2411 lines
90 KiB
C++
2411 lines
90 KiB
C++
// Copyright 2012 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/time/time.h"
|
|
|
|
#include <stdint.h>
|
|
#include <time.h>
|
|
|
|
#include <limits>
|
|
#include <string>
|
|
|
|
#include "base/build_time.h"
|
|
#include "base/check_op.h"
|
|
#include "base/compiler_specific.h"
|
|
#include "base/environment.h"
|
|
#include "base/test/gtest_util.h"
|
|
#include "base/threading/platform_thread.h"
|
|
#include "base/time/time_override.h"
|
|
#include "build/build_config.h"
|
|
#include "testing/gmock/include/gmock/gmock.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
#include "third_party/abseil-cpp/absl/types/optional.h"
|
|
#include "third_party/icu/source/common/unicode/utypes.h"
|
|
#include "third_party/icu/source/i18n/unicode/timezone.h"
|
|
|
|
#if BUILDFLAG(IS_ANDROID)
|
|
#include "base/android/jni_android.h"
|
|
#elif BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
|
|
#include "base/test/icu_test_util.h"
|
|
#elif BUILDFLAG(IS_WIN)
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
namespace base {
|
|
|
|
namespace {
|
|
|
|
#if BUILDFLAG(IS_FUCHSIA)
|
|
// Hawaii does not observe daylight saving time, which is useful for having a
|
|
// constant offset when faking the time zone.
|
|
const char kHonoluluTimeZoneId[] = "Pacific/Honolulu";
|
|
const int kHonoluluOffsetHours = -10;
|
|
const int kHonoluluOffsetSeconds = kHonoluluOffsetHours * 60 * 60;
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
|
|
|
|
const char kThaiLocale[] = "th-TH";
|
|
const char kBangkokTimeZoneId[] = "Asia/Bangkok";
|
|
|
|
// Returns the total offset (including Daylight Saving Time) of the timezone
|
|
// with |timezone_id| at |time|, or absl::nullopt in case of failure.
|
|
absl::optional<base::TimeDelta> GetTimeZoneOffsetAtTime(const char* timezone_id,
|
|
Time time) {
|
|
std::unique_ptr<icu::TimeZone> tz(icu::TimeZone::createTimeZone(timezone_id));
|
|
if (*tz == icu::TimeZone::getUnknown()) {
|
|
return {};
|
|
}
|
|
int32_t raw_offset = 0;
|
|
int32_t dst_offset = 0;
|
|
UErrorCode ec = U_ZERO_ERROR;
|
|
tz->getOffset(time.ToDoubleT(), false, raw_offset, dst_offset, ec);
|
|
if (!U_SUCCESS(ec)) {
|
|
return {};
|
|
}
|
|
return base::Milliseconds(raw_offset + dst_offset);
|
|
}
|
|
|
|
TimeDelta TimePassedAfterMidnight(const Time::Exploded& time) {
|
|
return base::Hours(time.hour) + base::Minutes(time.minute) +
|
|
base::Seconds(time.second) + base::Milliseconds(time.millisecond);
|
|
}
|
|
|
|
// Timezone environment variable
|
|
|
|
class ScopedLibcTZ {
|
|
public:
|
|
explicit ScopedLibcTZ(const std::string& timezone) {
|
|
auto env = base::Environment::Create();
|
|
std::string old_timezone_value;
|
|
if (env->GetVar(kTZ, &old_timezone_value)) {
|
|
old_timezone_ = old_timezone_value;
|
|
}
|
|
if (!env->SetVar(kTZ, timezone)) {
|
|
success_ = false;
|
|
}
|
|
tzset();
|
|
}
|
|
|
|
~ScopedLibcTZ() {
|
|
auto env = base::Environment::Create();
|
|
if (old_timezone_.has_value()) {
|
|
CHECK(env->SetVar(kTZ, old_timezone_.value()));
|
|
} else {
|
|
CHECK(env->UnSetVar(kTZ));
|
|
}
|
|
}
|
|
|
|
ScopedLibcTZ(const ScopedLibcTZ& other) = delete;
|
|
ScopedLibcTZ& operator=(const ScopedLibcTZ& other) = delete;
|
|
|
|
bool is_success() const { return success_; }
|
|
|
|
private:
|
|
static constexpr char kTZ[] = "TZ";
|
|
|
|
bool success_ = true;
|
|
absl::optional<std::string> old_timezone_;
|
|
};
|
|
|
|
constexpr char ScopedLibcTZ::kTZ[];
|
|
|
|
#endif // BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
|
|
|
|
TEST(TimeTestOutOfBounds, FromExplodedOutOfBoundsTime) {
|
|
// FromUTCExploded must set time to Time(0) and failure, if the day is set to
|
|
// 31 on a 28-30 day month. Test |exploded| returns Time(0) on 31st of
|
|
// February and 31st of April. New implementation handles this.
|
|
|
|
const struct DateTestData {
|
|
Time::Exploded explode;
|
|
bool is_valid;
|
|
} kDateTestData[] = {
|
|
// 31st of February
|
|
{{2016, 2, 0, 31, 12, 30, 0, 0}, true},
|
|
// 31st of April
|
|
{{2016, 4, 0, 31, 8, 43, 0, 0}, true},
|
|
// Negative month
|
|
{{2016, -5, 0, 2, 4, 10, 0, 0}, false},
|
|
// Negative date of month
|
|
{{2016, 6, 0, -15, 2, 50, 0, 0}, false},
|
|
// Negative hours
|
|
{{2016, 7, 0, 10, -11, 29, 0, 0}, false},
|
|
// Negative minutes
|
|
{{2016, 3, 0, 14, 10, -29, 0, 0}, false},
|
|
// Negative seconds
|
|
{{2016, 10, 0, 25, 7, 47, -30, 0}, false},
|
|
// Negative milliseconds
|
|
{{2016, 10, 0, 25, 7, 47, 20, -500}, false},
|
|
// Hours are too large
|
|
{{2016, 7, 0, 10, 26, 29, 0, 0}, false},
|
|
// Minutes are too large
|
|
{{2016, 3, 0, 14, 10, 78, 0, 0}, false},
|
|
// Seconds are too large
|
|
{{2016, 10, 0, 25, 7, 47, 234, 0}, false},
|
|
// Milliseconds are too large
|
|
{{2016, 10, 0, 25, 6, 31, 23, 1643}, false},
|
|
// Test overflow. Time is valid, but overflow case
|
|
// results in Time(0).
|
|
{{9840633, 1, 0, 1, 1, 1, 0, 0}, true},
|
|
// Underflow will fail as well.
|
|
{{-9840633, 1, 0, 1, 1, 1, 0, 0}, true},
|
|
// Test integer overflow and underflow cases for the values themselves.
|
|
{{std::numeric_limits<int>::min(), 1, 0, 1, 1, 1, 0, 0}, true},
|
|
{{std::numeric_limits<int>::max(), 1, 0, 1, 1, 1, 0, 0}, true},
|
|
{{2016, std::numeric_limits<int>::min(), 0, 1, 1, 1, 0, 0}, false},
|
|
{{2016, std::numeric_limits<int>::max(), 0, 1, 1, 1, 0, 0}, false},
|
|
};
|
|
|
|
for (const auto& test : kDateTestData) {
|
|
EXPECT_EQ(test.explode.HasValidValues(), test.is_valid);
|
|
|
|
base::Time result;
|
|
EXPECT_FALSE(base::Time::FromUTCExploded(test.explode, &result));
|
|
EXPECT_TRUE(result.is_null());
|
|
EXPECT_FALSE(base::Time::FromLocalExploded(test.explode, &result));
|
|
EXPECT_TRUE(result.is_null());
|
|
}
|
|
}
|
|
|
|
// Specialized test fixture allowing time strings without timezones to be
|
|
// tested by comparing them to a known time in the local zone.
|
|
// See also pr_time_unittests.cc
|
|
class TimeTest : public testing::Test {
|
|
protected:
|
|
#if BUILDFLAG(IS_FUCHSIA)
|
|
// POSIX local time functions always use UTC on Fuchsia. As this is not very
|
|
// interesting for any "local" tests, set a different default ICU timezone for
|
|
// the test. This only affects code that uses ICU, such as Exploded time.
|
|
// Chicago is a non-Pacific time zone known to observe daylight saving time.
|
|
TimeTest() : chicago_time_("America/Chicago") {}
|
|
test::ScopedRestoreDefaultTimezone chicago_time_;
|
|
#endif
|
|
|
|
void SetUp() override {
|
|
// Use mktime to get a time_t, and turn it into a PRTime by converting
|
|
// seconds to microseconds. Use 15th Oct 2007 12:45:00 local. This
|
|
// must be a time guaranteed to be outside of a DST fallback hour in
|
|
// any timezone.
|
|
struct tm local_comparison_tm = {
|
|
0, // second
|
|
45, // minute
|
|
12, // hour
|
|
15, // day of month
|
|
10 - 1, // month
|
|
2007 - 1900, // year
|
|
0, // day of week (ignored, output only)
|
|
0, // day of year (ignored, output only)
|
|
-1 // DST in effect, -1 tells mktime to figure it out
|
|
};
|
|
|
|
time_t converted_time = mktime(&local_comparison_tm);
|
|
ASSERT_GT(converted_time, 0);
|
|
comparison_time_local_ = Time::FromTimeT(converted_time);
|
|
|
|
// time_t representation of 15th Oct 2007 12:45:00 PDT
|
|
comparison_time_pdt_ = Time::FromTimeT(1192477500);
|
|
}
|
|
|
|
Time comparison_time_local_;
|
|
Time comparison_time_pdt_;
|
|
};
|
|
|
|
// Test conversion to/from TimeDeltas elapsed since the Windows epoch.
|
|
// Conversions should be idempotent and non-lossy.
|
|
TEST_F(TimeTest, DeltaSinceWindowsEpoch) {
|
|
constexpr TimeDelta delta = Microseconds(123);
|
|
EXPECT_EQ(delta,
|
|
Time::FromDeltaSinceWindowsEpoch(delta).ToDeltaSinceWindowsEpoch());
|
|
|
|
const Time now = Time::Now();
|
|
const Time actual =
|
|
Time::FromDeltaSinceWindowsEpoch(now.ToDeltaSinceWindowsEpoch());
|
|
EXPECT_EQ(now, actual);
|
|
|
|
// Null times should remain null after a round-trip conversion. This is an
|
|
// important invariant for the common use case of serialization +
|
|
// deserialization.
|
|
const Time should_be_null =
|
|
Time::FromDeltaSinceWindowsEpoch(Time().ToDeltaSinceWindowsEpoch());
|
|
EXPECT_TRUE(should_be_null.is_null());
|
|
|
|
{
|
|
constexpr Time constexpr_time =
|
|
Time::FromDeltaSinceWindowsEpoch(Microseconds(123));
|
|
constexpr TimeDelta constexpr_delta =
|
|
constexpr_time.ToDeltaSinceWindowsEpoch();
|
|
static_assert(constexpr_delta == delta);
|
|
}
|
|
}
|
|
|
|
// Test conversion to/from time_t.
|
|
TEST_F(TimeTest, TimeT) {
|
|
EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT());
|
|
EXPECT_EQ(10.0, Time().FromTimeT(10).ToDoubleT());
|
|
|
|
// Conversions of 0 should stay 0.
|
|
EXPECT_EQ(0, Time().ToTimeT());
|
|
EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue());
|
|
}
|
|
|
|
// Test conversions to/from time_t and exploding/unexploding (utc time).
|
|
TEST_F(TimeTest, UTCTimeT) {
|
|
// C library time and exploded time.
|
|
time_t now_t_1 = time(nullptr);
|
|
struct tm tms;
|
|
#if BUILDFLAG(IS_WIN)
|
|
gmtime_s(&tms, &now_t_1);
|
|
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
gmtime_r(&now_t_1, &tms);
|
|
#endif
|
|
|
|
// Convert to ours.
|
|
Time our_time_1 = Time::FromTimeT(now_t_1);
|
|
Time::Exploded exploded;
|
|
our_time_1.UTCExplode(&exploded);
|
|
|
|
// This will test both our exploding and our time_t -> Time conversion.
|
|
EXPECT_EQ(tms.tm_year + 1900, exploded.year);
|
|
EXPECT_EQ(tms.tm_mon + 1, exploded.month);
|
|
EXPECT_EQ(tms.tm_mday, exploded.day_of_month);
|
|
EXPECT_EQ(tms.tm_hour, exploded.hour);
|
|
EXPECT_EQ(tms.tm_min, exploded.minute);
|
|
EXPECT_EQ(tms.tm_sec, exploded.second);
|
|
|
|
// Convert exploded back to the time struct.
|
|
Time our_time_2;
|
|
EXPECT_TRUE(Time::FromUTCExploded(exploded, &our_time_2));
|
|
EXPECT_TRUE(our_time_1 == our_time_2);
|
|
|
|
time_t now_t_2 = our_time_2.ToTimeT();
|
|
EXPECT_EQ(now_t_1, now_t_2);
|
|
}
|
|
|
|
// Test conversions to/from time_t and exploding/unexploding (local time).
|
|
TEST_F(TimeTest, LocalTimeT) {
|
|
// C library time and exploded time.
|
|
time_t now_t_1 = time(nullptr);
|
|
struct tm tms;
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
localtime_s(&tms, &now_t_1);
|
|
#elif BUILDFLAG(IS_POSIX)
|
|
localtime_r(&now_t_1, &tms);
|
|
#elif BUILDFLAG(IS_FUCHSIA)
|
|
// POSIX local time functions always use UTC on Fuchsia, so set a known time
|
|
// zone and manually obtain the local |tms| values by using an adjusted input.
|
|
test::ScopedRestoreDefaultTimezone honolulu_time(kHonoluluTimeZoneId);
|
|
time_t adjusted_now_t_1 = now_t_1 + kHonoluluOffsetSeconds;
|
|
localtime_r(&adjusted_now_t_1, &tms);
|
|
#endif
|
|
|
|
// Convert to ours.
|
|
Time our_time_1 = Time::FromTimeT(now_t_1);
|
|
Time::Exploded exploded;
|
|
our_time_1.LocalExplode(&exploded);
|
|
|
|
// This will test both our exploding and our time_t -> Time conversion.
|
|
EXPECT_EQ(tms.tm_year + 1900, exploded.year);
|
|
EXPECT_EQ(tms.tm_mon + 1, exploded.month);
|
|
EXPECT_EQ(tms.tm_mday, exploded.day_of_month);
|
|
EXPECT_EQ(tms.tm_hour, exploded.hour);
|
|
EXPECT_EQ(tms.tm_min, exploded.minute);
|
|
EXPECT_EQ(tms.tm_sec, exploded.second);
|
|
|
|
// Convert exploded back to the time struct.
|
|
Time our_time_2;
|
|
EXPECT_TRUE(Time::FromLocalExploded(exploded, &our_time_2));
|
|
EXPECT_TRUE(our_time_1 == our_time_2);
|
|
|
|
time_t now_t_2 = our_time_2.ToTimeT();
|
|
EXPECT_EQ(now_t_1, now_t_2);
|
|
}
|
|
|
|
// Test conversions to/from javascript time.
