unplugged-system/cts/apps/CameraITS/utils/opencv_processing_utils.py

860 lines
32 KiB
Python

# Copyright 2016 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processing utilities using openCV."""
import logging
import math
import os
import pathlib
import cv2
import numpy
import capture_request_utils
import error_util
import image_processing_utils
ANGLE_CHECK_TOL = 1 # degrees
ANGLE_NUM_MIN = 10 # Minimum number of angles for find_angle() to be valid
TEST_IMG_DIR = os.path.join(os.environ['CAMERA_ITS_TOP'], 'test_images')
CHART_FILE = os.path.join(TEST_IMG_DIR, 'ISO12233.png')
CHART_HEIGHT_RFOV = 13.5 # cm
CHART_HEIGHT_WFOV = 9.5 # cm
CHART_DISTANCE_RFOV = 31.0 # cm
CHART_DISTANCE_WFOV = 22.0 # cm
CHART_SCALE_RTOL = 0.1
CHART_SCALE_START = 0.65
CHART_SCALE_STOP = 1.35
CHART_SCALE_STEP = 0.025
CIRCLE_AR_ATOL = 0.1 # circle aspect ratio tolerance
CIRCLISH_ATOL = 0.10 # contour area vs ideal circle area & aspect ratio TOL
CIRCLISH_LOW_RES_ATOL = 0.15 # loosen for low res images
CIRCLE_MIN_PTS = 20
CIRCLE_RADIUS_NUMPTS_THRESH = 2 # contour num_pts/radius: empirically ~3x
CIRCLE_COLOR_ATOL = 0.05 # circle color fill tolerance
CV2_LINE_THICKNESS = 3 # line thickness for drawing on images
CV2_RED = (255, 0, 0) # color in cv2 to draw lines
CV2_HOME_DIRECTORY = os.path.dirname(cv2.__file__)
CV2_ALTERNATE_DIRECTORY = pathlib.Path(CV2_HOME_DIRECTORY).parents[3]
HAARCASCADE_FILE_NAME = 'haarcascade_frontalface_default.xml'
FOV_THRESH_TELE25 = 25
FOV_THRESH_TELE40 = 40
FOV_THRESH_TELE = 60
FOV_THRESH_WFOV = 90
LOW_RES_IMG_THRESH = 320 * 240
RGB_GRAY_WEIGHTS = (0.299, 0.587, 0.114) # RGB to Gray conversion matrix
SCALE_RFOV_IN_WFOV_BOX = 0.67
SCALE_TELE_IN_WFOV_BOX = 0.5
SCALE_TELE_IN_RFOV_BOX = 0.67
SCALE_TELE40_IN_WFOV_BOX = 0.33
SCALE_TELE40_IN_RFOV_BOX = 0.5
SCALE_TELE25_IN_RFOV_BOX = 0.33
SQUARE_AREA_MIN_REL = 0.05 # Minimum size for square relative to image area
SQUARE_CROP_MARGIN = 0 # Set to aid detection of QR codes
SQUARE_TOL = 0.05 # Square W vs H mismatch RTOL
SQUARISH_RTOL = 0.10
SQUARISH_AR_RTOL = 0.10
VGA_HEIGHT = 480
VGA_WIDTH = 640
def convert_to_gray(img):
"""Returns openCV grayscale image.
Args:
img: A numpy image.
Returns:
An openCV image converted to grayscale.
"""
return numpy.dot(img[..., :3], RGB_GRAY_WEIGHTS)
def convert_to_y(img):
"""Returns a Y image from a BGR image.
Args:
img: An openCV image.
Returns:
An openCV image converted to Y.
"""
y, _, _ = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2YUV))
return y
def binarize_image(img_gray):
"""Returns a binarized image based on cv2 thresholds.
Args:
img_gray: A grayscale openCV image.
Returns:
An openCV image binarized to 0 (black) and 255 (white).
