1884 lines
64 KiB
C
1884 lines
64 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
|
|
#define AOM_AV1_COMMON_AV1_COMMON_INT_H_
|
|
|
|
#include "config/aom_config.h"
|
|
#include "config/av1_rtcd.h"
|
|
|
|
#include "aom/internal/aom_codec_internal.h"
|
|
#include "aom_util/aom_thread.h"
|
|
#include "av1/common/alloccommon.h"
|
|
#include "av1/common/av1_loopfilter.h"
|
|
#include "av1/common/entropy.h"
|
|
#include "av1/common/entropymode.h"
|
|
#include "av1/common/entropymv.h"
|
|
#include "av1/common/enums.h"
|
|
#include "av1/common/frame_buffers.h"
|
|
#include "av1/common/mv.h"
|
|
#include "av1/common/quant_common.h"
|
|
#include "av1/common/restoration.h"
|
|
#include "av1/common/tile_common.h"
|
|
#include "av1/common/timing.h"
|
|
#include "aom_dsp/grain_params.h"
|
|
#include "aom_dsp/grain_table.h"
|
|
#include "aom_dsp/odintrin.h"
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#if defined(__clang__) && defined(__has_warning)
|
|
#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
|
|
#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
|
|
#endif
|
|
#elif defined(__GNUC__) && __GNUC__ >= 7
|
|
#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
|
|
#endif
|
|
|
|
#ifndef AOM_FALLTHROUGH_INTENDED
|
|
#define AOM_FALLTHROUGH_INTENDED \
|
|
do { \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define CDEF_MAX_STRENGTHS 16
|
|
|
|
/* Constant values while waiting for the sequence header */
|
|
#define FRAME_ID_LENGTH 15
|
|
#define DELTA_FRAME_ID_LENGTH 14
|
|
|
|
#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
|
|
// Extra frame context which is always kept at default values
|
|
#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
|
|
#define PRIMARY_REF_BITS 3
|
|
#define PRIMARY_REF_NONE 7
|
|
|
|
#define NUM_PING_PONG_BUFFERS 2
|
|
|
|
#define MAX_NUM_TEMPORAL_LAYERS 8
|
|
#define MAX_NUM_SPATIAL_LAYERS 4
|
|
/* clang-format off */
|
|
// clang-format seems to think this is a pointer dereference and not a
|
|
// multiplication.
|
|
#define MAX_NUM_OPERATING_POINTS \
|
|
(MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
|
|
/* clang-format on */
|
|
|
|
// TODO(jingning): Turning this on to set up transform coefficient
|
|
// processing timer.
|
|
#define TXCOEFF_TIMER 0
|
|
#define TXCOEFF_COST_TIMER 0
|
|
|
|
/*!\cond */
|
|
|
|
enum {
|
|
SINGLE_REFERENCE = 0,
|
|
COMPOUND_REFERENCE = 1,
|
|
REFERENCE_MODE_SELECT = 2,
|
|
REFERENCE_MODES = 3,
|
|
} UENUM1BYTE(REFERENCE_MODE);
|
|
|
|
enum {
|
|
/**
|
|
* Frame context updates are disabled
|
|
*/
|
|
REFRESH_FRAME_CONTEXT_DISABLED,
|
|
/**
|
|
* Update frame context to values resulting from backward probability
|
|
* updates based on entropy/counts in the decoded frame
|
|
*/
|
|
REFRESH_FRAME_CONTEXT_BACKWARD,
|
|
} UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
|
|
|
|
#define MFMV_STACK_SIZE 3
|
|
typedef struct {
|
|
int_mv mfmv0;
|
|
uint8_t ref_frame_offset;
|
|
} TPL_MV_REF;
|
|
|
|
typedef struct {
|
|
int_mv mv;
|
|
MV_REFERENCE_FRAME ref_frame;
|
|
} MV_REF;
|
|
|
|
typedef struct RefCntBuffer {
|
|
// For a RefCntBuffer, the following are reference-holding variables:
|
|
// - cm->ref_frame_map[]
|
|
// - cm->cur_frame
|
|
// - cm->scaled_ref_buf[] (encoder only)
|
|
// - pbi->output_frame_index[] (decoder only)
|
|
// With that definition, 'ref_count' is the number of reference-holding
|
|
// variables that are currently referencing this buffer.