|
|
TEST_F(TimeTest, JsTime) {
|
|
Time epoch = Time::FromJsTime(0.0);
|
|
EXPECT_EQ(epoch, Time::UnixEpoch());
|
|
Time t = Time::FromJsTime(700000.3);
|
|
EXPECT_EQ(700.0003, t.ToDoubleT());
|
|
t = Time::FromDoubleT(800.73);
|
|
EXPECT_EQ(800730.0, t.ToJsTime());
|
|
|
|
// 1601-01-01 isn't round-trip with ToJsTime().
|
|
const double kWindowsEpoch = -11644473600000.0;
|
|
Time time = Time::FromJsTime(kWindowsEpoch);
|
|
EXPECT_TRUE(time.is_null());
|
|
EXPECT_NE(kWindowsEpoch, time.ToJsTime());
|
|
EXPECT_EQ(kWindowsEpoch, time.ToJsTimeIgnoringNull());
|
|
}
|
|
|
|
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
TEST_F(TimeTest, FromTimeVal) {
|
|
Time now = Time::Now();
|
|
Time also_now = Time::FromTimeVal(now.ToTimeVal());
|
|
EXPECT_EQ(now, also_now);
|
|
}
|
|
#endif // BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
|
|
TEST_F(TimeTest, FromExplodedWithMilliseconds) {
|
|
// Some platform implementations of FromExploded are liable to drop
|
|
// milliseconds if we aren't careful.
|
|
Time now = Time::NowFromSystemTime();
|
|
Time::Exploded exploded1 = {0};
|
|
now.UTCExplode(&exploded1);
|
|
exploded1.millisecond = 500;
|
|
Time time;
|
|
EXPECT_TRUE(Time::FromUTCExploded(exploded1, &time));
|
|
Time::Exploded exploded2 = {0};
|
|
time.UTCExplode(&exploded2);
|
|
EXPECT_EQ(exploded1.millisecond, exploded2.millisecond);
|
|
}
|
|
|
|
TEST_F(TimeTest, ZeroIsSymmetric) {
|
|
Time zero_time(Time::FromTimeT(0));
|
|
EXPECT_EQ(0, zero_time.ToTimeT());
|
|
|
|
EXPECT_EQ(0.0, zero_time.ToDoubleT());
|
|
}
|
|
|
|
// Note that this test does not check whether the implementation correctly
|
|
// accounts for the local time zone.
|
|
TEST_F(TimeTest, LocalExplode) {
|
|
Time a = Time::Now();
|
|
Time::Exploded exploded;
|
|
a.LocalExplode(&exploded);
|
|
|
|
Time b;
|
|
EXPECT_TRUE(Time::FromLocalExploded(exploded, &b));
|
|
|
|
// The exploded structure doesn't have microseconds, and on Mac & Linux, the
|
|
// internal OS conversion uses seconds, which will cause truncation. So we
|
|
// can only make sure that the delta is within one second.
|
|
EXPECT_LT(a - b, Seconds(1));
|
|
}
|
|
|
|
TEST_F(TimeTest, UTCExplode) {
|
|
Time a = Time::Now();
|
|
Time::Exploded exploded;
|
|
a.UTCExplode(&exploded);
|
|
|
|
Time b;
|
|
EXPECT_TRUE(Time::FromUTCExploded(exploded, &b));
|
|
|
|
// The exploded structure doesn't have microseconds, and on Mac & Linux, the
|
|
// internal OS conversion uses seconds, which will cause truncation. So we
|
|
// can only make sure that the delta is within one second.
|
|
EXPECT_LT(a - b, Seconds(1));
|
|
}
|
|
|
|
TEST_F(TimeTest, UTCMidnight) {
|
|
Time::Exploded exploded;
|
|
Time::Now().UTCMidnight().UTCExplode(&exploded);
|
|
EXPECT_EQ(0, exploded.hour);
|
|
EXPECT_EQ(0, exploded.minute);
|
|
EXPECT_EQ(0, exploded.second);
|
|
EXPECT_EQ(0, exploded.millisecond);
|
|
}
|
|
|
|
// Note that this test does not check whether the implementation correctly
|
|
// accounts for the local time zone.
|
|
TEST_F(TimeTest, LocalMidnight) {
|
|
Time::Exploded exploded;
|
|
Time::Now().LocalMidnight().LocalExplode(&exploded);
|
|
EXPECT_EQ(0, exploded.hour);
|
|
EXPECT_EQ(0, exploded.minute);
|
|
EXPECT_EQ(0, exploded.second);
|
|
EXPECT_EQ(0, exploded.millisecond);
|
|
}
|
|
|
|
// These tests require the ability to fake the local time zone.
|
|
#if BUILDFLAG(IS_FUCHSIA)
|
|
TEST_F(TimeTest, LocalExplodeIsLocal) {
|
|
// Set the default time zone to a zone with an offset different from UTC.
|
|
test::ScopedRestoreDefaultTimezone honolulu_time(kHonoluluTimeZoneId);
|
|
|
|
// The member contains useful values for this test, which uses it as UTC.
|
|
Time comparison_time_utc(comparison_time_local_);
|
|
|
|
Time::Exploded utc_exploded;
|
|
comparison_time_utc.UTCExplode(&utc_exploded);
|
|
|
|
Time::Exploded local_exploded;
|
|
comparison_time_utc.LocalExplode(&local_exploded);
|
|
|
|
// The year, month, and day are the same because the (negative) offset is
|
|
// smaller than the hour in the test time. Similarly, there is no underflow
|
|
// for hour.
|
|
EXPECT_EQ(utc_exploded.year, local_exploded.year);
|
|
EXPECT_EQ(utc_exploded.month, local_exploded.month);
|
|
EXPECT_EQ(utc_exploded.day_of_week, local_exploded.day_of_week);
|
|
EXPECT_EQ(utc_exploded.day_of_month, local_exploded.day_of_month);
|
|
EXPECT_EQ(utc_exploded.hour + kHonoluluOffsetHours, local_exploded.hour);
|
|
EXPECT_EQ(utc_exploded.minute, local_exploded.minute);
|
|
EXPECT_EQ(utc_exploded.second, local_exploded.second);
|
|
EXPECT_EQ(utc_exploded.millisecond, local_exploded.millisecond);
|
|
|
|
Time time_from_local_exploded;
|
|
EXPECT_TRUE(
|
|
Time::FromLocalExploded(local_exploded, &time_from_local_exploded));
|
|
|
|
EXPECT_EQ(comparison_time_utc, time_from_local_exploded);
|
|
|
|
// Unexplode the local time using the non-local method.
|
|
// The resulting time should be offset hours earlier.
|
|
Time time_from_utc_exploded;
|
|
EXPECT_TRUE(Time::FromUTCExploded(local_exploded, &time_from_utc_exploded));
|
|
EXPECT_EQ(comparison_time_utc + Hours(kHonoluluOffsetHours),
|
|
time_from_utc_exploded);
|
|
}
|
|
|
|
TEST_F(TimeTest, LocalMidnightIsLocal) {
|
|
// Set the default time zone to a zone with an offset different from UTC.
|
|
test::ScopedRestoreDefaultTimezone honolulu_time(kHonoluluTimeZoneId);
|
|
|
|
// The member contains useful values for this test, which uses it as UTC.
|
|
Time comparison_time_utc(comparison_time_local_);
|
|
|
|
Time::Exploded utc_midnight_exploded;
|
|
comparison_time_utc.UTCMidnight().UTCExplode(&utc_midnight_exploded);
|
|
|
|
// Local midnight exploded in UTC will have an offset hour instead of 0.
|
|
Time::Exploded local_midnight_utc_exploded;
|
|
comparison_time_utc.LocalMidnight().UTCExplode(&local_midnight_utc_exploded);
|
|
|
|
// The year, month, and day are the same because the (negative) offset is
|
|
// smaller than the hour in the test time and thus both midnights round down
|
|
// on the same day.
|
|
EXPECT_EQ(utc_midnight_exploded.year, local_midnight_utc_exploded.year);
|
|
EXPECT_EQ(utc_midnight_exploded.month, local_midnight_utc_exploded.month);
|
|
EXPECT_EQ(utc_midnight_exploded.day_of_week,
|
|
local_midnight_utc_exploded.day_of_week);
|
|
EXPECT_EQ(utc_midnight_exploded.day_of_month,
|
|
local_midnight_utc_exploded.day_of_month);
|
|
EXPECT_EQ(0, utc_midnight_exploded.hour);
|
|
EXPECT_EQ(0 - kHonoluluOffsetHours, local_midnight_utc_exploded.hour);
|
|
EXPECT_EQ(0, local_midnight_utc_exploded.minute);
|
|
EXPECT_EQ(0, local_midnight_utc_exploded.second);
|
|
EXPECT_EQ(0, local_midnight_utc_exploded.millisecond);
|
|
|
|
// Local midnight exploded in local time will have no offset.
|
|
Time::Exploded local_midnight_exploded;
|
|
comparison_time_utc.LocalMidnight().LocalExplode(&local_midnight_exploded);
|
|
|
|
EXPECT_EQ(utc_midnight_exploded.year, local_midnight_exploded.year);
|
|
EXPECT_EQ(utc_midnight_exploded.month, local_midnight_exploded.month);
|
|
EXPECT_EQ(utc_midnight_exploded.day_of_week,
|
|
local_midnight_exploded.day_of_week);
|
|
EXPECT_EQ(utc_midnight_exploded.day_of_month,
|
|
local_midnight_exploded.day_of_month);
|
|
EXPECT_EQ(0, local_midnight_exploded.hour);
|
|
EXPECT_EQ(0, local_midnight_exploded.minute);
|
|
EXPECT_EQ(0, local_midnight_exploded.second);
|
|
EXPECT_EQ(0, local_midnight_exploded.millisecond);
|
|
}
|
|
#endif // BUILDFLAG(IS_FUCHSIA)
|
|
|
|
TEST_F(TimeTest, ParseTimeTest1) {
|
|
time_t current_time = 0;
|
|
time(¤t_time);
|
|
|
|
struct tm local_time = {};
|
|
char time_buf[64] = {};
|
|
#if BUILDFLAG(IS_WIN)
|
|
localtime_s(&local_time, ¤t_time);
|
|
asctime_s(time_buf, std::size(time_buf), &local_time);
|
|
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
localtime_r(¤t_time, &local_time);
|
|
asctime_r(&local_time, time_buf);
|
|
#endif
|
|
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString(time_buf, &parsed_time));
|
|
EXPECT_EQ(current_time, parsed_time.ToTimeT());
|
|
}
|
|
|
|
TEST_F(TimeTest, DayOfWeekSunday) {
|
|
Time time;
|
|
EXPECT_TRUE(Time::FromString("Sun, 06 May 2012 12:00:00 GMT", &time));
|
|
Time::Exploded exploded;
|
|
time.UTCExplode(&exploded);
|
|
EXPECT_EQ(0, exploded.day_of_week);
|
|
}
|
|
|
|
TEST_F(TimeTest, DayOfWeekWednesday) {
|
|
Time time;
|
|
EXPECT_TRUE(Time::FromString("Wed, 09 May 2012 12:00:00 GMT", &time));
|
|
Time::Exploded exploded;
|
|
time.UTCExplode(&exploded);
|
|
EXPECT_EQ(3, exploded.day_of_week);
|
|
}
|
|
|
|
TEST_F(TimeTest, DayOfWeekSaturday) {
|
|
Time time;
|
|
EXPECT_TRUE(Time::FromString("Sat, 12 May 2012 12:00:00 GMT", &time));
|
|
Time::Exploded exploded;
|
|
time.UTCExplode(&exploded);
|
|
EXPECT_EQ(6, exploded.day_of_week);
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTest2) {
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString("Mon, 15 Oct 2007 19:45:00 GMT", &parsed_time));
|
|
EXPECT_EQ(comparison_time_pdt_, parsed_time);
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTest3) {
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString("15 Oct 07 12:45:00", &parsed_time));
|
|
EXPECT_EQ(comparison_time_local_, parsed_time);
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTest4) {
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString("15 Oct 07 19:45 GMT", &parsed_time));
|
|
EXPECT_EQ(comparison_time_pdt_, parsed_time);
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTest5) {
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString("Mon Oct 15 12:45 PDT 2007", &parsed_time));
|
|
EXPECT_EQ(comparison_time_pdt_, parsed_time);
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTest6) {
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString("Monday, Oct 15, 2007 12:45 PM", &parsed_time));
|
|
EXPECT_EQ(comparison_time_local_, parsed_time);
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTest7) {
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString("10/15/07 12:45:00 PM", &parsed_time));
|
|
EXPECT_EQ(comparison_time_local_, parsed_time);
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTest8) {
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString("15-OCT-2007 12:45pm", &parsed_time));
|
|
EXPECT_EQ(comparison_time_local_, parsed_time);
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTest9) {
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString("16 Oct 2007 4:45-JST (Tuesday)", &parsed_time));
|
|
EXPECT_EQ(comparison_time_pdt_, parsed_time);
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTest10) {
|
|
Time parsed_time;
|
|
EXPECT_TRUE(Time::FromString("15/10/07 12:45", &parsed_time));
|
|
EXPECT_EQ(parsed_time, comparison_time_local_);
|
|
}
|
|
|
|
// Test some of edge cases around epoch, etc.
|
|
TEST_F(TimeTest, ParseTimeTestEpoch0) {
|
|
Time parsed_time;
|
|
|
|
// time_t == epoch == 0
|
|
EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:00 +0100 1970",
|
|
&parsed_time));
|
|
EXPECT_EQ(0, parsed_time.ToTimeT());
|
|
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:00 GMT 1970",
|
|
&parsed_time));
|
|
EXPECT_EQ(0, parsed_time.ToTimeT());
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTestEpoch1) {
|
|
Time parsed_time;
|
|
|
|
// time_t == 1 second after epoch == 1
|
|
EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:01 +0100 1970",
|
|
&parsed_time));
|
|
EXPECT_EQ(1, parsed_time.ToTimeT());
|
|
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:01 GMT 1970",
|
|
&parsed_time));
|
|
EXPECT_EQ(1, parsed_time.ToTimeT());
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTestEpoch2) {
|
|
Time parsed_time;
|
|
|
|
// time_t == 2 seconds after epoch == 2
|
|
EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:02 +0100 1970",
|
|
&parsed_time));
|
|
EXPECT_EQ(2, parsed_time.ToTimeT());
|
|
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:02 GMT 1970",
|
|
&parsed_time));
|
|
EXPECT_EQ(2, parsed_time.ToTimeT());
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTestEpochNeg1) {
|
|
Time parsed_time;
|
|
|
|
// time_t == 1 second before epoch == -1
|
|
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:59 +0100 1970",
|
|
&parsed_time));
|
|
EXPECT_EQ(-1, parsed_time.ToTimeT());
|
|
EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 1969",
|
|
&parsed_time));
|
|
EXPECT_EQ(-1, parsed_time.ToTimeT());
|
|
}
|
|
|
|
// If time_t is 32 bits, a date after year 2038 will overflow time_t and
|
|
// cause timegm() to return -1. The parsed time should not be 1 second
|
|
// before epoch.