"""
_, img_bw = cv2.threshold(numpy.uint8(img_gray), 0, 255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return img_bw
def _load_opencv_haarcascade_file():
"""Return Haar Cascade file for face detection."""
for cv2_directory in (CV2_HOME_DIRECTORY, CV2_ALTERNATE_DIRECTORY,):
for path, _, files in os.walk(cv2_directory):
if HAARCASCADE_FILE_NAME in files:
haarcascade_file = os.path.join(path, HAARCASCADE_FILE_NAME)
logging.debug('Haar Cascade file location: %s', haarcascade_file)
return haarcascade_file
raise error_util.CameraItsError('haarcascade_frontalface_default.xml was '
f'not found in {CV2_HOME_DIRECTORY} '
f'or {CV2_ALTERNATE_DIRECTORY}')
def find_opencv_faces(img, scale_factor, min_neighbors):
"""Finds face rectangles with openCV.
Args:
img: numpy array; 3-D RBG image with [0,1] values
scale_factor: float, specifies how much image size is reduced at each scale
min_neighbors: int, specifies minimum number of neighbors to keep rectangle
Returns:
List of rectangles with faces
"""
# prep opencv
opencv_haarcascade_file = _load_opencv_haarcascade_file()
face_cascade = cv2.CascadeClassifier(opencv_haarcascade_file)
img_255 = img * 255
img_gray = cv2.cvtColor(img_255.astype(numpy.uint8), cv2.COLOR_RGB2GRAY)
# find face rectangles with opencv
faces_opencv = face_cascade.detectMultiScale(
img_gray, scale_factor, min_neighbors)
logging.debug('%s', str(faces_opencv))
return faces_opencv
def find_all_contours(img):
cv2_version = cv2.__version__
logging.debug('cv2_version: %s', cv2_version)
if cv2_version.startswith('3.'): # OpenCV 3.x
_, contours, _ = cv2.findContours(img, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
else: # OpenCV 2.x and 4.x
contours, _ = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return contours
def calc_chart_scaling(chart_distance, camera_fov):
"""Returns charts scaling factor.
Args:
chart_distance: float; distance in cm from camera of displayed chart
camera_fov: float; camera field of view.
Returns:
chart_scaling: float; scaling factor for chart
"""
chart_scaling = 1.0
camera_fov = float(camera_fov)
if (FOV_THRESH_TELE < camera_fov < FOV_THRESH_WFOV and
math.isclose(
chart_distance, CHART_DISTANCE_WFOV, rel_tol=CHART_SCALE_RTOL)):
chart_scaling = SCALE_RFOV_IN_WFOV_BOX
elif (FOV_THRESH_TELE40 < camera_fov <= FOV_THRESH_TELE and
math.isclose(
chart_distance, CHART_DISTANCE_WFOV, rel_tol=CHART_SCALE_RTOL)):
chart_scaling = SCALE_TELE_IN_WFOV_BOX
elif (camera_fov <= FOV_THRESH_TELE40 and
math.isclose(chart_distance, CHART_DISTANCE_WFOV, rel_tol=CHART_SCALE_RTOL)):
chart_scaling = SCALE_TELE40_IN_WFOV_BOX
elif (camera_fov <= FOV_THRESH_TELE25 and
(math.isclose(
chart_distance, CHART_DISTANCE_RFOV, rel_tol=CHART_SCALE_RTOL) or
chart_distance > CHART_DISTANCE_RFOV)):
chart_scaling = SCALE_TELE25_IN_RFOV_BOX
elif (camera_fov <= FOV_THRESH_TELE40 and
math.isclose(
chart_distance, CHART_DISTANCE_RFOV, rel_tol=CHART_SCALE_RTOL)):
chart_scaling = SCALE_TELE40_IN_RFOV_BOX
elif (camera_fov <= FOV_THRESH_TELE and
math.isclose(
chart_distance, CHART_DISTANCE_RFOV, rel_tol=CHART_SCALE_RTOL)):
chart_scaling = SCALE_TELE_IN_RFOV_BOX
return chart_scaling
def scale_img(img, scale=1.0):
"""Scale image based on a real number scale factor."""
dim = (int(img.shape[1] * scale), int(img.shape[0] * scale))
return cv2.resize(img.copy(), dim, interpolation=cv2.INTER_AREA)
def gray_scale_img(img):
"""Return gray scale version of image."""
if len(img.shape) == 2:
img_gray = img.copy()
elif len(img.shape) == 3:
if img.shape[2] == 1:
img_gray = img[:, :, 0].copy()
else:
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img_gray
class Chart(object):
"""Definition for chart object.