|
|
// For example:
|
|
// - suppose this buffer is at index 'k' in the buffer pool, and
|
|
// - Total 'n' of the variables / array elements above have value 'k' (that
|
|
// is, they are pointing to buffer at index 'k').
|
|
// Then, pool->frame_bufs[k].ref_count = n.
|
|
int ref_count;
|
|
|
|
unsigned int order_hint;
|
|
unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
|
|
|
|
// These variables are used only in encoder and compare the absolute
|
|
// display order hint to compute the relative distance and overcome
|
|
// the limitation of get_relative_dist() which returns incorrect
|
|
// distance when a very old frame is used as a reference.
|
|
unsigned int display_order_hint;
|
|
unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
|
|
// Frame's level within the hierarchical structure.
|
|
unsigned int pyramid_level;
|
|
MV_REF *mvs;
|
|
uint8_t *seg_map;
|
|
struct segmentation seg;
|
|
int mi_rows;
|
|
int mi_cols;
|
|
// Width and height give the size of the buffer (before any upscaling, unlike
|
|
// the sizes that can be derived from the buf structure)
|
|
int width;
|
|
int height;
|
|
WarpedMotionParams global_motion[REF_FRAMES];
|
|
int showable_frame; // frame can be used as show existing frame in future
|
|
uint8_t film_grain_params_present;
|
|
aom_film_grain_t film_grain_params;
|
|
aom_codec_frame_buffer_t raw_frame_buffer;
|
|
YV12_BUFFER_CONFIG buf;
|
|
int temporal_id; // Temporal layer ID of the frame
|
|
int spatial_id; // Spatial layer ID of the frame
|
|
FRAME_TYPE frame_type;
|
|
|
|
// This is only used in the encoder but needs to be indexed per ref frame
|
|
// so it's extremely convenient to keep it here.
|
|
int interp_filter_selected[SWITCHABLE];
|
|
|
|
// Inter frame reference frame delta for loop filter
|
|
int8_t ref_deltas[REF_FRAMES];
|
|
|
|
// 0 = ZERO_MV, MV
|
|
int8_t mode_deltas[MAX_MODE_LF_DELTAS];
|
|
|
|
FRAME_CONTEXT frame_context;
|
|
} RefCntBuffer;
|
|
|
|
typedef struct BufferPool {
|
|
// Protect BufferPool from being accessed by several FrameWorkers at
|
|
// the same time during frame parallel decode.
|
|
// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
|
|
// TODO(wtc): Remove this. See
|
|
// https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
|
|
#if CONFIG_MULTITHREAD
|
|
pthread_mutex_t pool_mutex;
|
|
#endif
|
|
|
|
// Private data associated with the frame buffer callbacks.
|
|
void *cb_priv;
|
|
|
|
aom_get_frame_buffer_cb_fn_t get_fb_cb;
|
|
aom_release_frame_buffer_cb_fn_t release_fb_cb;
|
|
|
|
RefCntBuffer frame_bufs[FRAME_BUFFERS];
|
|
|
|
// Frame buffers allocated internally by the codec.