|
|
TEST_F(TimeTest, ParseTimeTestEpochNotNeg1) {
|
|
Time parsed_time;
|
|
|
|
EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 2100",
|
|
&parsed_time));
|
|
EXPECT_NE(-1, parsed_time.ToTimeT());
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTestEpochNeg2) {
|
|
Time parsed_time;
|
|
|
|
// time_t == 2 seconds before epoch == -2
|
|
EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:58 +0100 1970",
|
|
&parsed_time));
|
|
EXPECT_EQ(-2, parsed_time.ToTimeT());
|
|
EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:58 GMT 1969",
|
|
&parsed_time));
|
|
EXPECT_EQ(-2, parsed_time.ToTimeT());
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTestEpoch1960) {
|
|
Time parsed_time;
|
|
|
|
// time_t before Epoch, in 1960
|
|
EXPECT_TRUE(Time::FromString("Wed Jun 29 19:40:01 +0100 1960",
|
|
&parsed_time));
|
|
EXPECT_EQ(-299999999, parsed_time.ToTimeT());
|
|
EXPECT_TRUE(Time::FromString("Wed Jun 29 18:40:01 GMT 1960",
|
|
&parsed_time));
|
|
EXPECT_EQ(-299999999, parsed_time.ToTimeT());
|
|
EXPECT_TRUE(Time::FromString("Wed Jun 29 17:40:01 GMT 1960",
|
|
&parsed_time));
|
|
EXPECT_EQ(-300003599, parsed_time.ToTimeT());
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTestEmpty) {
|
|
Time parsed_time;
|
|
EXPECT_FALSE(Time::FromString("", &parsed_time));
|
|
}
|
|
|
|
TEST_F(TimeTest, ParseTimeTestInvalidString) {
|
|
Time parsed_time;
|
|
EXPECT_FALSE(Time::FromString("Monday morning 2000", &parsed_time));
|
|
}
|
|
|
|
TEST_F(TimeTest, ExplodeBeforeUnixEpoch) {
|
|
static const int kUnixEpochYear = 1970; // In case this changes (ha!).
|
|
Time t;
|
|
Time::Exploded exploded;
|
|
|
|
t = Time::UnixEpoch() - Microseconds(1);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1969-12-31 23:59:59 999 milliseconds (and 999 microseconds).
|
|
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
|
|
EXPECT_EQ(12, exploded.month);
|
|
EXPECT_EQ(31, exploded.day_of_month);
|
|
EXPECT_EQ(23, exploded.hour);
|
|
EXPECT_EQ(59, exploded.minute);
|
|
EXPECT_EQ(59, exploded.second);
|
|
EXPECT_EQ(999, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() - Microseconds(999);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1969-12-31 23:59:59 999 milliseconds (and 1 microsecond).
|
|
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
|
|
EXPECT_EQ(12, exploded.month);
|
|
EXPECT_EQ(31, exploded.day_of_month);
|
|
EXPECT_EQ(23, exploded.hour);
|
|
EXPECT_EQ(59, exploded.minute);
|
|
EXPECT_EQ(59, exploded.second);
|
|
EXPECT_EQ(999, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() - Microseconds(1000);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1969-12-31 23:59:59 999 milliseconds.
|
|
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
|
|
EXPECT_EQ(12, exploded.month);
|
|
EXPECT_EQ(31, exploded.day_of_month);
|
|
EXPECT_EQ(23, exploded.hour);
|
|
EXPECT_EQ(59, exploded.minute);
|
|
EXPECT_EQ(59, exploded.second);
|
|
EXPECT_EQ(999, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() - Microseconds(1001);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1969-12-31 23:59:59 998 milliseconds (and 999 microseconds).
|
|
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
|
|
EXPECT_EQ(12, exploded.month);
|
|
EXPECT_EQ(31, exploded.day_of_month);
|
|
EXPECT_EQ(23, exploded.hour);
|
|
EXPECT_EQ(59, exploded.minute);
|
|
EXPECT_EQ(59, exploded.second);
|
|
EXPECT_EQ(998, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() - Milliseconds(1000);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1969-12-31 23:59:59.
|
|
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
|
|
EXPECT_EQ(12, exploded.month);
|
|
EXPECT_EQ(31, exploded.day_of_month);
|
|
EXPECT_EQ(23, exploded.hour);
|
|
EXPECT_EQ(59, exploded.minute);
|
|
EXPECT_EQ(59, exploded.second);
|
|
EXPECT_EQ(0, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() - Milliseconds(1001);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1969-12-31 23:59:58 999 milliseconds.
|
|
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
|
|
EXPECT_EQ(12, exploded.month);
|
|
EXPECT_EQ(31, exploded.day_of_month);
|
|
EXPECT_EQ(23, exploded.hour);
|
|
EXPECT_EQ(59, exploded.minute);
|
|
EXPECT_EQ(58, exploded.second);
|
|
EXPECT_EQ(999, exploded.millisecond);
|
|
|
|
// Make sure we still handle at/after Unix epoch correctly.
|
|
t = Time::UnixEpoch();
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1970-12-31 00:00:00 0 milliseconds.
|
|
EXPECT_EQ(kUnixEpochYear, exploded.year);
|
|
EXPECT_EQ(1, exploded.month);
|
|
EXPECT_EQ(1, exploded.day_of_month);
|
|
EXPECT_EQ(0, exploded.hour);
|
|
EXPECT_EQ(0, exploded.minute);
|
|
EXPECT_EQ(0, exploded.second);
|
|
EXPECT_EQ(0, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() + Microseconds(1);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1970-01-01 00:00:00 0 milliseconds (and 1 microsecond).
|
|
EXPECT_EQ(kUnixEpochYear, exploded.year);
|
|
EXPECT_EQ(1, exploded.month);
|
|
EXPECT_EQ(1, exploded.day_of_month);
|
|
EXPECT_EQ(0, exploded.hour);
|
|
EXPECT_EQ(0, exploded.minute);
|
|
EXPECT_EQ(0, exploded.second);
|
|
EXPECT_EQ(0, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() + Microseconds(999);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1970-01-01 00:00:00 0 milliseconds (and 999 microseconds).
|
|
EXPECT_EQ(kUnixEpochYear, exploded.year);
|
|
EXPECT_EQ(1, exploded.month);
|
|
EXPECT_EQ(1, exploded.day_of_month);
|
|
EXPECT_EQ(0, exploded.hour);
|
|
EXPECT_EQ(0, exploded.minute);
|
|
EXPECT_EQ(0, exploded.second);
|
|
EXPECT_EQ(0, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() + Microseconds(1000);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1970-01-01 00:00:00 1 millisecond.
|
|
EXPECT_EQ(kUnixEpochYear, exploded.year);
|
|
EXPECT_EQ(1, exploded.month);
|
|
EXPECT_EQ(1, exploded.day_of_month);
|
|
EXPECT_EQ(0, exploded.hour);
|
|
EXPECT_EQ(0, exploded.minute);
|
|
EXPECT_EQ(0, exploded.second);
|
|
EXPECT_EQ(1, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() + Milliseconds(1000);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1970-01-01 00:00:01.
|
|
EXPECT_EQ(kUnixEpochYear, exploded.year);
|
|
EXPECT_EQ(1, exploded.month);
|
|
EXPECT_EQ(1, exploded.day_of_month);
|
|
EXPECT_EQ(0, exploded.hour);
|
|
EXPECT_EQ(0, exploded.minute);
|
|
EXPECT_EQ(1, exploded.second);
|
|
EXPECT_EQ(0, exploded.millisecond);
|
|
|
|
t = Time::UnixEpoch() + Milliseconds(1001);
|
|
t.UTCExplode(&exploded);
|
|
EXPECT_TRUE(exploded.HasValidValues());
|
|
// Should be 1970-01-01 00:00:01 1 millisecond.
|
|
EXPECT_EQ(kUnixEpochYear, exploded.year);
|
|
EXPECT_EQ(1, exploded.month);
|
|
EXPECT_EQ(1, exploded.day_of_month);
|
|
EXPECT_EQ(0, exploded.hour);
|
|
EXPECT_EQ(0, exploded.minute);
|
|
EXPECT_EQ(1, exploded.second);
|
|
EXPECT_EQ(1, exploded.millisecond);
|
|
}
|
|
|
|
TEST_F(TimeTest, Max) {
|
|
constexpr Time kMax = Time::Max();
|
|
static_assert(kMax.is_max());
|
|
static_assert(kMax == Time::Max());
|
|
EXPECT_GT(kMax, Time::Now());
|
|
static_assert(kMax > Time());
|
|
EXPECT_TRUE((Time::Now() - kMax).is_negative());
|
|
EXPECT_TRUE((kMax - Time::Now()).is_positive());
|
|
}
|
|
|
|
TEST_F(TimeTest, MaxConversions) {
|
|
constexpr Time kMax = Time::Max();
|
|
static_assert(std::numeric_limits<int64_t>::max() == kMax.ToInternalValue(),
|
|
"");
|
|
|
|
Time t = Time::FromDoubleT(std::numeric_limits<double>::infinity());
|
|
EXPECT_TRUE(t.is_max());
|
|
EXPECT_EQ(std::numeric_limits<double>::infinity(), t.ToDoubleT());
|
|
|
|
t = Time::FromJsTime(std::numeric_limits<double>::infinity());
|
|
EXPECT_TRUE(t.is_max());
|
|
EXPECT_EQ(std::numeric_limits<double>::infinity(), t.ToJsTime());
|
|
|
|
t = Time::FromTimeT(std::numeric_limits<time_t>::max());
|
|
EXPECT_TRUE(t.is_max());
|
|
EXPECT_EQ(std::numeric_limits<time_t>::max(), t.ToTimeT());
|
|
|
|
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
struct timeval tval;
|
|
tval.tv_sec = std::numeric_limits<time_t>::max();
|
|
tval.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1;
|
|
t = Time::FromTimeVal(tval);
|
|
EXPECT_TRUE(t.is_max());
|
|
tval = t.ToTimeVal();
|
|
EXPECT_EQ(std::numeric_limits<time_t>::max(), tval.tv_sec);
|
|
EXPECT_EQ(static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1,
|
|
tval.tv_usec);
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_APPLE)
|
|
t = Time::FromCFAbsoluteTime(std::numeric_limits<CFAbsoluteTime>::infinity());
|
|
EXPECT_TRUE(t.is_max());
|
|
EXPECT_EQ(std::numeric_limits<CFAbsoluteTime>::infinity(),
|
|
t.ToCFAbsoluteTime());
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
FILETIME ftime;
|
|
ftime.dwHighDateTime = std::numeric_limits<DWORD>::max();
|
|
ftime.dwLowDateTime = std::numeric_limits<DWORD>::max();
|
|
t = Time::FromFileTime(ftime);
|
|
EXPECT_TRUE(t.is_max());
|
|
ftime = t.ToFileTime();
|
|
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwHighDateTime);
|
|
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwLowDateTime);
|
|
#endif
|
|
}
|
|
|
|
TEST_F(TimeTest, Min) {
|
|
constexpr Time kMin = Time::Min();
|
|
static_assert(kMin.is_min());
|
|
static_assert(kMin == Time::Min());
|
|
EXPECT_LT(kMin, Time::Now());
|
|
static_assert(kMin < Time());
|
|
EXPECT_TRUE((Time::Now() - kMin).is_positive());
|
|
EXPECT_TRUE((kMin - Time::Now()).is_negative());
|
|
}
|
|
|
|
#if BUILDFLAG(IS_APPLE)
|
|
TEST_F(TimeTest, TimeTOverflow) {
|
|
constexpr Time kMaxMinusOne =
|
|
Time::FromInternalValue(std::numeric_limits<int64_t>::max() - 1);
|
|
static_assert(!kMaxMinusOne.is_max());
|
|
EXPECT_EQ(std::numeric_limits<time_t>::max(), kMaxMinusOne.ToTimeT());
|
|
}
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_ANDROID)
|
|
TEST_F(TimeTest, FromLocalExplodedCrashOnAndroid) {
|
|
// This crashed inside Time:: FromLocalExploded() on Android 4.1.2.
|
|
// See http://crbug.com/287821
|
|
Time::Exploded midnight = {2013, // year
|
|
10, // month
|
|
0, // day_of_week
|
|
13, // day_of_month
|
|
0, // hour
|
|
0, // minute
|
|
0, // second
|
|
};
|
|
// The string passed to putenv() must be a char* and the documentation states
|
|
// that it 'becomes part of the environment', so use a static buffer.
|
|
static char buffer[] = "TZ=America/Santiago";
|
|
putenv(buffer);
|
|
tzset();
|
|
Time t;
|
|
EXPECT_TRUE(Time::FromLocalExploded(midnight, &t));
|
|
EXPECT_EQ(1381633200, t.ToTimeT());
|
|
}
|
|
#endif // BUILDFLAG(IS_ANDROID)
|
|
|
|
// Regression test for https://crbug.com/1104442
|
|
TEST_F(TimeTest, Explode_Y10KCompliance) {
|
|
constexpr int kDaysPerYear = 365;
|
|
constexpr int64_t kHalfYearInMicros = Days(kDaysPerYear / 2).InMicroseconds();
|
|
|
|
// The Y2038 issue occurs when a 32-bit signed integer overflows.
|
|
constexpr int64_t kYear2038MicrosOffset =
|
|
Time::kTimeTToMicrosecondsOffset +
|
|
(std::numeric_limits<int32_t>::max() * Time::kMicrosecondsPerSecond);
|
|
|
|
// 1 March 10000 at noon.
|
|
constexpr int64_t kYear10000YearsOffset = 10000 - 1970;
|
|
constexpr int kExtraLeapDaysOverThoseYears = 1947;
|
|
constexpr int kDaysFromJanToMar10000 = 31 + 29;
|
|
constexpr int64_t kMarch10000MicrosOffset =
|
|
Time::kTimeTToMicrosecondsOffset +
|
|
Days(kYear10000YearsOffset * kDaysPerYear + kExtraLeapDaysOverThoseYears +
|
|
kDaysFromJanToMar10000)
|
|
.InMicroseconds() +
|
|
Hours(12).InMicroseconds();
|
|
|
|
// Windows uses a 64-bit signed integer type that reperesents the number of
|
|
// 1/10 microsecond ticks.
|
|
constexpr int64_t kWindowsMaxMicrosOffset =
|
|
std::numeric_limits<int64_t>::max() / 10;
|
|
|
|
// ICU's Calendar API uses double values. Thus, the maximum supported value is
|
|
// the maximum integer that can be represented by a double.
|
|
static_assert(std::numeric_limits<double>::radix == 2);
|
|
constexpr int64_t kMaxIntegerAsDoubleMillis =
|
|
int64_t{1} << std::numeric_limits<double>::digits;
|
|
constexpr int64_t kIcuMaxMicrosOffset =
|
|
Time::kTimeTToMicrosecondsOffset +
|
|
(kMaxIntegerAsDoubleMillis * Time::kMicrosecondsPerMillisecond + 999);
|
|
|
|
const auto make_time = [](int64_t micros) {
|
|
return Time::FromDeltaSinceWindowsEpoch(Microseconds(micros));
|
|
};
|
|
|
|
const struct TestCase {
|
|
Time time;
|
|
Time::Exploded expected;
|
|
} kTestCases[] = {
|
|
// A very long time ago.