Defines PNG reference file, chart, size, distance and scaling range.
"""
def __init__(
self,
cam,
props,
log_path,
chart_file=None,
height=None,
distance=None,
scale_start=None,
scale_stop=None,
scale_step=None,
rotation=None):
"""Initial constructor for class.
Args:
cam: open ITS session
props: camera properties object
log_path: log path to store the captured images.
chart_file: str; absolute path to png file of chart
height: float; height in cm of displayed chart
distance: float; distance in cm from camera of displayed chart
scale_start: float; start value for scaling for chart search
scale_stop: float; stop value for scaling for chart search
scale_step: float; step value for scaling for chart search
rotation: clockwise rotation in degrees (multiple of 90) or None
"""
self._file = chart_file or CHART_FILE
if math.isclose(
distance, CHART_DISTANCE_RFOV, rel_tol=CHART_SCALE_RTOL):
self._height = height or CHART_HEIGHT_RFOV
self._distance = distance
else:
self._height = height or CHART_HEIGHT_WFOV
self._distance = CHART_DISTANCE_WFOV
self._scale_start = scale_start or CHART_SCALE_START
self._scale_stop = scale_stop or CHART_SCALE_STOP
self._scale_step = scale_step or CHART_SCALE_STEP
self.opt_val = None
self.locate(cam, props, log_path, rotation)
def _set_scale_factors_to_one(self):
"""Set scale factors to 1.0 for skipped tests."""
self.wnorm = 1.0
self.hnorm = 1.0
self.xnorm = 0.0
self.ynorm = 0.0
self.scale = 1.0
def _calc_scale_factors(self, cam, props, fmt, log_path, rotation):
"""Take an image with s, e, & fd to find the chart location.
Args:
cam: An open its session.
props: Properties of cam
fmt: Image format for the capture
log_path: log path to save the captured images.
rotation: clockwise rotation of template in degrees (multiple of 90) or
None
Returns:
template: numpy array; chart template for locator
img_3a: numpy array; RGB image for chart location
scale_factor: float; scaling factor for chart search
"""
req = capture_request_utils.auto_capture_request()
cap_chart = image_processing_utils.stationary_lens_cap(cam, req, fmt)
img_3a = image_processing_utils.convert_capture_to_rgb_image(
cap_chart, props)
img_3a = image_processing_utils.rotate_img_per_argv(img_3a)
af_scene_name = os.path.join(log_path, 'af_scene.jpg')
image_processing_utils.write_image(img_3a, af_scene_name)
template = cv2.imread(self._file, cv2.IMREAD_ANYDEPTH)
if rotation is not None:
logging.debug('Rotating template by %d degrees', rotation)
template = numpy.rot90(template, k=rotation / 90)
focal_l = cap_chart['metadata']['android.lens.focalLength']
pixel_pitch = (
props['android.sensor.info.physicalSize']['height'] / img_3a.shape[0])
logging.debug('Chart distance: %.2fcm', self._distance)
logging.debug('Chart height: %.2fcm', self._height)
logging.debug('Focal length: %.2fmm', focal_l)
logging.debug('Pixel pitch: %.2fum', pixel_pitch * 1E3)
logging.debug('Template width: %dpixels', template.shape[1])
logging.debug('Template height: %dpixels', template.shape[0])
chart_pixel_h = self._height * focal_l / (self._distance * pixel_pitch)
scale_factor = template.shape[0] / chart_pixel_h
if rotation == 90 or rotation == 270:
# With the landscape to portrait override turned on, the width and height
# of the active array, normally w x h, will be h x (w * (h/w)^2). Reduce
# the applied scaling by the same factor to compensate for this, because
# the chart will take up more of the scene. Assume w > h, since this is
# meant for landscape sensors.
rotate_physical_aspect = (
props['android.sensor.info.physicalSize']['height'] /
props['android.sensor.info.physicalSize']['width'])
scale_factor *= rotate_physical_aspect ** 2
logging.debug('Chart/image scale factor = %.2f', scale_factor)
return template, img_3a, scale_factor
def locate(self, cam, props, log_path, rotation):
"""Find the chart in the image, and append location to chart object.