|
|
InternalFrameBufferList int_frame_buffers;
|
|
} BufferPool;
|
|
|
|
/*!\endcond */
|
|
|
|
/*!\brief Parameters related to CDEF */
|
|
typedef struct {
|
|
//! CDEF column line buffer
|
|
uint16_t *colbuf[MAX_MB_PLANE];
|
|
//! CDEF top & bottom line buffer
|
|
uint16_t *linebuf[MAX_MB_PLANE];
|
|
//! CDEF intermediate buffer
|
|
uint16_t *srcbuf;
|
|
//! CDEF column line buffer sizes
|
|
size_t allocated_colbuf_size[MAX_MB_PLANE];
|
|
//! CDEF top and bottom line buffer sizes
|
|
size_t allocated_linebuf_size[MAX_MB_PLANE];
|
|
//! CDEF intermediate buffer size
|
|
size_t allocated_srcbuf_size;
|
|
//! CDEF damping factor
|
|
int cdef_damping;
|
|
//! Number of CDEF strength values
|
|
int nb_cdef_strengths;
|
|
//! CDEF strength values for luma
|
|
int cdef_strengths[CDEF_MAX_STRENGTHS];
|
|
//! CDEF strength values for chroma
|
|
int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
|
|
//! Number of CDEF strength values in bits
|
|
int cdef_bits;
|
|
//! Number of rows in the frame in 4 pixel
|
|
int allocated_mi_rows;
|
|
//! Number of CDEF workers
|
|
int allocated_num_workers;
|
|
} CdefInfo;
|
|
|
|
/*!\cond */
|
|
|
|
typedef struct {
|
|
int delta_q_present_flag;
|
|
// Resolution of delta quant
|
|
int delta_q_res;
|
|
int delta_lf_present_flag;
|
|
// Resolution of delta lf level
|
|
int delta_lf_res;
|
|
// This is a flag for number of deltas of loop filter level
|
|
// 0: use 1 delta, for y_vertical, y_horizontal, u, and v
|
|
// 1: use separate deltas for each filter level
|
|
int delta_lf_multi;
|
|
} DeltaQInfo;
|
|
|
|
typedef struct {
|
|
int enable_order_hint; // 0 - disable order hint, and related tools
|
|
int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
|
|
// frame_sign_bias
|
|
// if 0, enable_dist_wtd_comp and
|
|
// enable_ref_frame_mvs must be set as 0.
|
|
int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
|
|
// 1 - enable it
|
|
int enable_ref_frame_mvs; // 0 - disable ref frame mvs
|
|
// 1 - enable it
|
|
} OrderHintInfo;
|
|
|
|
// Sequence header structure.
|
|
// Note: All syntax elements of sequence_header_obu that need to be
|
|
// bit-identical across multiple sequence headers must be part of this struct,
|
|
// so that consistency is checked by are_seq_headers_consistent() function.
|
|
// One exception is the last member 'op_params' that is ignored by
|
|
// are_seq_headers_consistent() function.
|
|
typedef struct SequenceHeader {
|
|
int num_bits_width;
|
|
int num_bits_height;
|
|
int max_frame_width;
|
|
int max_frame_height;
|
|
// Whether current and reference frame IDs are signaled in the bitstream.
|
|
// Frame id numbers are additional information that do not affect the
|
|
// decoding process, but provide decoders with a way of detecting missing
|
|
// reference frames so that appropriate action can be taken.
|
|
uint8_t frame_id_numbers_present_flag;
|
|
int frame_id_length;
|
|
int delta_frame_id_length;
|
|
BLOCK_SIZE sb_size; // Size of the superblock used for this frame
|
|
int mib_size; // Size of the superblock in units of MI blocks
|
|
int mib_size_log2; // Log 2 of above.
|
|
|
|
OrderHintInfo order_hint_info;
|
|
|
|
uint8_t force_screen_content_tools; // 0 - force off
|
|
// 1 - force on
|
|
// 2 - adaptive
|
|
uint8_t still_picture; // Video is a single frame still picture
|
|
uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
|
|
uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
|
|
// 1 - force to integer
|
|
// 2 - adaptive
|
|
uint8_t enable_filter_intra; // enables/disables filterintra
|
|
uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
|
|
uint8_t enable_interintra_compound; // enables/disables interintra_compound
|
|
uint8_t enable_masked_compound; // enables/disables masked compound
|
|
uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
|
|
// 1 - enable vert/horz filter selection
|
|
uint8_t enable_warped_motion; // 0 - disable warp for the sequence
|
|
// 1 - enable warp for the sequence
|
|
uint8_t enable_superres; // 0 - Disable superres for the sequence
|
|
// and no frame level superres flag
|
|
// 1 - Enable superres for the sequence
|
|
// enable per-frame superres flag
|
|
uint8_t enable_cdef; // To turn on/off CDEF
|
|
uint8_t enable_restoration; // To turn on/off loop restoration
|
|
BITSTREAM_PROFILE profile;
|
|
|
|
// Color config.