|
|
{Time::Min(), Time::Exploded{-290677, 12, 4, 23, 19, 59, 5, 224}},
|
|
|
|
// Before/On/After 1 Jan 1601.
|
|
{make_time(-kHalfYearInMicros),
|
|
Time::Exploded{1600, 7, 1, 3, 0, 0, 0, 0}},
|
|
{make_time(0), Time::Exploded{1601, 1, 1, 1, 0, 0, 0, 0}},
|
|
{make_time(kHalfYearInMicros), Time::Exploded{1601, 7, 1, 2, 0, 0, 0, 0}},
|
|
|
|
// Before/On/After 1 Jan 1970.
|
|
{make_time(Time::kTimeTToMicrosecondsOffset - kHalfYearInMicros),
|
|
Time::Exploded{1969, 7, 4, 3, 0, 0, 0, 0}},
|
|
{make_time(Time::kTimeTToMicrosecondsOffset),
|
|
Time::Exploded{1970, 1, 4, 1, 0, 0, 0, 0}},
|
|
{make_time(Time::kTimeTToMicrosecondsOffset + kHalfYearInMicros),
|
|
Time::Exploded{1970, 7, 4, 2, 0, 0, 0, 0}},
|
|
|
|
// Before/On/After 19 January 2038.
|
|
{make_time(kYear2038MicrosOffset - kHalfYearInMicros),
|
|
Time::Exploded{2037, 7, 2, 21, 3, 14, 7, 0}},
|
|
{make_time(kYear2038MicrosOffset),
|
|
Time::Exploded{2038, 1, 2, 19, 3, 14, 7, 0}},
|
|
{make_time(kYear2038MicrosOffset + kHalfYearInMicros),
|
|
Time::Exploded{2038, 7, 2, 20, 3, 14, 7, 0}},
|
|
|
|
// Before/On/After 1 March 10000 at noon.
|
|
{make_time(kMarch10000MicrosOffset - kHalfYearInMicros),
|
|
Time::Exploded{9999, 9, 3, 1, 12, 0, 0, 0}},
|
|
{make_time(kMarch10000MicrosOffset),
|
|
Time::Exploded{10000, 3, 3, 1, 12, 0, 0, 0}},
|
|
{make_time(kMarch10000MicrosOffset + kHalfYearInMicros),
|
|
Time::Exploded{10000, 8, 3, 30, 12, 0, 0, 0}},
|
|
|
|
// Before/On/After Windows Max (14 September 30828).
|
|
{make_time(kWindowsMaxMicrosOffset - kHalfYearInMicros),
|
|
Time::Exploded{30828, 3, 4, 16, 2, 48, 5, 477}},
|
|
{make_time(kWindowsMaxMicrosOffset),
|
|
Time::Exploded{30828, 9, 4, 14, 2, 48, 5, 477}},
|
|
{make_time(kWindowsMaxMicrosOffset + kHalfYearInMicros),
|
|
Time::Exploded{30829, 3, 4, 15, 2, 48, 5, 477}},
|
|
|
|
// Before/On/After ICU Max.
|
|
{make_time(kIcuMaxMicrosOffset - kHalfYearInMicros),
|
|
Time::Exploded{287396, 4, 3, 13, 8, 59, 0, 992}},
|
|
{make_time(kIcuMaxMicrosOffset),
|
|
Time::Exploded{287396, 10, 3, 12, 8, 59, 0, 992}},
|
|
{make_time(kIcuMaxMicrosOffset + kHalfYearInMicros),
|
|
Time::Exploded{287397, 4, 3, 12, 8, 59, 0, 992}},
|
|
|
|
// A very long time from now.
|
|
{Time::Max(), Time::Exploded{293878, 1, 4, 10, 4, 0, 54, 775}},
|
|
};
|
|
|
|
for (const TestCase& test_case : kTestCases) {
|
|
SCOPED_TRACE(testing::Message() << "Time: " << test_case.time);
|
|
|
|
Time::Exploded exploded = {};
|
|
test_case.time.UTCExplode(&exploded);
|
|
|
|
// Confirm the implementation provides a correct conversion for all inputs
|
|
// within the guaranteed range (as discussed in the header comments). If an
|
|
// implementation provides a result for inputs outside the guaranteed range,
|
|
// the result must still be correct.
|
|
if (exploded.HasValidValues()) {
|
|
EXPECT_EQ(test_case.expected.year, exploded.year);
|
|
EXPECT_EQ(test_case.expected.month, exploded.month);
|
|
EXPECT_EQ(test_case.expected.day_of_week, exploded.day_of_week);
|
|
EXPECT_EQ(test_case.expected.day_of_month, exploded.day_of_month);
|
|
EXPECT_EQ(test_case.expected.hour, exploded.hour);
|
|
EXPECT_EQ(test_case.expected.minute, exploded.minute);
|
|
EXPECT_EQ(test_case.expected.second, exploded.second);
|
|
EXPECT_EQ(test_case.expected.millisecond, exploded.millisecond);
|
|
} else {
|
|
// The implementation could not provide a conversion. That is only allowed
|
|
// for inputs outside the guaranteed range.
|
|
const bool is_in_range =
|
|
test_case.time >= make_time(0) &&
|
|
test_case.time <= make_time(kWindowsMaxMicrosOffset);
|
|
EXPECT_FALSE(is_in_range);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
|
|
// Regression tests for https://crbug.com/1198313: base::Time::UTCExplode and
|
|
// base::Time::LocalExplode should not be locale-dependent.
|
|
TEST_F(TimeTest, UTCExplodedIsLocaleIndependent) {
|
|
// Time-to-Exploded could be using libc or ICU functions.
|
|
// Set the ICU locale and timezone and the libc timezone.
|
|
// We're not setting the libc locale because the libc time functions are
|
|
// locale-independent and the th_TH.utf8 locale was not available on all
|
|
// trybots at the time this test was added.
|
|
// th-TH maps to a non-gregorian calendar.
|
|
test::ScopedRestoreICUDefaultLocale scoped_icu_locale(kThaiLocale);
|
|
test::ScopedRestoreDefaultTimezone scoped_timezone(kBangkokTimeZoneId);
|
|
ScopedLibcTZ scoped_libc_tz(kBangkokTimeZoneId);
|
|
ASSERT_TRUE(scoped_libc_tz.is_success());
|
|
|
|
Time::Exploded utc_exploded_orig;
|
|
utc_exploded_orig.year = 2020;
|
|
utc_exploded_orig.month = 7;
|
|
utc_exploded_orig.day_of_week = 5; // Friday
|
|
utc_exploded_orig.day_of_month = 3;
|
|
utc_exploded_orig.hour = 12;
|
|
utc_exploded_orig.minute = 0;
|
|
utc_exploded_orig.second = 0;
|
|
utc_exploded_orig.millisecond = 0;
|
|
|
|
Time time;
|
|
ASSERT_TRUE(base::Time::FromUTCExploded(utc_exploded_orig, &time));
|
|
|
|
// Round trip to UTC Exploded should produce the exact same result.
|
|
Time::Exploded utc_exploded;
|
|
time.UTCExplode(&utc_exploded);
|
|
EXPECT_EQ(utc_exploded_orig.year, utc_exploded.year);
|
|
EXPECT_EQ(utc_exploded_orig.month, utc_exploded.month);
|
|
EXPECT_EQ(utc_exploded_orig.day_of_week, utc_exploded.day_of_week);
|
|
EXPECT_EQ(utc_exploded_orig.day_of_month, utc_exploded.day_of_month);
|
|
EXPECT_EQ(utc_exploded_orig.hour, utc_exploded.hour);
|
|
EXPECT_EQ(utc_exploded_orig.minute, utc_exploded.minute);
|
|
EXPECT_EQ(utc_exploded_orig.second, utc_exploded.second);
|
|
EXPECT_EQ(utc_exploded_orig.millisecond, utc_exploded.millisecond);
|
|
}
|
|
|
|
TEST_F(TimeTest, LocalExplodedIsLocaleIndependent) {
|
|
// Time-to-Exploded could be using libc or ICU functions.
|
|
// Set the ICU locale and timezone and the libc timezone.
|
|
// We're not setting the libc locale because the libc time functions are
|
|
// locale-independent and the th_TH.utf8 locale was not available on all
|
|
// trybots at the time this test was added.
|
|
// th-TH maps to a non-gregorian calendar.
|
|
test::ScopedRestoreICUDefaultLocale scoped_icu_locale(kThaiLocale);
|
|
test::ScopedRestoreDefaultTimezone scoped_timezone(kBangkokTimeZoneId);
|
|
ScopedLibcTZ scoped_libc_tz(kBangkokTimeZoneId);
|
|
ASSERT_TRUE(scoped_libc_tz.is_success());
|
|
|
|
Time::Exploded utc_exploded_orig;
|
|
utc_exploded_orig.year = 2020;
|
|
utc_exploded_orig.month = 7;
|
|
utc_exploded_orig.day_of_week = 5; // Friday
|
|
utc_exploded_orig.day_of_month = 3;
|
|
utc_exploded_orig.hour = 12;
|
|
utc_exploded_orig.minute = 0;
|
|
utc_exploded_orig.second = 0;
|
|
utc_exploded_orig.millisecond = 0;
|
|
|
|
Time time;
|
|
ASSERT_TRUE(base::Time::FromUTCExploded(utc_exploded_orig, &time));
|
|
|
|
absl::optional<TimeDelta> expected_delta =
|
|
GetTimeZoneOffsetAtTime(kBangkokTimeZoneId, time);
|
|
|
|
ASSERT_TRUE(expected_delta.has_value());
|
|
|
|
// This is to be sure that the day has not changed
|
|
ASSERT_LT(*expected_delta, base::Hours(12));
|
|
|
|
Time::Exploded local_exploded;
|
|
time.LocalExplode(&local_exploded);
|
|
|
|
TimeDelta actual_delta = TimePassedAfterMidnight(local_exploded) -
|
|
TimePassedAfterMidnight(utc_exploded_orig);
|
|
|
|
EXPECT_EQ(utc_exploded_orig.year, local_exploded.year);
|
|
EXPECT_EQ(utc_exploded_orig.month, local_exploded.month);
|
|
EXPECT_EQ(utc_exploded_orig.day_of_week, local_exploded.day_of_week);
|
|
EXPECT_EQ(utc_exploded_orig.day_of_month, local_exploded.day_of_month);
|
|
EXPECT_EQ(actual_delta, *expected_delta);
|
|
}
|
|
#endif // BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
|
|
|
|
TEST_F(TimeTest, FromExploded_MinMax) {
|
|
Time::Exploded exploded = {0};
|
|
exploded.month = 1;
|
|
exploded.day_of_month = 1;
|
|
|
|
Time parsed_time;
|
|
|
|
if (Time::kExplodedMinYear != std::numeric_limits<int>::min()) {
|
|
exploded.year = Time::kExplodedMinYear;
|
|
EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time));
|
|
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
// On Windows, January 1, 1601 00:00:00 is actually the null time.
|
|
EXPECT_FALSE(parsed_time.is_null());
|
|
#endif
|
|
|
|
#if !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_APPLE)
|
|
// The dates earlier than |kExplodedMinYear| that don't work are OS version
|
|
// dependent on Android and Mac (for example, macOS 10.13 seems to support
|
|
// dates before 1902).
|
|
exploded.year--;
|
|
EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time));
|
|
EXPECT_TRUE(parsed_time.is_null());
|
|
#endif
|
|
}
|
|
|
|
if (Time::kExplodedMaxYear != std::numeric_limits<int>::max()) {
|
|
exploded.year = Time::kExplodedMaxYear;
|
|
exploded.month = 12;
|
|
exploded.day_of_month = 31;
|
|
exploded.hour = 23;
|
|
exploded.minute = 59;
|
|
exploded.second = 59;
|
|
exploded.millisecond = 999;
|
|
EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time));
|
|
EXPECT_FALSE(parsed_time.is_null());
|
|
|
|
exploded.year++;
|
|
EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time));
|
|
EXPECT_TRUE(parsed_time.is_null());
|
|
}
|
|
}
|
|
|
|
class TimeOverride {
|
|
public:
|
|
static Time Now() {
|
|
now_time_ += Seconds(1);
|
|
return now_time_;
|
|
}
|
|
|
|
static Time now_time_;
|
|
};
|
|
|
|
// static
|
|
Time TimeOverride::now_time_;
|
|
|
|
TEST_F(TimeTest, NowOverride) {
|
|
TimeOverride::now_time_ = Time::UnixEpoch();
|
|
|
|
// Choose a reference time that we know to be in the past but close to now.
|
|
Time build_time = GetBuildTime();
|
|
|
|
// Override is not active. All Now() methods should return a time greater than
|
|
// the build time.
|
|
EXPECT_LT(build_time, Time::Now());
|
|
EXPECT_GT(Time::Max(), Time::Now());
|
|
EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
|
|
EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
|
|
EXPECT_LT(build_time, Time::NowFromSystemTime());
|
|
EXPECT_GT(Time::Max(), Time::NowFromSystemTime());
|
|
EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
|
|
EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
|
|
|
|
{
|
|
// Set override.
|
|
subtle::ScopedTimeClockOverrides overrides(&TimeOverride::Now, nullptr,
|
|
nullptr);
|
|
|
|
// Overridden value is returned and incremented when Now() or
|
|
// NowFromSystemTime() is called.
|
|
EXPECT_EQ(Time::UnixEpoch() + Seconds(1), Time::Now());
|
|
EXPECT_EQ(Time::UnixEpoch() + Seconds(2), Time::Now());
|
|
EXPECT_EQ(Time::UnixEpoch() + Seconds(3), Time::NowFromSystemTime());
|
|
EXPECT_EQ(Time::UnixEpoch() + Seconds(4), Time::NowFromSystemTime());
|
|
|
|
// IgnoringOverride methods still return real time.
|
|
EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
|
|
EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
|
|
EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
|
|
EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
|
|
|
|
// IgnoringOverride methods didn't call NowOverrideClock::Now().
|
|
EXPECT_EQ(Time::UnixEpoch() + Seconds(5), Time::Now());
|
|
EXPECT_EQ(Time::UnixEpoch() + Seconds(6), Time::NowFromSystemTime());
|
|
}
|
|
|
|
// All methods return real time again.