Args:
cam: Open its session.
props: Camera properties object.
log_path: log path to store the captured images.
rotation: clockwise rotation of template in degrees (multiple of 90) or
None
The values appended are:
xnorm: float; [0, 1] left loc of chart in scene
ynorm: float; [0, 1] top loc of chart in scene
wnorm: float; [0, 1] width of chart in scene
hnorm: float; [0, 1] height of chart in scene
scale: float; scale factor to extract chart
opt_val: float; The normalized match optimization value [0, 1]
"""
fmt = {'format': 'yuv', 'width': VGA_WIDTH, 'height': VGA_HEIGHT}
cam.do_3a()
chart, scene, s_factor = self._calc_scale_factors(cam, props, fmt, log_path,
rotation)
scale_start = self._scale_start * s_factor
scale_stop = self._scale_stop * s_factor
scale_step = self._scale_step * s_factor
offset = scale_step / 2
self.scale = s_factor
logging.debug('scale start: %.3f, stop: %.3f, step: %.3f',
scale_start, scale_stop, scale_step)
logging.debug('Used offset of %.3f to include stop value.', offset)
max_match = []
# check for normalized image
if numpy.amax(scene) <= 1.0:
scene = (scene * 255.0).astype(numpy.uint8)
scene_gray = gray_scale_img(scene)
logging.debug('Finding chart in scene...')
for scale in numpy.arange(scale_start, scale_stop + offset, scale_step):
scene_scaled = scale_img(scene_gray, scale)
if (scene_scaled.shape[0] < chart.shape[0] or
scene_scaled.shape[1] < chart.shape[1]):
logging.debug(
'Skipped scale %.3f. scene_scaled shape: %s, chart shape: %s',
scale, scene_scaled.shape, chart.shape)
continue
result = cv2.matchTemplate(scene_scaled, chart, cv2.TM_CCOEFF_NORMED)
_, opt_val, _, top_left_scaled = cv2.minMaxLoc(result)
logging.debug(' scale factor: %.3f, opt val: %.3f', scale, opt_val)
max_match.append((opt_val, scale, top_left_scaled))
# determine if optimization results are valid
opt_values = [x[0] for x in max_match]
if not opt_values or (2.0 * min(opt_values) > max(opt_values)):
estring = ('Warning: unable to find chart in scene!\n'
'Check camera distance and self-reported '
'pixel pitch, focal length and hyperfocal distance.')
logging.warning(estring)
self._set_scale_factors_to_one()
else:
if (max(opt_values) == opt_values[0] or
max(opt_values) == opt_values[len(opt_values) - 1]):
estring = ('Warning: Chart is at extreme range of locator.')
logging.warning(estring)
# find max and draw bbox
matched_scale_and_loc = max(max_match, key=lambda x: x[0])
self.opt_val = matched_scale_and_loc[0]
self.scale = matched_scale_and_loc[1]
logging.debug('Optimum scale factor: %.3f', self.scale)
logging.debug('Opt val: %.3f', self.opt_val)
top_left_scaled = matched_scale_and_loc[2]
logging.debug('top_left_scaled: %d, %d', top_left_scaled[0],
top_left_scaled[1])
h, w = chart.shape
bottom_right_scaled = (top_left_scaled[0] + w, top_left_scaled[1] + h)
logging.debug('bottom_right_scaled: %d, %d', bottom_right_scaled[0],
bottom_right_scaled[1])
top_left = ((top_left_scaled[0] // self.scale),
(top_left_scaled[1] // self.scale))
bottom_right = ((bottom_right_scaled[0] // self.scale),
(bottom_right_scaled[1] // self.scale))
self.wnorm = ((bottom_right[0]) - top_left[0]) / scene.shape[1]
self.hnorm = ((bottom_right[1]) - top_left[1]) / scene.shape[0]
self.xnorm = (top_left[0]) / scene.shape[1]
self.ynorm = (top_left[1]) / scene.shape[0]
patch = image_processing_utils.get_image_patch(scene, self.xnorm,
self.ynorm, self.wnorm,
self.hnorm)
template_scene_name = os.path.join(log_path, 'template_scene.jpg')
image_processing_utils.write_image(patch, template_scene_name)
def component_shape(contour):
"""Measure the shape of a connected component.