|
|
aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
|
|
// AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
|
|
uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
|
|
uint8_t monochrome; // Monochrome video
|
|
aom_color_primaries_t color_primaries;
|
|
aom_transfer_characteristics_t transfer_characteristics;
|
|
aom_matrix_coefficients_t matrix_coefficients;
|
|
int color_range;
|
|
int subsampling_x; // Chroma subsampling for x
|
|
int subsampling_y; // Chroma subsampling for y
|
|
aom_chroma_sample_position_t chroma_sample_position;
|
|
uint8_t separate_uv_delta_q;
|
|
uint8_t film_grain_params_present;
|
|
|
|
// Operating point info.
|
|
int operating_points_cnt_minus_1;
|
|
int operating_point_idc[MAX_NUM_OPERATING_POINTS];
|
|
int timing_info_present;
|
|
aom_timing_info_t timing_info;
|
|
uint8_t decoder_model_info_present_flag;
|
|
aom_dec_model_info_t decoder_model_info;
|
|
uint8_t display_model_info_present_flag;
|
|
AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
|
|
uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
|
|
|
|
// IMPORTANT: the op_params member must be at the end of the struct so that
|
|
// are_seq_headers_consistent() can be implemented with a memcmp() call.
|
|
// TODO(urvang): We probably don't need the +1 here.
|
|
aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
|
|
} SequenceHeader;
|
|
|
|
typedef struct {
|
|
int skip_mode_allowed;
|
|
int skip_mode_flag;
|
|
int ref_frame_idx_0;
|
|
int ref_frame_idx_1;
|
|
} SkipModeInfo;
|
|
|
|
typedef struct {
|
|
FRAME_TYPE frame_type;
|
|
REFERENCE_MODE reference_mode;
|
|
|
|
unsigned int order_hint;
|
|
unsigned int display_order_hint;
|
|
// Frame's level within the hierarchical structure.
|
|
unsigned int pyramid_level;
|
|
unsigned int frame_number;
|
|
SkipModeInfo skip_mode_info;
|
|
int refresh_frame_flags; // Which ref frames are overwritten by this frame
|
|
int frame_refs_short_signaling;
|
|
} CurrentFrame;
|
|
|
|
/*!\endcond */
|
|
|
|
/*!
|
|
* \brief Frame level features.
|
|
*/
|
|
typedef struct {
|
|
/*!
|
|
* If true, CDF update in the symbol encoding/decoding process is disabled.
|
|
*/
|
|
bool disable_cdf_update;
|
|
/*!
|
|
* If true, motion vectors are specified to eighth pel precision; and
|
|
* if false, motion vectors are specified to quarter pel precision.
|
|
*/
|
|
bool allow_high_precision_mv;
|
|
/*!
|
|
* If true, force integer motion vectors; if false, use the default.
|
|
*/
|
|
bool cur_frame_force_integer_mv;
|
|
/*!
|
|
* If true, palette tool and/or intra block copy tools may be used.
|
|
*/
|
|
bool allow_screen_content_tools;
|
|
bool allow_intrabc; /*!< If true, intra block copy tool may be used. */
|
|
bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */
|
|
/*!
|
|
* If true, using previous frames' motion vectors for prediction is allowed.
|
|
*/
|
|
bool allow_ref_frame_mvs;
|
|
/*!
|
|
* If true, frame is fully lossless at coded resolution.
|
|
* */
|
|
bool coded_lossless;
|
|
/*!
|
|
* If true, frame is fully lossless at upscaled resolution.
|
|
*/
|
|
bool all_lossless;
|
|
/*!
|
|
* If true, the frame is restricted to a reduced subset of the full set of
|
|
* transform types.
|
|
*/
|
|
bool reduced_tx_set_used;
|
|
/*!
|
|
* If true, error resilient mode is enabled.