|
|
EXPECT_LT(build_time, Time::Now());
|
|
EXPECT_GT(Time::Max(), Time::Now());
|
|
EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
|
|
EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
|
|
EXPECT_LT(build_time, Time::NowFromSystemTime());
|
|
EXPECT_GT(Time::Max(), Time::NowFromSystemTime());
|
|
EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
|
|
EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
|
|
}
|
|
|
|
#undef MAYBE_NowOverride
|
|
|
|
TEST_F(TimeTest, TimeFormatHTTP) {
|
|
base::Time time;
|
|
ASSERT_TRUE(base::Time::FromString("1994-11-06T08:49:37Z", &time));
|
|
EXPECT_EQ("Sun, 06 Nov 1994 08:49:37 GMT", TimeFormatHTTP(time));
|
|
}
|
|
|
|
#if BUILDFLAG(IS_FUCHSIA)
|
|
TEST(ZxTimeTest, ToFromConversions) {
|
|
Time unix_epoch = Time::UnixEpoch();
|
|
EXPECT_EQ(unix_epoch.ToZxTime(), 0);
|
|
EXPECT_EQ(Time::FromZxTime(6000000000), unix_epoch + Seconds(6));
|
|
|
|
TimeTicks ticks_now = TimeTicks::Now();
|
|
EXPECT_GE(ticks_now.ToZxTime(), 0);
|
|
TimeTicks ticks_later = ticks_now + Seconds(2);
|
|
EXPECT_EQ((ticks_later.ToZxTime() - ticks_now.ToZxTime()), 2000000000);
|
|
EXPECT_EQ(TimeTicks::FromZxTime(3000000000), TimeTicks() + Seconds(3));
|
|
|
|
EXPECT_EQ(TimeDelta().ToZxDuration(), 0);
|
|
EXPECT_EQ(TimeDelta::FromZxDuration(0), TimeDelta());
|
|
|
|
EXPECT_EQ(Seconds(2).ToZxDuration(), 2000000000);
|
|
EXPECT_EQ(TimeDelta::FromZxDuration(4000000000), Seconds(4));
|
|
}
|
|
#endif // BUILDFLAG(IS_FUCHSIA)
|
|
|
|
TEST(TimeTicks, Deltas) {
|
|
for (int index = 0; index < 50; index++) {
|
|
TimeTicks ticks_start = TimeTicks::Now();
|
|
base::PlatformThread::Sleep(base::Milliseconds(10));
|
|
TimeTicks ticks_stop = TimeTicks::Now();
|
|
TimeDelta delta = ticks_stop - ticks_start;
|
|
// Note: Although we asked for a 10ms sleep, if the
|
|
// time clock has a finer granularity than the Sleep()
|
|
// clock, it is quite possible to wakeup early. Here
|
|
// is how that works:
|
|
// Time(ms timer) Time(us timer)
|
|
// 5 5010
|
|
// 6 6010
|
|
// 7 7010
|
|
// 8 8010
|
|
// 9 9000
|
|
// Elapsed 4ms 3990us
|
|
//
|
|
// Unfortunately, our InMilliseconds() function truncates
|
|
// rather than rounds. We should consider fixing this
|
|
// so that our averages come out better.
|
|
EXPECT_GE(delta.InMilliseconds(), 9);
|
|
EXPECT_GE(delta.InMicroseconds(), 9000);
|
|
EXPECT_EQ(delta.InSeconds(), 0);
|
|
}
|
|
}
|
|
|
|
static void HighResClockTest(TimeTicks (*GetTicks)()) {
|
|
// IsHighResolution() is false on some systems. Since the product still works
|
|
// even if it's false, it makes this entire test questionable.
|
|
if (!TimeTicks::IsHighResolution())
|
|
return;
|
|
|
|
// Why do we loop here?
|
|
// We're trying to measure that intervals increment in a VERY small amount
|
|
// of time -- less than 15ms. Unfortunately, if we happen to have a
|
|
// context switch in the middle of our test, the context switch could easily
|
|
// exceed our limit. So, we iterate on this several times. As long as we're
|
|
// able to detect the fine-granularity timers at least once, then the test
|
|
// has succeeded.
|
|
|
|
const int kTargetGranularityUs = 15000; // 15ms
|
|
|
|
bool success = false;
|
|
int retries = 100; // Arbitrary.
|
|
TimeDelta delta;
|
|
while (!success && retries--) {
|
|
TimeTicks ticks_start = GetTicks();
|
|
// Loop until we can detect that the clock has changed. Non-HighRes timers
|
|
// will increment in chunks, e.g. 15ms. By spinning until we see a clock
|
|
// change, we detect the minimum time between measurements.
|
|
do {
|
|
delta = GetTicks() - ticks_start;
|
|
} while (delta.InMilliseconds() == 0);
|
|
|
|
if (delta.InMicroseconds() <= kTargetGranularityUs)
|
|
success = true;
|
|
}
|
|
|
|
// In high resolution mode, we expect to see the clock increment
|
|
// in intervals less than 15ms.
|
|
EXPECT_TRUE(success);
|
|
}
|
|
|
|
TEST(TimeTicks, HighRes) {
|
|
HighResClockTest(&TimeTicks::Now);
|
|
}
|
|
|
|
class TimeTicksOverride {
|
|
public:
|
|
static TimeTicks Now() {
|
|
now_ticks_ += Seconds(1);
|
|
return now_ticks_;
|
|
}
|
|
|
|
static TimeTicks now_ticks_;
|
|
};
|
|
|
|
// static
|
|
TimeTicks TimeTicksOverride::now_ticks_;
|
|
|
|
TEST(TimeTicks, NowOverride) {
|
|
TimeTicksOverride::now_ticks_ = TimeTicks::Min();
|
|
|
|
// Override is not active. All Now() methods should return a sensible value.
|
|
EXPECT_LT(TimeTicks::Min(), TimeTicks::UnixEpoch());
|
|
EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now());
|
|
EXPECT_GT(TimeTicks::Max(), TimeTicks::Now());
|
|
EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
|
|
EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
|
|
|
|
{
|
|
// Set override.
|
|
subtle::ScopedTimeClockOverrides overrides(nullptr, &TimeTicksOverride::Now,
|
|
nullptr);
|
|
|
|
// Overridden value is returned and incremented when Now() is called.
|
|
EXPECT_EQ(TimeTicks::Min() + Seconds(1), TimeTicks::Now());
|
|
EXPECT_EQ(TimeTicks::Min() + Seconds(2), TimeTicks::Now());
|
|
|
|
// NowIgnoringOverride() still returns real ticks.
|
|
EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
|
|
EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
|
|
|
|
// IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
|
|
EXPECT_EQ(TimeTicks::Min() + Seconds(3), TimeTicks::Now());
|
|
}
|
|
|
|
// All methods return real ticks again.
|
|
EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now());
|
|
EXPECT_GT(TimeTicks::Max(), TimeTicks::Now());
|
|
EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
|
|
EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
|
|
}
|
|
|
|
class ThreadTicksOverride {
|
|
public:
|
|
static ThreadTicks Now() {
|
|
now_ticks_ += Seconds(1);
|
|
return now_ticks_;
|
|
}
|
|
|
|
static ThreadTicks now_ticks_;
|
|
};
|
|
|
|
// static
|
|
ThreadTicks ThreadTicksOverride::now_ticks_;
|
|
|
|
// IOS doesn't support ThreadTicks::Now().
|
|
#if BUILDFLAG(IS_IOS)
|
|
#define MAYBE_NowOverride DISABLED_NowOverride
|
|
#else
|
|
#define MAYBE_NowOverride NowOverride
|
|
#endif
|
|
TEST(ThreadTicks, MAYBE_NowOverride) {
|
|
ThreadTicksOverride::now_ticks_ = ThreadTicks::Min();
|
|
|
|
// Override is not active. All Now() methods should return a sensible value.
|
|
ThreadTicks initial_thread_ticks = ThreadTicks::Now();
|
|
EXPECT_LE(initial_thread_ticks, ThreadTicks::Now());
|
|
EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now());
|
|
EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
|
|
EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
|
|
|
|
{
|
|
// Set override.
|
|
subtle::ScopedTimeClockOverrides overrides(nullptr, nullptr,
|
|
&ThreadTicksOverride::Now);
|
|
|
|
// Overridden value is returned and incremented when Now() is called.
|
|
EXPECT_EQ(ThreadTicks::Min() + Seconds(1), ThreadTicks::Now());
|
|
EXPECT_EQ(ThreadTicks::Min() + Seconds(2), ThreadTicks::Now());
|
|
|
|
// NowIgnoringOverride() still returns real ticks.
|
|
EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
|
|
EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
|
|
|
|
// IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
|
|
EXPECT_EQ(ThreadTicks::Min() + Seconds(3), ThreadTicks::Now());
|
|
}
|
|
|
|
// All methods return real ticks again.
|
|
EXPECT_LE(initial_thread_ticks, ThreadTicks::Now());
|
|
EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now());
|
|
EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
|
|
EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
|
|
}
|
|
|
|
TEST(ThreadTicks, ThreadNow) {
|
|
if (ThreadTicks::IsSupported()) {
|
|
ThreadTicks::WaitUntilInitialized();
|
|
TimeTicks begin = TimeTicks::Now();
|
|
ThreadTicks begin_thread = ThreadTicks::Now();
|
|
// Make sure that ThreadNow value is non-zero.
|
|
EXPECT_GT(begin_thread, ThreadTicks());
|
|
// Sleep for 10 milliseconds to get the thread de-scheduled.
|
|
base::PlatformThread::Sleep(base::Milliseconds(10));
|
|
ThreadTicks end_thread = ThreadTicks::Now();
|
|
TimeTicks end = TimeTicks::Now();
|
|
TimeDelta delta = end - begin;
|
|
TimeDelta delta_thread = end_thread - begin_thread;
|
|
// Make sure that some thread time have elapsed.
|
|
EXPECT_GE(delta_thread.InMicroseconds(), 0);
|
|
// But the thread time is at least 9ms less than clock time.
|
|
TimeDelta difference = delta - delta_thread;
|
|
EXPECT_GE(difference.InMicroseconds(), 9000);
|
|
}
|
|
}
|
|
|
|
TEST(TimeTicks, SnappedToNextTickBasic) {
|
|
base::TimeTicks phase = base::TimeTicks::FromInternalValue(4000);
|
|
base::TimeDelta interval = base::Microseconds(1000);
|
|
base::TimeTicks timestamp;
|
|
|
|
// Timestamp in previous interval.
|
|
timestamp = base::TimeTicks::FromInternalValue(3500);
|
|
EXPECT_EQ(4000,
|
|
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
|
|
|
|
// Timestamp in next interval.
|
|
timestamp = base::TimeTicks::FromInternalValue(4500);
|
|
EXPECT_EQ(5000,
|
|
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
|
|
|
|
// Timestamp multiple intervals before.
|
|
timestamp = base::TimeTicks::FromInternalValue(2500);
|
|
EXPECT_EQ(3000,
|
|
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
|
|
|
|
// Timestamp multiple intervals after.
|
|
timestamp = base::TimeTicks::FromInternalValue(6500);
|
|
EXPECT_EQ(7000,
|
|
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
|
|
|
|
// Timestamp on previous interval.
|
|
timestamp = base::TimeTicks::FromInternalValue(3000);
|
|
EXPECT_EQ(3000,
|
|
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
|
|
|
|
// Timestamp on next interval.
|
|
timestamp = base::TimeTicks::FromInternalValue(5000);
|
|
EXPECT_EQ(5000,
|
|
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
|
|
|
|
// Timestamp equal to phase.
|
|
timestamp = base::TimeTicks::FromInternalValue(4000);
|
|
EXPECT_EQ(4000,
|
|
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
|
|
}
|
|
|
|
TEST(TimeTicks, SnappedToNextTickOverflow) {
|
|
// int(big_timestamp / interval) < 0, so this causes a crash if the number of
|
|
// intervals elapsed is attempted to be stored in an int.
|
|
base::TimeTicks phase = base::TimeTicks::FromInternalValue(0);
|
|
base::TimeDelta interval = base::Microseconds(4000);
|
|
base::TimeTicks big_timestamp =
|
|
base::TimeTicks::FromInternalValue(8635916564000);
|
|
|
|
EXPECT_EQ(8635916564000,
|
|
big_timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
|
|
EXPECT_EQ(8635916564000,
|
|
big_timestamp.SnappedToNextTick(big_timestamp, interval)
|
|
.ToInternalValue());
|
|
}
|
|
|
|
#if BUILDFLAG(IS_ANDROID)
|
|
TEST(TimeTicks, Android_FromUptimeMillis_ClocksMatch) {
|
|
JNIEnv* const env = android::AttachCurrentThread();
|
|
android::ScopedJavaLocalRef<jclass> clazz(
|
|
android::GetClass(env, "android/os/SystemClock"));
|
|
ASSERT_TRUE(clazz.obj());
|
|
const jmethodID method_id =
|
|
android::MethodID::Get<android::MethodID::TYPE_STATIC>(
|
|
env, clazz.obj(), "uptimeMillis", "()J");
|
|
ASSERT_FALSE(!method_id);
|
|
// Subtract 1ms from the expected lower bound to allow millisecond-level
|
|
// truncation performed in uptimeMillis().
|
|
const TimeTicks lower_bound_ticks = TimeTicks::Now() - Milliseconds(1);
|
|
const TimeTicks converted_ticks = TimeTicks::FromUptimeMillis(
|
|
env->CallStaticLongMethod(clazz.obj(), method_id));
|
|
const TimeTicks upper_bound_ticks = TimeTicks::Now();
|
|
EXPECT_LE(lower_bound_ticks, converted_ticks);
|
|
EXPECT_GE(upper_bound_ticks, converted_ticks);
|
|
}
|
|
|
|
TEST(TimeTicks, Android_FromJavaNanoTime_ClocksMatch) {
|
|
JNIEnv* const env = android::AttachCurrentThread();
|
|
android::ScopedJavaLocalRef<jclass> clazz(
|
|
android::GetClass(env, "java/lang/System"));
|
|
ASSERT_TRUE(clazz.obj());
|
|
const jmethodID method_id =
|
|
android::MethodID::Get<android::MethodID::TYPE_STATIC>(env, clazz.obj(),
|
|
"nanoTime", "()J");
|
|
ASSERT_FALSE(!method_id);
|
|
const TimeTicks lower_bound_ticks = TimeTicks::Now();
|
|
const TimeTicks converted_ticks = TimeTicks::FromJavaNanoTime(
|
|
env->CallStaticLongMethod(clazz.obj(), method_id));
|
|
// Add 1us to the expected upper bound to allow microsecond-level
|
|
// truncation performed in TimeTicks::Now().
|
|
const TimeTicks upper_bound_ticks = TimeTicks::Now() + Microseconds(1);
|
|
EXPECT_LE(lower_bound_ticks, converted_ticks);
|
|
EXPECT_GE(upper_bound_ticks, converted_ticks);
|
|
}
|
|
#endif // BUILDFLAG(IS_ANDROID)
|
|
|
|
TEST(TimeDelta, FromAndIn) {
|
|
// static_assert also checks that the contained expression is a constant
|
|
// expression, meaning all its components are suitable for initializing global
|
|
// variables.