Args:
contour: return from cv2.findContours. A list of pixel coordinates of
the contour.
Returns:
The most left, right, top, bottom pixel location, height, width, and
the center pixel location of the contour.
"""
shape = {'left': numpy.inf, 'right': 0, 'top': numpy.inf, 'bottom': 0,
'width': 0, 'height': 0, 'ctx': 0, 'cty': 0}
for pt in contour:
if pt[0][0] < shape['left']:
shape['left'] = pt[0][0]
if pt[0][0] > shape['right']:
shape['right'] = pt[0][0]
if pt[0][1] < shape['top']:
shape['top'] = pt[0][1]
if pt[0][1] > shape['bottom']:
shape['bottom'] = pt[0][1]
shape['width'] = shape['right'] - shape['left'] + 1
shape['height'] = shape['bottom'] - shape['top'] + 1
shape['ctx'] = (shape['left'] + shape['right']) // 2
shape['cty'] = (shape['top'] + shape['bottom']) // 2
return shape
def find_circle_fill_metric(shape, img_bw, color):
"""Find the proportion of points matching a desired color on a shape's axes.
Args:
shape: dictionary returned by component_shape(...)
img_bw: binarized numpy image array
color: int of [0 or 255] 0 is black, 255 is white
Returns:
float: number of x, y axis points matching color / total x, y axis points
"""
matching = 0
total = 0
for y in range(shape['top'], shape['bottom']):
total += 1
matching += 1 if img_bw[y][shape['ctx']] == color else 0
for x in range(shape['left'], shape['right']):
total += 1
matching += 1 if img_bw[shape['cty']][x] == color else 0
logging.debug('Found %d matching points out of %d', matching, total)
return matching / total
def find_circle(img, img_name, min_area, color):
"""Find the circle in the test image.
Args:
img: numpy image array in RGB, with pixel values in [0,255].
img_name: string with image info of format and size.
min_area: float of minimum area of circle to find
color: int of [0 or 255] 0 is black, 255 is white
Returns:
circle = {'x', 'y', 'r', 'w', 'h', 'x_offset', 'y_offset'}
"""
circle = {}
img_size = img.shape
if img_size[0]*img_size[1] >= LOW_RES_IMG_THRESH:
circlish_atol = CIRCLISH_ATOL
else:
circlish_atol = CIRCLISH_LOW_RES_ATOL
# convert to gray-scale image
img_gray = convert_to_gray(img)
# otsu threshold to binarize the image
img_bw = binarize_image(img_gray)
# find contours
contours = find_all_contours(255-img_bw)
# Check each contour and find the circle bigger than min_area
num_circles = 0
circle_contours = []
logging.debug('Initial number of contours: %d', len(contours))
for contour in contours:
area = cv2.contourArea(contour)
num_pts = len(contour)
if (area > img_size[0]*img_size[1]*min_area and
num_pts >= CIRCLE_MIN_PTS):
shape = component_shape(contour)
radius = (shape['width'] + shape['height']) / 4
colour = img_bw[shape['cty']][shape['ctx']]
circlish = (math.pi * radius**2) / area
aspect_ratio = shape['width'] / shape['height']
fill = find_circle_fill_metric(shape, img_bw, color)
logging.debug('Potential circle found. radius: %.2f, color: %d, '
'circlish: %.3f, ar: %.3f, pts: %d, fill metric: %.3f',
radius, colour, circlish, aspect_ratio, num_pts, fill)
if (colour == color and
math.isclose(1.0, circlish, abs_tol=circlish_atol) and
math.isclose(1.0, aspect_ratio, abs_tol=CIRCLE_AR_ATOL) and
num_pts/radius >= CIRCLE_RADIUS_NUMPTS_THRESH and
math.isclose(1.0, fill, abs_tol=CIRCLE_COLOR_ATOL)):
circle_contours.append(contour)
# Populate circle dictionary
circle['x'] = shape['ctx']
circle['y'] = shape['cty']
