
# candidate pairs
active_cands <- BuildCandidates(active_cands, new_cands)
}
if (nrow(active_cands) == 0) {
return (list())
}
# Now refine these candidates using non-adjacent bigrams
remaining <- (1:(num_ngrams * (num_ngrams - 1) / 2))[-c(1, adjacent_pairs)]
# For each non-adjacent pair, make sure that all the candidates are
# consistent (in this phase, candidates can ONLY be eliminated)
for (i in remaining) {
new_cands <- found_candidates[[i]]
new_cands <- as.data.frame(new_cands)
# Prune out all candidates that do not agree with new_cands
active_cands <- PruneCandidates(active_cands, pairings[i, ],
ngram_size,
new_cands = new_cands)
}
# Consolidate the string ngrams into a full string representation
if (length(active_cands) > 0) {
active_cands <- sort(apply(active_cands, 1,
function(x) paste0(x, collapse = "")))
}
unname(active_cands)
}
BuildCandidates <- function(active_cands, new_cands) {
# Takes in a data frame where each row is a valid sequence of ngrams
# checks which of the new_cands ngram pairs are consistent with
# the original active_cands ngram sequence.
#
# Args:
# active_cands: data frame of ngram sequence candidates (1 candidate
# sequence per row)
# new_cands: An rx2 data frame with a new list of candidate ngram
# pairs that might fit in with the previous list of candidates
#
# Returns:
# Updated active_cands, with another column if valid extensions are
# found.
# Get the trailing ngrams from the current candidates
to_check <- as.vector(tail(t(active_cands), n = 1))
# Check which of the elements in to_check are leading ngrams among the
# new candidates
present <- sapply(to_check, function(x) any(x == new_cands))
# Remove the strings that are not represented among the new candidates
to_check <- to_check[present]
# Now insert the new candidates where they belong
active_cands <- active_cands[present, , drop = FALSE]
active_cands <- cbind(active_cands, col = NA)
num_cands <- nrow(active_cands)
hit_list <- c()
for (j in 1:num_cands) {
inds <- which(new_cands[, 1] == to_check[j])
if (length(inds) == 0) {
hit_list <- c(hit_list, j)
next
}
# If there are multiple candidates fitting with an ngram, include
# each /full/ string as a candidate
extra <- length(inds) - 1
if (extra > 0) {
rep_inds <- c(j, (new_num_cands + 1):(new_num_cands + extra))
to_paste <- active_cands[j, ]
# Add the new candidates to the bottom
for (p in 1:extra) {
active_cands <- rbind(active_cands, to_paste)
}
} else {
rep_inds <- c(j)
}
active_cands[rep_inds, ncol(active_cands)] <-
as.vector(new_cands[inds, 2])
new_num_cands <- nrow(active_cands)
}
# If there were some false candidates in the original set, remove them
if (length(hit_list) > 0) {
active_cands <- active_cands[-hit_list, , drop = FALSE]
}
active_cands
}
PruneCandidates <- function(active_cands, pairing, ngram_size, new_cands) {
# Takes in a data frame where each row is a valid sequence of ngrams
# checks which of the new_cands ngram pairs are consistent with
# the original active_cands ngram sequence. This can ONLY remove
# candidates presented in active_cands.
#
# Args:
# active_cands: data frame of ngram sequence candidates (1 candidate
# sequence per row)
# pairing: A length-2 list storing which two ngrams are measured
# ngram_size: Number of characters per ngram
# new_cands: An rx2 data frame with a new list of candidate ngram
# pairs that might fit in with the previous list of candidates
#
# Returns:
# Updated active_cands, with a reduced number of rows.
# Convert the pairing to an ngram index
cols <- sapply(pairing, function(x) (x - 1) / ngram_size + 1)
cands_to_check <- active_cands[, cols, drop = FALSE]
# Find the candidates that are inconsistent with the new data
hit_list <- sapply(1:nrow(cands_to_check), function(j) {
to_kill <- FALSE
if (nrow(new_cands) == 0) {
return (TRUE)
}
if (!any(apply(new_cands, 1, function(x)
all(cands_to_check[j, , drop = FALSE] == x)))) {
to_kill <- TRUE
}
to_kill
})
# Determine which rows are false positives
hit_indices <- which(hit_list)
# Remove the false positives
if (length(hit_indices) > 0) {
active_cands <- active_cands[-hit_indices, ]
}
active_cands
}
EstimateDictionary <- function(report_data, N, ngram_params, params) {
# Takes in a list of report data and returns a list of string
# estimates of the dictionary.
#
# Args:
# report_data: Object containing data relevant to reports:
# $inds: The indices of reports collected using various pairs
# $cohorts: The cohort of each report
# $map: THe map used for all the ngrams
# $reports: The reports used for each ngram and full string
# N: the number of individuals sending reports
# ngram_params: Parameters related to ngram length, etc
# params: Parameter vector with RAPPOR noise levels, cohorts, etc
#
# Returns:
# List: list of found candidates, list of pairwise candidates
pairwise_candidates <- FindPairwiseCandidates(report_data, N,
ngram_params,
params)$candidate_strs
cat("Found the pairwise candidates. \n")
if (is.null(pairwise_candidates)) {
return (list())
}
found_candidates <- FindFeasibleStrings(pairwise_candidates,
report_data$pairings,
ngram_params$num_ngrams,
ngram_params$ngram_size)
cat("Found all the candidates. \n")
list(found_candidates = found_candidates,
pairwise_candidates = pairwise_candidates)
}
WriteKPartiteGraph <- function(conn, pairwise_candidates, pairings, num_ngrams,
ngram_size) {
# Args:
# conn: R connection to write to. Should be opened with mode w+.
# pairwise_candidates: list of matrices. Each matrix represents a subgraph;
# it contains the edges between partitions i and j, so there are (k choose
# 2) matrices. Each matrix has dimension 2 x E, where E is the number of
# edges.
# pairings: 2 x (k choose 2) matrix of character positions. Each row
# corresponds to a subgraph; it has 1-based character index of partitions
# i and j.
# num_ngrams: length of pairwise_candidates, or the number of partitions in
# the k-partite graph
# File Format:
#
# num_partitions 3
# ngram_size 2
# 0.ab 1.cd
# 0.ab 2.ef
#
# The first line specifies the number of partitions (k).
# The remaining lines are edges, where each node is <partition>.<bigram>.
#
# Partitions are numbered from 0. The partition of the left node will be
# less than the partition of the right node.
# First two lines are metadata
cat(sprintf('num_partitions %d\n', num_ngrams), file = conn)
cat(sprintf('ngram_size %d\n', ngram_size), file = conn)
for (i in 1:length(pairwise_candidates)) {
# The two pairwise_candidates for this subgraph.
# Turn 1-based character positions into 0-based partition numbers,
# e.g. (3, 5) -> (1, 2)
pos1 <- pairings[[i, 1]]
pos2 <- pairings[[i, 2]]
part1 <- (pos1 - 1) / ngram_size
part2 <- (pos2 - 1) / ngram_size
cat(sprintf("Writing partition (%d, %d)\n", part1, part2))
p <- pairwise_candidates[[i]]
# each row is an edge
for (j in 1:nrow(p)) {
n1 <- p[[j, 1]]
n2 <- p[[j, 2]]
line <- sprintf('edge %d.%s %d.%s\n', part1, n1, part2, n2)
# NOTE: It would be faster to preallocate 'lines', but we would have to
# make a two passes through pairwise_candidates.
cat(line, file = conn)
}
}
}