|
|
static_assert(Days(2) == Hours(48));
|
|
static_assert(Hours(3) == Minutes(180));
|
|
static_assert(Minutes(2) == Seconds(120));
|
|
static_assert(Seconds(2) == Milliseconds(2000));
|
|
static_assert(Milliseconds(2) == Microseconds(2000));
|
|
static_assert(Seconds(2.3) == Milliseconds(2300));
|
|
static_assert(Milliseconds(2.5) == Microseconds(2500));
|
|
EXPECT_EQ(Days(13).InDays(), 13);
|
|
static_assert(Hours(13).InHours() == 13);
|
|
static_assert(Minutes(13).InMinutes() == 13);
|
|
static_assert(Seconds(13).InSeconds() == 13);
|
|
static_assert(Seconds(13).InSecondsF() == 13.0);
|
|
EXPECT_EQ(Milliseconds(13).InMilliseconds(), 13);
|
|
EXPECT_EQ(Milliseconds(13).InMillisecondsF(), 13.0);
|
|
static_assert(Seconds(13.1).InSeconds() == 13);
|
|
static_assert(Seconds(13.1).InSecondsF() == 13.1);
|
|
EXPECT_EQ(Milliseconds(13.3).InMilliseconds(), 13);
|
|
EXPECT_EQ(Milliseconds(13.3).InMillisecondsF(), 13.3);
|
|
static_assert(Microseconds(13).InMicroseconds() == 13);
|
|
static_assert(Microseconds(13.3).InMicroseconds() == 13);
|
|
EXPECT_EQ(Milliseconds(3.45678).InMillisecondsF(), 3.456);
|
|
static_assert(Nanoseconds(12345).InNanoseconds() == 12000);
|
|
static_assert(Nanoseconds(12345.678).InNanoseconds() == 12000);
|
|
}
|
|
|
|
TEST(TimeDelta, InRoundsTowardsZero) {
|
|
EXPECT_EQ(Hours(23).InDays(), 0);
|
|
EXPECT_EQ(Hours(-23).InDays(), 0);
|
|
static_assert(Minutes(59).InHours() == 0);
|
|
static_assert(Minutes(-59).InHours() == 0);
|
|
static_assert(Seconds(59).InMinutes() == 0);
|
|
static_assert(Seconds(-59).InMinutes() == 0);
|
|
static_assert(Milliseconds(999).InSeconds() == 0);
|
|
static_assert(Milliseconds(-999).InSeconds() == 0);
|
|
EXPECT_EQ(Microseconds(999).InMilliseconds(), 0);
|
|
EXPECT_EQ(Microseconds(-999).InMilliseconds(), 0);
|
|
}
|
|
|
|
TEST(TimeDelta, InDaysFloored) {
|
|
EXPECT_EQ(Hours(-25).InDaysFloored(), -2);
|
|
EXPECT_EQ(Hours(-24).InDaysFloored(), -1);
|
|
EXPECT_EQ(Hours(-23).InDaysFloored(), -1);
|
|
|
|
EXPECT_EQ(Hours(-1).InDaysFloored(), -1);
|
|
EXPECT_EQ(Hours(0).InDaysFloored(), 0);
|
|
EXPECT_EQ(Hours(1).InDaysFloored(), 0);
|
|
|
|
EXPECT_EQ(Hours(23).InDaysFloored(), 0);
|
|
EXPECT_EQ(Hours(24).InDaysFloored(), 1);
|
|
EXPECT_EQ(Hours(25).InDaysFloored(), 1);
|
|
}
|
|
|
|
TEST(TimeDelta, InMillisecondsRoundedUp) {
|
|
EXPECT_EQ(Microseconds(-1001).InMillisecondsRoundedUp(), -1);
|
|
EXPECT_EQ(Microseconds(-1000).InMillisecondsRoundedUp(), -1);
|
|
EXPECT_EQ(Microseconds(-999).InMillisecondsRoundedUp(), 0);
|
|
|
|
EXPECT_EQ(Microseconds(-1).InMillisecondsRoundedUp(), 0);
|
|
EXPECT_EQ(Microseconds(0).InMillisecondsRoundedUp(), 0);
|
|
EXPECT_EQ(Microseconds(1).InMillisecondsRoundedUp(), 1);
|
|
|
|
EXPECT_EQ(Microseconds(999).InMillisecondsRoundedUp(), 1);
|
|
EXPECT_EQ(Microseconds(1000).InMillisecondsRoundedUp(), 1);
|
|
EXPECT_EQ(Microseconds(1001).InMillisecondsRoundedUp(), 2);
|
|
}
|
|
|
|
// Check that near-min/max values saturate rather than overflow when converted
|
|
// lossily with InXXX() functions. Only integral hour, minute, and nanosecond
|
|
// conversions are checked, since those are the only cases where the return type
|
|
// is small enough for saturation or overflow to occur.
|
|
TEST(TimeDelta, InXXXOverflow) {
|
|
constexpr TimeDelta kLargeDelta =
|
|
Microseconds(std::numeric_limits<int64_t>::max() - 1);
|
|
static_assert(!kLargeDelta.is_max());
|
|
static_assert(std::numeric_limits<int>::max() == kLargeDelta.InHours());
|
|
static_assert(std::numeric_limits<int>::max() == kLargeDelta.InMinutes());
|
|
static_assert(
|
|
std::numeric_limits<int64_t>::max() == kLargeDelta.InNanoseconds(), "");
|
|
|
|
constexpr TimeDelta kLargeNegative =
|
|
Microseconds(std::numeric_limits<int64_t>::min() + 1);
|
|
static_assert(!kLargeNegative.is_min());
|
|
static_assert(std::numeric_limits<int>::min() == kLargeNegative.InHours(),
|
|
"");
|
|
static_assert(std::numeric_limits<int>::min() == kLargeNegative.InMinutes(),
|
|
"");
|
|
static_assert(
|
|
std::numeric_limits<int64_t>::min() == kLargeNegative.InNanoseconds(),
|
|
"");
|
|
}
|
|
|
|
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
TEST(TimeDelta, TimeSpecConversion) {
|
|
TimeDelta delta = Seconds(0);
|
|
struct timespec result = delta.ToTimeSpec();
|
|
EXPECT_EQ(result.tv_sec, 0);
|
|
EXPECT_EQ(result.tv_nsec, 0);
|
|
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
|
|
|
|
delta = Seconds(1);
|
|
result = delta.ToTimeSpec();
|
|
EXPECT_EQ(result.tv_sec, 1);
|
|
EXPECT_EQ(result.tv_nsec, 0);
|
|
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
|
|
|
|
delta = Microseconds(1);
|
|
result = delta.ToTimeSpec();
|
|
EXPECT_EQ(result.tv_sec, 0);
|
|
EXPECT_EQ(result.tv_nsec, 1000);
|
|
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
|
|
|
|
delta = Microseconds(Time::kMicrosecondsPerSecond + 1);
|
|
result = delta.ToTimeSpec();
|
|
EXPECT_EQ(result.tv_sec, 1);
|
|
EXPECT_EQ(result.tv_nsec, 1000);
|
|
EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
|
|
}
|
|
#endif // BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
|
|
// Our internal time format is serialized in things like databases, so it's
|
|
// important that it's consistent across all our platforms. We use the 1601
|
|
// Windows epoch as the internal format across all platforms.
|
|
TEST(TimeDelta, WindowsEpoch) {
|
|
Time::Exploded exploded;
|
|
exploded.year = 1970;
|
|
exploded.month = 1;
|
|
exploded.day_of_week = 0; // Should be unusued.
|
|
exploded.day_of_month = 1;
|
|
exploded.hour = 0;
|
|
exploded.minute = 0;
|
|
exploded.second = 0;
|
|
exploded.millisecond = 0;
|
|
Time t;
|
|
EXPECT_TRUE(Time::FromUTCExploded(exploded, &t));
|
|
// Unix 1970 epoch.
|
|
EXPECT_EQ(INT64_C(11644473600000000), t.ToInternalValue());
|
|
|
|
// We can't test 1601 epoch, since the system time functions on Linux
|
|
// only compute years starting from 1900.
|
|
}
|
|
|
|
TEST(TimeDelta, Hz) {
|
|
static_assert(Hertz(1) == Seconds(1));
|
|
EXPECT_EQ(Hertz(0), TimeDelta::Max());
|
|
static_assert(Hertz(-1) == Seconds(-1));
|
|
static_assert(Hertz(1000) == Milliseconds(1));
|
|
static_assert(Hertz(0.5) == Seconds(2));
|
|
static_assert(Hertz(std::numeric_limits<double>::infinity()) == TimeDelta(),
|
|
"");
|
|
|
|
static_assert(Seconds(1).ToHz() == 1);
|
|
static_assert(TimeDelta::Max().ToHz() == 0);
|
|
static_assert(Seconds(-1).ToHz() == -1);
|
|
static_assert(Milliseconds(1).ToHz() == 1000);
|
|
static_assert(Seconds(2).ToHz() == 0.5);
|
|
EXPECT_EQ(TimeDelta().ToHz(), std::numeric_limits<double>::infinity());
|
|
|
|
// 60 Hz can't be represented exactly.
|
|
static_assert(Hertz(60) * 60 != Seconds(1));
|
|
static_assert(Hertz(60).ToHz() != 60);
|
|
EXPECT_EQ(base::ClampRound(Hertz(60).ToHz()), 60);
|
|
}
|
|
|
|
// We could define this separately for Time, TimeTicks and TimeDelta but the
|
|
// definitions would be identical anyway.
|
|
template <class Any>
|
|
std::string AnyToString(Any any) {
|
|
std::ostringstream oss;
|
|
oss << any;
|
|
return oss.str();
|
|
}
|
|
|
|
TEST(TimeDelta, Magnitude) {
|
|
constexpr int64_t zero = 0;
|
|
static_assert(Microseconds(zero) == Microseconds(zero).magnitude());
|
|
|
|
constexpr int64_t one = 1;
|
|
constexpr int64_t negative_one = -1;
|
|
static_assert(Microseconds(one) == Microseconds(one).magnitude());
|
|
static_assert(Microseconds(one) == Microseconds(negative_one).magnitude(),
|
|
"");
|
|
|
|
constexpr int64_t max_int64_minus_one =
|
|
std::numeric_limits<int64_t>::max() - 1;
|
|
constexpr int64_t min_int64_plus_two =
|
|
std::numeric_limits<int64_t>::min() + 2;
|
|
static_assert(Microseconds(max_int64_minus_one) ==
|
|
Microseconds(max_int64_minus_one).magnitude(),
|
|
"");
|
|
static_assert(Microseconds(max_int64_minus_one) ==
|
|
Microseconds(min_int64_plus_two).magnitude(),
|
|
"");
|
|
|
|
static_assert(TimeDelta::Max() == TimeDelta::Min().magnitude());
|
|
}
|
|
|
|
TEST(TimeDelta, ZeroMinMax) {
|
|
constexpr TimeDelta kZero;
|
|
static_assert(kZero.is_zero());
|
|
|
|
constexpr TimeDelta kMax = TimeDelta::Max();
|
|
static_assert(kMax.is_max());
|
|
static_assert(kMax == TimeDelta::Max());
|
|
static_assert(kMax > Days(100 * 365));
|
|
static_assert(kMax > kZero);
|
|
|
|
constexpr TimeDelta kMin = TimeDelta::Min();
|
|
static_assert(kMin.is_min());
|
|
static_assert(kMin == TimeDelta::Min());
|
|
static_assert(kMin < Days(-100 * 365));
|
|
static_assert(kMin < kZero);
|
|
}
|
|
|
|
TEST(TimeDelta, MaxConversions) {
|
|
// static_assert also confirms constexpr works as intended.
|
|
constexpr TimeDelta kMax = TimeDelta::Max();
|
|
static_assert(kMax.ToInternalValue() == std::numeric_limits<int64_t>::max(),
|
|
"");
|
|
EXPECT_EQ(kMax.InDays(), std::numeric_limits<int>::max());
|
|
static_assert(kMax.InHours() == std::numeric_limits<int>::max());
|
|
static_assert(kMax.InMinutes() == std::numeric_limits<int>::max());
|
|
static_assert(kMax.InSecondsF() == std::numeric_limits<double>::infinity(),
|
|
"");
|
|
static_assert(kMax.InSeconds() == std::numeric_limits<int64_t>::max());
|
|
EXPECT_EQ(kMax.InMillisecondsF(), std::numeric_limits<double>::infinity());
|
|
EXPECT_EQ(kMax.InMilliseconds(), std::numeric_limits<int64_t>::max());
|
|
EXPECT_EQ(kMax.InMillisecondsRoundedUp(), std::numeric_limits<int64_t>::max());
|
|
|
|
static_assert(Days(std::numeric_limits<int64_t>::max()).is_max());
|
|
|
|
static_assert(Hours(std::numeric_limits<int64_t>::max()).is_max());
|
|
|
|
static_assert(Minutes(std::numeric_limits<int64_t>::max()).is_max());
|
|
|
|
constexpr int64_t max_int = std::numeric_limits<int64_t>::max();
|
|
constexpr int64_t min_int = std::numeric_limits<int64_t>::min();
|
|
|
|
static_assert(Seconds(max_int / Time::kMicrosecondsPerSecond + 1).is_max(),
|
|
"");
|
|
|
|
static_assert(
|
|
Milliseconds(max_int / Time::kMillisecondsPerSecond + 1).is_max(), "");
|
|
|
|
static_assert(Microseconds(max_int).is_max());
|
|
|
|
static_assert(Seconds(min_int / Time::kMicrosecondsPerSecond - 1).is_min(),
|
|
"");
|
|
|
|
static_assert(
|
|
Milliseconds(min_int / Time::kMillisecondsPerSecond - 1).is_min(), "");
|
|
|
|
static_assert(Microseconds(min_int).is_min());
|
|
|
|
static_assert(Microseconds(std::numeric_limits<int64_t>::min()).is_min());
|
|
|
|
static_assert(Seconds(std::numeric_limits<double>::infinity()).is_max());
|
|
|
|
// Note that max_int/min_int will be rounded when converted to doubles - they
|
|
// can't be exactly represented.