circle['r'] = (shape['width'] + shape['height']) / 4
circle['w'] = float(shape['width'])
circle['h'] = float(shape['height'])
circle['x_offset'] = (shape['ctx'] - img_size[1]//2) / circle['w']
circle['y_offset'] = (shape['cty'] - img_size[0]//2) / circle['h']
logging.debug('Num pts: %d', num_pts)
logging.debug('Aspect ratio: %.3f', aspect_ratio)
logging.debug('Circlish value: %.3f', circlish)
logging.debug('Location: %.1f x %.1f', circle['x'], circle['y'])
logging.debug('Radius: %.3f', circle['r'])
logging.debug('Circle center position wrt to image center:%.3fx%.3f',
circle['x_offset'], circle['y_offset'])
num_circles += 1
# if more than one circle found, break
if num_circles == 2:
break
if num_circles == 0:
image_processing_utils.write_image(img/255, img_name, True)
raise AssertionError('No black circle detected. '
'Please take pictures according to instructions.')
if num_circles > 1:
image_processing_utils.write_image(img/255, img_name, True)
cv2.drawContours(img, circle_contours, -1, CV2_RED,
CV2_LINE_THICKNESS)
img_name_parts = img_name.split('.')
image_processing_utils.write_image(
img/255, f'{img_name_parts[0]}_contours.{img_name_parts[1]}', True)
raise AssertionError('More than 1 black circle detected. '
'Background of scene may be too complex.')
return circle
def find_center_circle(img, img_name, color, circle_ar_rtol, circlish_rtol,
min_circle_pts, min_area, debug):
"""Find circle closest to image center for scene with multiple circles.
Finds all contours in the image. Rejects those too small and not enough
points to qualify as a circle. The remaining contours must have center
point of color=color and are sorted based on distance from the center
of the image. The contour closest to the center of the image is returned.
Note: hierarchy is not used as the hierarchy for black circles changes
as the zoom level changes.
Args:
img: numpy img array with pixel values in [0,255].
img_name: str file name for saved image
color: int 0 --> black, 255 --> white
circle_ar_rtol: float aspect ratio relative tolerance
circlish_rtol: float contour area vs ideal circle area pi*((w+h)/4)**2
min_circle_pts: int minimum number of points to define a circle
min_area: int minimum area of circles to screen out
debug: bool to save extra data
Returns:
circle: [center_x, center_y, radius]
"""
# gray scale & otsu threshold to binarize the image
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, img_bw = cv2.threshold(
numpy.uint8(gray), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# use OpenCV to find contours (connected components)
contours = find_all_contours(255-img_bw)
# check contours and find the best circle candidates
circles = []
img_ctr = [gray.shape[1] // 2, gray.shape[0] // 2]
for contour in contours:
area = cv2.contourArea(contour)
if area > min_area and len(contour) >= min_circle_pts:
shape = component_shape(contour)
radius = (shape['width'] + shape['height']) / 4
colour = img_bw[shape['cty']][shape['ctx']]
circlish = round((math.pi * radius**2) / area, 4)
if (colour == color and
math.isclose(1, circlish, rel_tol=circlish_rtol) and
math.isclose(shape['width'], shape['height'],
rel_tol=circle_ar_rtol)):
circles.append([shape['ctx'], shape['cty'], radius, circlish, area])
if not circles:
raise AssertionError('No circle was detected. Please take pictures '
'according to instructions carefully!')
