178 lines
6.8 KiB
C++
178 lines
6.8 KiB
C++
// Copyright 2022 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <random>
|
|
|
|
#include <xnnpack.h>
|
|
#include <xnnpack/node-type.h>
|
|
#include <xnnpack/operator.h>
|
|
#include <xnnpack/subgraph.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
class PreluTestF32 : public ::testing::Test {
|
|
protected:
|
|
void SetUp() override
|
|
{
|
|
random_device = std::unique_ptr<std::random_device>(new std::random_device());
|
|
rng = std::mt19937((*random_device)());
|
|
dim_dist = std::uniform_int_distribution<size_t>(1, 9);
|
|
input_dims = RandomShape(4);
|
|
output_dims = input_dims;
|
|
batch_size = input_dims[0] * input_dims[1] * input_dims[2];
|
|
channels = input_dims[3];
|
|
slope_dims = {channels};
|
|
input = std::vector<float>(XNN_EXTRA_BYTES / sizeof(float) + NumElements(input_dims));
|
|
slope = std::vector<float>(channels);
|
|
operator_output = std::vector<float>(NumElements(output_dims));
|
|
subgraph_output = std::vector<float>(operator_output.size());
|
|
}
|
|
|
|
std::vector<size_t> RandomShape(size_t num_dims)
|
|
{
|
|
std::vector<size_t> dims(num_dims);
|
|
std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); });
|
|
return dims;
|
|
}
|
|
|
|
size_t NumElements(std::vector<size_t>& dims)
|
|
{
|
|
return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
|
|
}
|
|
|
|
std::unique_ptr<std::random_device> random_device;
|
|
std::mt19937 rng;
|
|
std::uniform_int_distribution<size_t> dim_dist;
|
|
|
|
std::vector<size_t> output_dims;
|
|
std::vector<size_t> input_dims;
|
|
std::vector<size_t> slope_dims;
|
|
std::vector<float> input;
|
|
std::vector<float> slope;
|
|
std::vector<float> operator_output;
|
|
std::vector<float> subgraph_output;
|
|
size_t channels;
|
|
size_t batch_size;
|
|
};
|
|
|
|
TEST_F(PreluTestF32, define)
|
|
{
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
|
|
|
|
xnn_subgraph_t subgraph = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph));
|
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
|
|
|
|
uint32_t input_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
|
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
|
|
|
|
uint32_t slope_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, slope_dims.size(), slope_dims.data(), slope.data(), 1,
|
|
/*flags=*/0, &slope_id));
|
|
ASSERT_NE(slope_id, XNN_INVALID_NODE_ID);
|
|
|
|
uint32_t output_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 2,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
|
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_define_prelu(subgraph, input_id, slope_id, output_id, /*flags=*/0));
|
|
|
|
ASSERT_EQ(subgraph->num_nodes, 1);
|
|
const struct xnn_node* node = &subgraph->nodes[0];
|
|
ASSERT_EQ(node->type, xnn_node_type_prelu);
|
|
ASSERT_EQ(node->compute_type, xnn_compute_type_fp32);
|
|
ASSERT_EQ(node->num_inputs, 2);
|
|
ASSERT_EQ(node->inputs[0], input_id);
|
|
ASSERT_EQ(node->inputs[1], slope_id);
|
|
ASSERT_EQ(node->num_outputs, 1);
|
|
ASSERT_EQ(node->outputs[0], output_id);
|
|
ASSERT_EQ(node->flags, 0);
|
|
}
|
|
|
|
TEST_F(PreluTestF32, matches_operator_api)
|
|
{
|
|
std::uniform_real_distribution<float> f32idist(-1.0f, 1.0f);
|
|
std::uniform_real_distribution<float> f32wdist(0.25f, 0.75f);
|
|
std::generate(input.begin(), input.end(), [&]() { return f32idist(rng); });
|
|
std::generate(slope.begin(), slope.end(), [&]() { return f32wdist(rng); });
|
|
std::fill(operator_output.begin(), operator_output.end(), nanf(""));
|
|
std::fill(subgraph_output.begin(), subgraph_output.end(), nanf(""));
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
|
|
|
|
// Call operator API.
|
|
xnn_operator_t op = nullptr;
|
|
const xnn_status status =
|
|
xnn_create_prelu_nc_f32(channels, channels, channels, slope.data(), /*flags=*/0, nullptr, &op);
|
|
if (status == xnn_status_unsupported_hardware) {
|
|
GTEST_SKIP();
|
|
}
|
|
|
|
ASSERT_EQ(xnn_status_success, status);
|
|
ASSERT_NE(nullptr, op);
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
|
|
|
|
ASSERT_EQ(
|
|
xnn_status_success,
|
|
xnn_setup_prelu_nc_f32(op, batch_size, input.data(), operator_output.data(), /*threadpool=*/nullptr));
|
|
|
|
ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
|
|
|
|
// Call subgraph API.
|
|
xnn_subgraph_t subgraph = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph));
|
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
|
|
uint32_t input_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
|
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
|
|
|
|
uint32_t slope_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success,
|
|
xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, slope_dims.size(), slope_dims.data(), slope.data(), /*external_id=*/1,
|
|
/*flags=*/0, &slope_id));
|
|
ASSERT_NE(slope_id, XNN_INVALID_NODE_ID);
|
|
|
|
uint32_t output_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success,
|
|
xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/2,
|
|
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
|
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
|
|
|
|
xnn_runtime_t runtime = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_define_prelu(subgraph, input_id, slope_id, output_id, /*flags=*/0));
|
|
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
|
|
ASSERT_NE(nullptr, runtime);
|
|
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
|
|
std::array<xnn_external_value, 2> external = {
|
|
xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
|
|
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
|
|
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
|
|
|
|
ASSERT_EQ(subgraph_output, operator_output);
|
|
}
|