|
|
constexpr double max_d = static_cast<double>(max_int);
|
|
constexpr double min_d = static_cast<double>(min_int);
|
|
|
|
static_assert(Seconds(max_d / Time::kMicrosecondsPerSecond + 1).is_max());
|
|
|
|
static_assert(
|
|
Microseconds(max_d).is_max(),
|
|
"Make sure that 2^63 correctly gets clamped to `max` (crbug.com/612601)");
|
|
|
|
static_assert(Milliseconds(std::numeric_limits<double>::infinity()).is_max(),
|
|
"");
|
|
|
|
static_assert(Milliseconds(max_d / Time::kMillisecondsPerSecond * 2).is_max(),
|
|
"");
|
|
|
|
static_assert(Seconds(min_d / Time::kMicrosecondsPerSecond - 1).is_min());
|
|
|
|
static_assert(Milliseconds(min_d / Time::kMillisecondsPerSecond * 2).is_min(),
|
|
"");
|
|
}
|
|
|
|
TEST(TimeDelta, MinConversions) {
|
|
constexpr TimeDelta kMin = TimeDelta::Min();
|
|
|
|
EXPECT_EQ(kMin.InDays(), std::numeric_limits<int>::min());
|
|
static_assert(kMin.InHours() == std::numeric_limits<int>::min());
|
|
static_assert(kMin.InMinutes() == std::numeric_limits<int>::min());
|
|
static_assert(kMin.InSecondsF() == -std::numeric_limits<double>::infinity(),
|
|
"");
|
|
static_assert(kMin.InSeconds() == std::numeric_limits<int64_t>::min());
|
|
EXPECT_EQ(kMin.InMillisecondsF(), -std::numeric_limits<double>::infinity());
|
|
EXPECT_EQ(kMin.InMilliseconds(), std::numeric_limits<int64_t>::min());
|
|
EXPECT_EQ(kMin.InMillisecondsRoundedUp(),
|
|
std::numeric_limits<int64_t>::min());
|
|
}
|
|
|
|
TEST(TimeDelta, FiniteMaxMin) {
|
|
constexpr TimeDelta kFiniteMax = TimeDelta::FiniteMax();
|
|
constexpr TimeDelta kUnit = Microseconds(1);
|
|
static_assert(kFiniteMax + kUnit == TimeDelta::Max());
|
|
static_assert(kFiniteMax - kUnit < kFiniteMax);
|
|
|
|
constexpr TimeDelta kFiniteMin = TimeDelta::FiniteMin();
|
|
static_assert(kFiniteMin - kUnit == TimeDelta::Min());
|
|
static_assert(kFiniteMin + kUnit > kFiniteMin);
|
|
}
|
|
|
|
TEST(TimeDelta, NumericOperators) {
|
|
constexpr double d = 0.5;
|
|
static_assert(Milliseconds(500) == Milliseconds(1000) * d);
|
|
static_assert(Milliseconds(2000) == (Milliseconds(1000) / d));
|
|
static_assert(Milliseconds(500) == (Milliseconds(1000) *= d));
|
|
static_assert(Milliseconds(2000) == (Milliseconds(1000) /= d));
|
|
static_assert(Milliseconds(500) == d * Milliseconds(1000));
|
|
|
|
constexpr float f = 0.5;
|
|
static_assert(Milliseconds(500) == Milliseconds(1000) * f);
|
|
static_assert(Milliseconds(2000) == (Milliseconds(1000) / f));
|
|
static_assert(Milliseconds(500) == (Milliseconds(1000) *= f));
|
|
static_assert(Milliseconds(2000) == (Milliseconds(1000) /= f));
|
|
static_assert(Milliseconds(500) == f * Milliseconds(1000));
|
|
|
|
constexpr int i = 2;
|
|
static_assert(Milliseconds(2000) == Milliseconds(1000) * i);
|
|
static_assert(Milliseconds(500) == (Milliseconds(1000) / i));
|
|
static_assert(Milliseconds(2000) == (Milliseconds(1000) *= i));
|
|
static_assert(Milliseconds(500) == (Milliseconds(1000) /= i));
|
|
static_assert(Milliseconds(2000) == i * Milliseconds(1000));
|
|
|
|
constexpr int64_t i64 = 2;
|
|
static_assert(Milliseconds(2000) == Milliseconds(1000) * i64);
|
|
static_assert(Milliseconds(500) == (Milliseconds(1000) / i64));
|
|
static_assert(Milliseconds(2000) == (Milliseconds(1000) *= i64));
|
|
static_assert(Milliseconds(500) == (Milliseconds(1000) /= i64));
|
|
static_assert(Milliseconds(2000) == i64 * Milliseconds(1000));
|
|
|
|
static_assert(Milliseconds(500) == Milliseconds(1000) * 0.5);
|
|
static_assert(Milliseconds(2000) == (Milliseconds(1000) / 0.5));
|
|
static_assert(Milliseconds(500) == (Milliseconds(1000) *= 0.5));
|
|
static_assert(Milliseconds(2000) == (Milliseconds(1000) /= 0.5));
|
|
static_assert(Milliseconds(500) == 0.5 * Milliseconds(1000));
|
|
|
|
static_assert(Milliseconds(2000) == Milliseconds(1000) * 2);
|
|
static_assert(Milliseconds(500) == (Milliseconds(1000) / 2));
|
|
static_assert(Milliseconds(2000) == (Milliseconds(1000) *= 2));
|
|
static_assert(Milliseconds(500) == (Milliseconds(1000) /= 2));
|
|
static_assert(Milliseconds(2000) == 2 * Milliseconds(1000));
|
|
}
|
|
|
|
// Basic test of operators between TimeDeltas (without overflow -- next test
|
|
// handles overflow).
|
|
TEST(TimeDelta, TimeDeltaOperators) {
|
|
constexpr TimeDelta kElevenSeconds = Seconds(11);
|
|
constexpr TimeDelta kThreeSeconds = Seconds(3);
|
|
|
|
static_assert(Seconds(14) == kElevenSeconds + kThreeSeconds);
|
|
static_assert(Seconds(14) == kThreeSeconds + kElevenSeconds);
|
|
static_assert(Seconds(8) == kElevenSeconds - kThreeSeconds);
|
|
static_assert(Seconds(-8) == kThreeSeconds - kElevenSeconds);
|
|
static_assert(11.0 / 3.0 == kElevenSeconds / kThreeSeconds);
|
|
static_assert(3.0 / 11.0 == kThreeSeconds / kElevenSeconds);
|
|
static_assert(3 == kElevenSeconds.IntDiv(kThreeSeconds));
|
|
static_assert(0 == kThreeSeconds.IntDiv(kElevenSeconds));
|
|
static_assert(Seconds(2) == kElevenSeconds % kThreeSeconds);
|
|
}
|
|
|
|
TEST(TimeDelta, Overflows) {
|
|
// Some sanity checks. static_asserts used where possible to verify constexpr
|
|
// evaluation at the same time.
|
|
static_assert(TimeDelta::Max().is_max());
|
|
static_assert(TimeDelta::Max().is_positive());
|
|
static_assert((-TimeDelta::Max()).is_negative());
|
|
static_assert(-TimeDelta::Max() == TimeDelta::Min());
|
|
static_assert(TimeDelta() > -TimeDelta::Max());
|
|
|
|
static_assert(TimeDelta::Min().is_min());
|
|
static_assert(TimeDelta::Min().is_negative());
|
|
static_assert((-TimeDelta::Min()).is_positive());
|
|
static_assert(-TimeDelta::Min() == TimeDelta::Max());
|
|
static_assert(TimeDelta() < -TimeDelta::Min());
|
|
|
|
constexpr TimeDelta kLargeDelta = TimeDelta::Max() - Milliseconds(1);
|
|
constexpr TimeDelta kLargeNegative = -kLargeDelta;
|
|
static_assert(TimeDelta() > kLargeNegative);
|
|
static_assert(!kLargeDelta.is_max());
|
|
static_assert(!(-kLargeNegative).is_min());
|
|
|
|
// Test +, -, * and / operators.
|
|
constexpr TimeDelta kOneSecond = Seconds(1);
|
|
static_assert((kLargeDelta + kOneSecond).is_max());
|
|
static_assert((kLargeNegative + (-kOneSecond)).is_min());
|
|
static_assert((kLargeNegative - kOneSecond).is_min());
|
|
static_assert((kLargeDelta - (-kOneSecond)).is_max());
|
|
static_assert((kLargeDelta * 2).is_max());
|
|
static_assert((kLargeDelta * -2).is_min());
|
|
static_assert((kLargeDelta / 0.5).is_max());
|
|
static_assert((kLargeDelta / -0.5).is_min());
|
|
|
|
// Test math operators on Max() and Min() values
|
|
// Calculations that would overflow are saturated.
|
|
static_assert(TimeDelta::Max() + kOneSecond == TimeDelta::Max());
|
|
static_assert(TimeDelta::Max() * 7 == TimeDelta::Max());
|
|
static_assert(TimeDelta::FiniteMax() + kOneSecond == TimeDelta::Max());
|
|
static_assert(TimeDelta::Min() - kOneSecond == TimeDelta::Min());
|
|
static_assert(TimeDelta::Min() * 7 == TimeDelta::Min());
|
|
static_assert(TimeDelta::FiniteMin() - kOneSecond == TimeDelta::Min());
|
|
|
|
// Division is done by converting to double with Max()/Min() converted to
|
|
// +/- infinities.
|
|
static_assert(
|
|
TimeDelta::Max() / kOneSecond == std::numeric_limits<double>::infinity(),
|
|
"");
|
|
static_assert(TimeDelta::Max() / -kOneSecond ==
|
|
-std::numeric_limits<double>::infinity(),
|
|
"");
|
|
static_assert(
|
|
TimeDelta::Min() / kOneSecond == -std::numeric_limits<double>::infinity(),
|
|
"");
|
|
static_assert(
|
|
TimeDelta::Min() / -kOneSecond == std::numeric_limits<double>::infinity(),
|
|
"");
|
|
static_assert(TimeDelta::Max().IntDiv(kOneSecond) ==
|
|
std::numeric_limits<int64_t>::max(),
|
|
"");
|
|
static_assert(TimeDelta::Max().IntDiv(-kOneSecond) ==
|
|
std::numeric_limits<int64_t>::min(),
|
|
"");
|
|
static_assert(TimeDelta::Min().IntDiv(kOneSecond) ==
|
|
std::numeric_limits<int64_t>::min(),
|
|
"");
|
|
static_assert(TimeDelta::Min().IntDiv(-kOneSecond) ==
|
|
std::numeric_limits<int64_t>::max(),
|
|
"");
|
|
static_assert(TimeDelta::Max() % kOneSecond == TimeDelta::Max());
|
|
static_assert(TimeDelta::Max() % -kOneSecond == TimeDelta::Max());
|
|
static_assert(TimeDelta::Min() % kOneSecond == TimeDelta::Min());
|
|
static_assert(TimeDelta::Min() % -kOneSecond == TimeDelta::Min());
|
|
|
|
// Division by zero.
|
|
static_assert((kOneSecond / 0).is_max());
|
|
static_assert((-kOneSecond / 0).is_min());
|
|
static_assert((TimeDelta::Max() / 0).is_max());
|
|
static_assert((TimeDelta::Min() / 0).is_min());
|
|
EXPECT_EQ(std::numeric_limits<double>::infinity(), kOneSecond / TimeDelta());
|
|
EXPECT_EQ(-std::numeric_limits<double>::infinity(),
|
|
-kOneSecond / TimeDelta());
|
|
EXPECT_EQ(std::numeric_limits<double>::infinity(),
|
|
TimeDelta::Max() / TimeDelta());
|
|
EXPECT_EQ(-std::numeric_limits<double>::infinity(),
|
|
TimeDelta::Min() / TimeDelta());
|
|
static_assert(
|
|
kOneSecond.IntDiv(TimeDelta()) == std::numeric_limits<int64_t>::max(),
|
|
"");
|
|
static_assert(
|
|
(-kOneSecond).IntDiv(TimeDelta()) == std::numeric_limits<int64_t>::min(),
|
|
"");
|
|
static_assert(TimeDelta::Max().IntDiv(TimeDelta()) ==
|
|
std::numeric_limits<int64_t>::max(),
|
|
"");
|
|
static_assert(TimeDelta::Min().IntDiv(TimeDelta()) ==
|
|
std::numeric_limits<int64_t>::min(),
|
|
"");
|
|
static_assert(kOneSecond % TimeDelta() == kOneSecond);
|
|
static_assert(-kOneSecond % TimeDelta() == -kOneSecond);
|
|
static_assert(TimeDelta::Max() % TimeDelta() == TimeDelta::Max());
|
|
static_assert(TimeDelta::Min() % TimeDelta() == TimeDelta::Min());
|
|
|
|
// Division by infinity.
|
|
static_assert(kLargeDelta / TimeDelta::Min() == 0);
|
|
static_assert(kLargeDelta / TimeDelta::Max() == 0);
|
|
static_assert(kLargeNegative / TimeDelta::Min() == 0);
|
|
static_assert(kLargeNegative / TimeDelta::Max() == 0);
|
|
static_assert(kLargeDelta.IntDiv(TimeDelta::Min()) == 0);
|
|
static_assert(kLargeDelta.IntDiv(TimeDelta::Max()) == 0);
|
|
static_assert(kLargeNegative.IntDiv(TimeDelta::Min()) == 0);
|
|
static_assert(kLargeNegative.IntDiv(TimeDelta::Max()) == 0);
|
|
static_assert(kOneSecond % TimeDelta::Min() == kOneSecond);
|
|
static_assert(kOneSecond % TimeDelta::Max() == kOneSecond);
|
|
|
|
// Test that double conversions overflow to infinity.
|
|
static_assert((kLargeDelta + kOneSecond).InSecondsF() ==
|
|
std::numeric_limits<double>::infinity(),
|
|
"");
|
|
EXPECT_EQ((kLargeDelta + kOneSecond).InMillisecondsF(),
|
|
std::numeric_limits<double>::infinity());
|
|
EXPECT_EQ((kLargeDelta + kOneSecond).InMicrosecondsF(),
|
|
std::numeric_limits<double>::infinity());
|
|
|
|
// Test op=.
|
|
static_assert((TimeDelta::FiniteMax() += kOneSecond).is_max());
|
|
static_assert((TimeDelta::FiniteMin() += -kOneSecond).is_min());
|
|
|
|
static_assert((TimeDelta::FiniteMin() -= kOneSecond).is_min());
|
|
static_assert((TimeDelta::FiniteMax() -= -kOneSecond).is_max());
|
|
|
|
static_assert((TimeDelta::FiniteMax() *= 2).is_max());
|
|
static_assert((TimeDelta::FiniteMin() *= 1.5).is_min());
|
|
|
|
static_assert((TimeDelta::FiniteMax() /= 0.5).is_max());
|
|
static_assert((TimeDelta::FiniteMin() /= 0.5).is_min());
|
|
|
|
static_assert((Seconds(1) %= TimeDelta::Max()) == Seconds(1));
|
|
static_assert((Seconds(1) %= TimeDelta()) == Seconds(1));
|
|
|
|
// Test operations with Time and TimeTicks.