if debug:
logging.debug('circles [x, y, r, pi*r**2/area, area]: %s', str(circles))
# find circle closest to center
circles.sort(key=lambda x: math.hypot(x[0] - img_ctr[0], x[1] - img_ctr[1]))
circle = circles[0]
# mark image center
size = gray.shape
m_x, m_y = size[1] // 2, size[0] // 2
marker_size = CV2_LINE_THICKNESS * 10
cv2.drawMarker(img, (m_x, m_y), CV2_RED, markerType=cv2.MARKER_CROSS,
markerSize=marker_size, thickness=CV2_LINE_THICKNESS)
# add circle to saved image
center_i = (int(round(circle[0], 0)), int(round(circle[1], 0)))
radius_i = int(round(circle[2], 0))
cv2.circle(img, center_i, radius_i, CV2_RED, CV2_LINE_THICKNESS)
image_processing_utils.write_image(img / 255.0, img_name)
return [circle[0], circle[1], circle[2]]
def append_circle_center_to_img(circle, img, img_name):
"""Append circle center and image center to image and save image.
Draws line from circle center to image center and then labels end-points.
Adjusts text positioning depending on circle center wrt image center.
Moves text position left/right half of up/down movement for visual aesthetics.
Args:
circle: dict with circle location vals.
img: numpy float image array in RGB, with pixel values in [0,255].
img_name: string with image info of format and size.
"""
line_width_scaling_factor = 500
text_move_scaling_factor = 3
img_size = img.shape
img_center_x = img_size[1]//2
img_center_y = img_size[0]//2
# draw line from circle to image center
line_width = int(max(1, max(img_size)//line_width_scaling_factor))
font_size = line_width // 2
move_text_dist = line_width * text_move_scaling_factor
cv2.line(img, (circle['x'], circle['y']), (img_center_x, img_center_y),
CV2_RED, line_width)
# adjust text location
move_text_right_circle = -1
move_text_right_image = 2
if circle['x'] > img_center_x:
move_text_right_circle = 2
move_text_right_image = -1
move_text_down_circle = -1
move_text_down_image = 4
if circle['y'] > img_center_y:
move_text_down_circle = 4
move_text_down_image = -1
# add circles to end points and label
radius_pt = line_width * 2 # makes a dot 2x line width
filled_pt = -1 # cv2 value for a filled circle
# circle center
cv2.circle(img, (circle['x'], circle['y']), radius_pt, CV2_RED, filled_pt)
text_circle_x = move_text_dist * move_text_right_circle + circle['x']
text_circle_y = move_text_dist * move_text_down_circle + circle['y']
cv2.putText(img, 'circle center', (text_circle_x, text_circle_y),
cv2.FONT_HERSHEY_SIMPLEX, font_size, CV2_RED, line_width)
# image center
cv2.circle(img, (img_center_x, img_center_y), radius_pt, CV2_RED, filled_pt)
text_imgct_x = move_text_dist * move_text_right_image + img_center_x
text_imgct_y = move_text_dist * move_text_down_image + img_center_y
cv2.putText(img, 'image center', (text_imgct_x, text_imgct_y),
cv2.FONT_HERSHEY_SIMPLEX, font_size, CV2_RED, line_width)
image_processing_utils.write_image(img/255, img_name, True) # [0, 1] values
def is_circle_cropped(circle, size):
"""Determine if a circle is cropped by edge of image.
Args:
circle: list [x, y, radius] of circle
size: tuple (x, y) of size of img
Returns:
Boolean True if selected circle is cropped
"""
cropped = False
circle_x, circle_y = circle[0], circle[1]
circle_r = circle[2]
x_min, x_max = circle_x - circle_r, circle_x + circle_r
y_min, y_max = circle_y - circle_r, circle_y + circle_r
if x_min < 0 or y_min < 0 or x_max > size[0] or y_max > size[1]:
cropped = True
return cropped
def find_white_square(img, min_area):
"""Find the white square in the test image.
Args:
img: numpy image array in RGB, with pixel values in [0,255].
min_area: float of minimum area of circle to find
Returns:
square = {'left', 'right', 'top', 'bottom', 'width', 'height'}
"""
square = {}
num_squares = 0
img_size = img.shape
# convert to gray-scale image
img_gray = convert_to_gray(img)
# otsu threshold to binarize the image
img_bw = binarize_image(img_gray)
# find contours
contours = find_all_contours(img_bw)
# Check each contour and find the square bigger than min_area
logging.debug('Initial number of contours: %d', len(contours))
min_area = img_size[0]*img_size[1]*min_area
logging.debug('min_area: %.3f', min_area)
for contour in contours:
area = cv2.contourArea(contour)
num_pts = len(contour)
if (area > min_area and num_pts >= 4):
shape = component_shape(contour)
squarish = (shape['width'] * shape['height']) / area
aspect_ratio = shape['width'] / shape['height']
logging.debug('Potential square found. squarish: %.3f, ar: %.3f, pts: %d',
squarish, aspect_ratio, num_pts)
if (math.isclose(1.0, squarish, abs_tol=SQUARISH_RTOL) and
math.isclose(1.0, aspect_ratio, abs_tol=SQUARISH_AR_RTOL)):
# Populate square dictionary
angle = cv2.minAreaRect(contour)[-1]
if angle < -45:
angle += 90
square['angle'] = angle
square['left'] = shape['left'] - SQUARE_CROP_MARGIN
square['right'] = shape['right'] + SQUARE_CROP_MARGIN
square['top'] = shape['top'] - SQUARE_CROP_MARGIN
square['bottom'] = shape['bottom'] + SQUARE_CROP_MARGIN
square['w'] = shape['width'] + 2*SQUARE_CROP_MARGIN
square['h'] = shape['height'] + 2*SQUARE_CROP_MARGIN
num_squares += 1
if num_squares == 0:
raise AssertionError('No white square detected. '
'Please take pictures according to instructions.')
if num_squares > 1:
raise AssertionError('More than 1 white square detected. '
'Background of scene may be too complex.')
return square
def get_angle(input_img):
"""Computes anglular inclination of chessboard in input_img.
Args:
input_img (2D numpy.ndarray): Grayscale image stored as a 2D numpy array.
Returns:
Median angle of squares in degrees identified in the image.
Angle estimation algorithm description:
Input: 2D grayscale image of chessboard.
Output: Angle of rotation of chessboard perpendicular to
chessboard. Assumes chessboard and camera are parallel to
each other.
1) Use adaptive threshold to make image binary
2) Find countours
3) Filter out small contours
4) Filter out all non-square contours
5) Compute most common square shape.
The assumption here is that the most common square instances are the
chessboard squares. We've shown that with our current tuning, we can
robustly identify the squares on the sensor fusion chessboard.
6) Return median angle of most common square shape.
USAGE NOTE: This function has been tuned to work for the chessboard used in
the sensor_fusion tests. See images in test_images/rotated_chessboard/ for
sample captures. If this function is used with other chessboards, it may not
work as expected.
"""
# Tuning parameters
square_area_min = (float)(input_img.shape[1] * SQUARE_AREA_MIN_REL)
# Creates copy of image to avoid modifying original.
img = numpy.array(input_img, copy=True)
# Scale pixel values from 0-1 to 0-255
img *= 255
img = img.astype(numpy.uint8)
img_thresh = cv2.adaptiveThreshold(
img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 201, 2)
# Find all contours.
contours = find_all_contours(img_thresh)
# Filter contours to squares only.
square_contours = []
for contour in contours:
rect = cv2.minAreaRect(contour)
_, (width, height), angle = rect
# Skip non-squares
if not math.isclose(width, height, rel_tol=SQUARE_TOL):
continue
# Remove very small contours: usually just tiny dots due to noise.
area = cv2.contourArea(contour)
if area < square_area_min:
continue
square_contours.append(contour)
areas = []
for contour in square_contours:
area = cv2.contourArea(contour)
areas.append(area)
median_area = numpy.median(areas)
filtered_squares = []
filtered_angles = []
for square in square_contours:
area = cv2.contourArea(square)
if not math.isclose(area, median_area, rel_tol=SQUARE_TOL):
continue
filtered_squares.append(square)
_, (width, height), angle = cv2.minAreaRect(square)
filtered_angles.append(angle)
if len(filtered_angles) < ANGLE_NUM_MIN:
logging.debug(
'A frame had too few angles to be processed. '
'Num of angles: %d, MIN: %d', len(filtered_angles), ANGLE_NUM_MIN)
return None
return numpy.median(filtered_angles)