|
|
EXPECT_TRUE((kLargeDelta + Time::Now()).is_max());
|
|
EXPECT_TRUE((kLargeDelta + TimeTicks::Now()).is_max());
|
|
EXPECT_TRUE((Time::Now() + kLargeDelta).is_max());
|
|
EXPECT_TRUE((TimeTicks::Now() + kLargeDelta).is_max());
|
|
|
|
Time time_now = Time::Now();
|
|
EXPECT_EQ(kOneSecond, (time_now + kOneSecond) - time_now);
|
|
EXPECT_EQ(-kOneSecond, (time_now - kOneSecond) - time_now);
|
|
|
|
TimeTicks ticks_now = TimeTicks::Now();
|
|
EXPECT_EQ(-kOneSecond, (ticks_now - kOneSecond) - ticks_now);
|
|
EXPECT_EQ(kOneSecond, (ticks_now + kOneSecond) - ticks_now);
|
|
}
|
|
|
|
TEST(TimeDelta, CeilToMultiple) {
|
|
for (const auto interval : {Seconds(10), Seconds(-10)}) {
|
|
SCOPED_TRACE(interval);
|
|
EXPECT_EQ(TimeDelta().CeilToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(1).CeilToMultiple(interval), Seconds(10));
|
|
EXPECT_EQ(Seconds(9).CeilToMultiple(interval), Seconds(10));
|
|
EXPECT_EQ(Seconds(10).CeilToMultiple(interval), Seconds(10));
|
|
EXPECT_EQ(Seconds(15).CeilToMultiple(interval), Seconds(20));
|
|
EXPECT_EQ(Seconds(20).CeilToMultiple(interval), Seconds(20));
|
|
EXPECT_EQ(TimeDelta::Max().CeilToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(-1).CeilToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-9).CeilToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-10).CeilToMultiple(interval), Seconds(-10));
|
|
EXPECT_EQ(Seconds(-15).CeilToMultiple(interval), Seconds(-10));
|
|
EXPECT_EQ(Seconds(-20).CeilToMultiple(interval), Seconds(-20));
|
|
EXPECT_EQ(TimeDelta::Min().CeilToMultiple(interval), TimeDelta::Min());
|
|
}
|
|
|
|
for (const auto interval : {TimeDelta::Max(), TimeDelta::Min()}) {
|
|
SCOPED_TRACE(interval);
|
|
EXPECT_EQ(TimeDelta().CeilToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(1).CeilToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(9).CeilToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(10).CeilToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(15).CeilToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(20).CeilToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(TimeDelta::Max().CeilToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(-1).CeilToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-9).CeilToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-10).CeilToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-15).CeilToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-20).CeilToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(TimeDelta::Min().CeilToMultiple(interval), TimeDelta::Min());
|
|
}
|
|
}
|
|
|
|
TEST(TimeDelta, FloorToMultiple) {
|
|
for (const auto interval : {Seconds(10), Seconds(-10)}) {
|
|
SCOPED_TRACE(interval);
|
|
EXPECT_EQ(TimeDelta().FloorToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(1).FloorToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(9).FloorToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(10).FloorToMultiple(interval), Seconds(10));
|
|
EXPECT_EQ(Seconds(15).FloorToMultiple(interval), Seconds(10));
|
|
EXPECT_EQ(Seconds(20).FloorToMultiple(interval), Seconds(20));
|
|
EXPECT_EQ(TimeDelta::Max().FloorToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(-1).FloorToMultiple(interval), Seconds(-10));
|
|
EXPECT_EQ(Seconds(-9).FloorToMultiple(interval), Seconds(-10));
|
|
EXPECT_EQ(Seconds(-10).FloorToMultiple(interval), Seconds(-10));
|
|
EXPECT_EQ(Seconds(-15).FloorToMultiple(interval), Seconds(-20));
|
|
EXPECT_EQ(Seconds(-20).FloorToMultiple(interval), Seconds(-20));
|
|
EXPECT_EQ(TimeDelta::Min().FloorToMultiple(interval), TimeDelta::Min());
|
|
}
|
|
|
|
for (const auto interval : {TimeDelta::Max(), TimeDelta::Min()}) {
|
|
SCOPED_TRACE(interval);
|
|
EXPECT_EQ(TimeDelta().FloorToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(1).FloorToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(9).FloorToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(10).FloorToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(15).FloorToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(20).FloorToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(TimeDelta::Max().FloorToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(-1).FloorToMultiple(interval), TimeDelta::Min());
|
|
EXPECT_EQ(Seconds(-9).FloorToMultiple(interval), TimeDelta::Min());
|
|
EXPECT_EQ(Seconds(-10).FloorToMultiple(interval), TimeDelta::Min());
|
|
EXPECT_EQ(Seconds(-15).FloorToMultiple(interval), TimeDelta::Min());
|
|
EXPECT_EQ(Seconds(-20).FloorToMultiple(interval), TimeDelta::Min());
|
|
EXPECT_EQ(TimeDelta::Min().FloorToMultiple(interval), TimeDelta::Min());
|
|
}
|
|
}
|
|
|
|
TEST(TimeDelta, RoundToMultiple) {
|
|
for (const auto interval : {Seconds(10), Seconds(-10)}) {
|
|
SCOPED_TRACE(interval);
|
|
EXPECT_EQ(TimeDelta().RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(1).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(9).RoundToMultiple(interval), Seconds(10));
|
|
EXPECT_EQ(Seconds(10).RoundToMultiple(interval), Seconds(10));
|
|
EXPECT_EQ(Seconds(15).RoundToMultiple(interval), Seconds(20));
|
|
EXPECT_EQ(Seconds(20).RoundToMultiple(interval), Seconds(20));
|
|
EXPECT_EQ(TimeDelta::Max().RoundToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(-1).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-9).RoundToMultiple(interval), Seconds(-10));
|
|
EXPECT_EQ(Seconds(-10).RoundToMultiple(interval), Seconds(-10));
|
|
EXPECT_EQ(Seconds(-15).RoundToMultiple(interval), Seconds(-20));
|
|
EXPECT_EQ(Seconds(-20).RoundToMultiple(interval), Seconds(-20));
|
|
EXPECT_EQ(TimeDelta::Min().RoundToMultiple(interval), TimeDelta::Min());
|
|
}
|
|
|
|
for (const auto interval : {TimeDelta::Max(), TimeDelta::Min()}) {
|
|
SCOPED_TRACE(interval);
|
|
EXPECT_EQ(TimeDelta().RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(1).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(9).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(10).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(15).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(20).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(TimeDelta::Max().RoundToMultiple(interval), TimeDelta::Max());
|
|
EXPECT_EQ(Seconds(-1).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-9).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-10).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-15).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(Seconds(-20).RoundToMultiple(interval), TimeDelta());
|
|
EXPECT_EQ(TimeDelta::Min().RoundToMultiple(interval), TimeDelta::Min());
|
|
}
|
|
}
|
|
|
|
TEST(TimeBase, AddSubDeltaSaturates) {
|
|
constexpr TimeTicks kLargeTimeTicks =
|
|
TimeTicks::FromInternalValue(std::numeric_limits<int64_t>::max() - 1);
|
|
|
|
constexpr TimeTicks kLargeNegativeTimeTicks =
|
|
TimeTicks::FromInternalValue(std::numeric_limits<int64_t>::min() + 1);
|
|
|
|
static_assert((kLargeTimeTicks + TimeDelta::Max()).is_max());
|
|
static_assert((kLargeNegativeTimeTicks + TimeDelta::Max()).is_max());
|
|
static_assert((kLargeTimeTicks - TimeDelta::Max()).is_min());
|
|
static_assert((kLargeNegativeTimeTicks - TimeDelta::Max()).is_min());
|
|
static_assert((TimeTicks() + TimeDelta::Max()).is_max());
|
|
static_assert((TimeTicks() - TimeDelta::Max()).is_min());
|
|
EXPECT_TRUE((TimeTicks::Now() + TimeDelta::Max()).is_max())
|
|
<< (TimeTicks::Now() + TimeDelta::Max());
|
|
EXPECT_TRUE((TimeTicks::Now() - TimeDelta::Max()).is_min())
|
|
<< (TimeTicks::Now() - TimeDelta::Max());
|
|
|
|
static_assert((kLargeTimeTicks + TimeDelta::Min()).is_min());
|
|
static_assert((kLargeNegativeTimeTicks + TimeDelta::Min()).is_min());
|
|
static_assert((kLargeTimeTicks - TimeDelta::Min()).is_max());
|
|
static_assert((kLargeNegativeTimeTicks - TimeDelta::Min()).is_max());
|
|
static_assert((TimeTicks() + TimeDelta::Min()).is_min());
|
|
static_assert((TimeTicks() - TimeDelta::Min()).is_max());
|
|
EXPECT_TRUE((TimeTicks::Now() + TimeDelta::Min()).is_min())
|
|
<< (TimeTicks::Now() + TimeDelta::Min());
|
|
EXPECT_TRUE((TimeTicks::Now() - TimeDelta::Min()).is_max())
|
|
<< (TimeTicks::Now() - TimeDelta::Min());
|
|
}
|
|
|
|
TEST(TimeBase, AddSubInfinities) {
|
|
// CHECK when adding opposite signs or subtracting same sign.
|
|
EXPECT_CHECK_DEATH({ TimeTicks::Min() + TimeDelta::Max(); });
|
|
EXPECT_CHECK_DEATH({ TimeTicks::Max() + TimeDelta::Min(); });
|
|
EXPECT_CHECK_DEATH({ TimeTicks::Min() - TimeDelta::Min(); });
|
|
EXPECT_CHECK_DEATH({ TimeTicks::Max() - TimeDelta::Max(); });
|
|
|
|
// Saturates when adding same sign or subtracting opposite signs.
|
|
static_assert((TimeTicks::Max() + TimeDelta::Max()).is_max());
|
|
static_assert((TimeTicks::Min() + TimeDelta::Min()).is_min());
|
|
static_assert((TimeTicks::Max() - TimeDelta::Min()).is_max());
|
|
static_assert((TimeTicks::Min() - TimeDelta::Max()).is_min());
|
|
}
|
|
|
|
constexpr TimeTicks TestTimeTicksConstexprCopyAssignment() {
|
|
TimeTicks a = TimeTicks::FromInternalValue(12345);
|
|
TimeTicks b;
|
|
b = a;
|
|
return b;
|
|
}
|
|
|
|
TEST(TimeTicks, ConstexprAndTriviallyCopiable) {
|
|
// "Trivially copyable" is necessary for use in std::atomic<TimeTicks>.
|
|
static_assert(std::is_trivially_copyable<TimeTicks>());
|
|
|
|
// Copy ctor.
|
|
constexpr TimeTicks a = TimeTicks::FromInternalValue(12345);
|
|
constexpr TimeTicks b{a};
|
|
static_assert(a.ToInternalValue() == b.ToInternalValue());
|
|
|
|
// Copy assignment.
|
|
static_assert(a.ToInternalValue() ==
|
|
TestTimeTicksConstexprCopyAssignment().ToInternalValue(),
|
|
"");
|
|
}
|
|
|
|
constexpr ThreadTicks TestThreadTicksConstexprCopyAssignment() {
|
|
ThreadTicks a = ThreadTicks::FromInternalValue(12345);
|
|
ThreadTicks b;
|
|
b = a;
|
|
return b;
|
|
}
|
|
|
|
TEST(ThreadTicks, ConstexprAndTriviallyCopiable) {
|
|
// "Trivially copyable" is necessary for use in std::atomic<ThreadTicks>.
|
|
static_assert(std::is_trivially_copyable<ThreadTicks>());
|
|
|
|
// Copy ctor.
|
|
constexpr ThreadTicks a = ThreadTicks::FromInternalValue(12345);
|
|
constexpr ThreadTicks b{a};
|
|
static_assert(a.ToInternalValue() == b.ToInternalValue());
|
|
|
|
// Copy assignment.
|
|
static_assert(a.ToInternalValue() ==
|
|
TestThreadTicksConstexprCopyAssignment().ToInternalValue(),
|
|
"");
|
|
}
|
|
|
|
constexpr TimeDelta TestTimeDeltaConstexprCopyAssignment() {
|
|
TimeDelta a = Seconds(1);
|
|
TimeDelta b;
|
|
b = a;
|
|
return b;
|
|
}
|
|
|
|
TEST(TimeDelta, ConstexprAndTriviallyCopiable) {
|
|
// "Trivially copyable" is necessary for use in std::atomic<TimeDelta>.
|
|
static_assert(std::is_trivially_copyable<TimeDelta>());
|
|
|
|
// Copy ctor.
|
|
constexpr TimeDelta a = Seconds(1);
|
|
constexpr TimeDelta b{a};
|
|
static_assert(a == b);
|
|
|
|
// Copy assignment.
|
|
static_assert(a == TestTimeDeltaConstexprCopyAssignment());
|
|
}
|
|
|
|
TEST(TimeDeltaLogging, DCheckEqCompiles) {
|
|
DCHECK_EQ(TimeDelta(), TimeDelta());
|
|
}
|
|
|
|
TEST(TimeDeltaLogging, EmptyIsZero) {
|
|
constexpr TimeDelta kZero;
|
|
EXPECT_EQ("0 s", AnyToString(kZero));
|
|
}
|
|
|
|
TEST(TimeDeltaLogging, FiveHundredMs) {
|
|
constexpr TimeDelta kFiveHundredMs = Milliseconds(500);
|
|
EXPECT_EQ("0.5 s", AnyToString(kFiveHundredMs));
|
|
}
|
|
|
|
TEST(TimeDeltaLogging, MinusTenSeconds) {
|
|
constexpr TimeDelta kMinusTenSeconds = Seconds(-10);
|
|
EXPECT_EQ("-10 s", AnyToString(kMinusTenSeconds));
|
|
}
|
|
|
|
TEST(TimeDeltaLogging, DoesNotMessUpFormattingFlags) {
|
|
std::ostringstream oss;
|
|
std::ios_base::fmtflags flags_before = oss.flags();
|
|
oss << TimeDelta();
|
|
EXPECT_EQ(flags_before, oss.flags());
|
|
}
|
|
|
|
TEST(TimeDeltaLogging, DoesNotMakeStreamBad) {
|
|
std::ostringstream oss;
|
|
oss << TimeDelta();
|
|
EXPECT_TRUE(oss.good());
|
|
}
|
|
|
|
TEST(TimeLogging, DCheckEqCompiles) {
|
|
DCHECK_EQ(Time(), Time());
|
|
}
|
|
|
|
TEST(TimeLogging, ChromeBirthdate) {
|
|
Time birthdate;
|
|
ASSERT_TRUE(Time::FromString("Tue, 02 Sep 2008 09:42:18 GMT", &birthdate));
|
|
EXPECT_EQ("2008-09-02 09:42:18.000 UTC", AnyToString(birthdate));
|
|
}
|
|
|
|
TEST(TimeLogging, DoesNotMessUpFormattingFlags) {
|
|
std::ostringstream oss;
|
|
std::ios_base::fmtflags flags_before = oss.flags();
|
|
oss << Time();
|
|
EXPECT_EQ(flags_before, oss.flags());
|
|
}
|
|
|
|
TEST(TimeLogging, DoesNotMakeStreamBad) {
|
|
std::ostringstream oss;
|
|
oss << Time();
|
|
EXPECT_TRUE(oss.good());
|
|
}
|
|
|
|
TEST(TimeTicksLogging, DCheckEqCompiles) {
|
|
DCHECK_EQ(TimeTicks(), TimeTicks());
|
|
}
|
|
|
|
TEST(TimeTicksLogging, ZeroTime) {
|
|
TimeTicks zero;
|
|
EXPECT_EQ("0 bogo-microseconds", AnyToString(zero));
|
|
}
|
|
|
|
TEST(TimeTicksLogging, FortyYearsLater) {
|
|
TimeTicks forty_years_later = TimeTicks() + Days(365.25 * 40);
|
|
EXPECT_EQ("1262304000000000 bogo-microseconds",
|
|
AnyToString(forty_years_later));
|
|
}
|
|
|
|
TEST(TimeTicksLogging, DoesNotMessUpFormattingFlags) {
|
|
std::ostringstream oss;
|
|
std::ios_base::fmtflags flags_before = oss.flags();
|
|
oss << TimeTicks();
|
|
EXPECT_EQ(flags_before, oss.flags());
|
|
}
|
|
|
|
TEST(TimeTicksLogging, DoesNotMakeStreamBad) {
|
|
std::ostringstream oss;
|
|
oss << TimeTicks();
|
|
EXPECT_TRUE(oss.good());
|
|
}
|
|
|
|
} // namespace
|
|
|
|
} // namespace base
|