|
|
* Note: Error resilient mode allows the syntax of a frame to be parsed
|
|
* independently of previously decoded frames.
|
|
*/
|
|
bool error_resilient_mode;
|
|
/*!
|
|
* If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION;
|
|
* if true, all MOTION_MODES may be used.
|
|
*/
|
|
bool switchable_motion_mode;
|
|
TX_MODE tx_mode; /*!< Transform mode at frame level. */
|
|
InterpFilter interp_filter; /*!< Interpolation filter at frame level. */
|
|
/*!
|
|
* The reference frame that contains the CDF values and other state that
|
|
* should be loaded at the start of the frame.
|
|
*/
|
|
int primary_ref_frame;
|
|
/*!
|
|
* Byte alignment of the planes in the reference buffers.
|
|
*/
|
|
int byte_alignment;
|
|
/*!
|
|
* Flag signaling how frame contexts should be updated at the end of
|
|
* a frame decode.
|
|
*/
|
|
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
|
|
} FeatureFlags;
|
|
|
|
/*!
|
|
* \brief Params related to tiles.
|
|
*/
|
|
typedef struct CommonTileParams {
|
|
int cols; /*!< number of tile columns that frame is divided into */
|
|
int rows; /*!< number of tile rows that frame is divided into */
|
|
int max_width_sb; /*!< maximum tile width in superblock units. */
|
|
int max_height_sb; /*!< maximum tile height in superblock units. */
|
|
|
|
/*!
|
|
* Min width of non-rightmost tile in MI units. Only valid if cols > 1.
|
|
*/
|
|
int min_inner_width;
|
|
|
|
/*!
|
|
* If true, tiles are uniformly spaced with power-of-two number of rows and
|
|
* columns.
|
|
* If false, tiles have explicitly configured widths and heights.
|
|
*/
|
|
int uniform_spacing;
|
|
|
|
/**
|
|
* \name Members only valid when uniform_spacing == 1
|
|
*/
|
|
/**@{*/
|
|
int log2_cols; /*!< log2 of 'cols'. */
|
|
int log2_rows; /*!< log2 of 'rows'. */
|
|
int width; /*!< tile width in MI units */
|
|
int height; /*!< tile height in MI units */
|
|
/**@}*/
|
|
|
|
/*!
|
|
* Min num of tile columns possible based on 'max_width_sb' and frame width.
|
|
*/
|
|
int min_log2_cols;
|
|
/*!
|
|
* Min num of tile rows possible based on 'max_height_sb' and frame height.
|
|
*/
|
|
int min_log2_rows;
|
|
/*!
|
|
* Max num of tile columns possible based on frame width.
|
|
*/
|
|
int max_log2_cols;
|
|
/*!
|
|
* Max num of tile rows possible based on frame height.
|
|
*/
|
|
int max_log2_rows;
|
|
/*!
|
|
* log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
|
|
*/
|
|
int min_log2;
|
|
/*!
|
|
* col_start_sb[i] is the start position of tile column i in superblock units.
|
|
* valid for 0 <= i <= cols
|
|
*/
|
|
int col_start_sb[MAX_TILE_COLS + 1];
|
|
/*!
|
|
* row_start_sb[i] is the start position of tile row i in superblock units.
|
|
* valid for 0 <= i <= rows
|
|
*/
|
|
int row_start_sb[MAX_TILE_ROWS + 1];
|
|
/*!
|
|
* If true, we are using large scale tile mode.
|
|
*/
|
|
unsigned int large_scale;
|
|
/*!
|
|
* Only relevant when large_scale == 1.
|
|
* If true, the independent decoding of a single tile or a section of a frame
|
|
* is allowed.
|
|
*/
|
|
unsigned int single_tile_decoding;
|
|
} CommonTileParams;
|
|
|
|
typedef struct CommonModeInfoParams CommonModeInfoParams;
|
|
/*!
|
|
* \brief Params related to MB_MODE_INFO arrays and related info.
|
|
*/
|
|
struct CommonModeInfoParams {
|
|
/*!
|
|
* Number of rows in the frame in 16 pixel units.
|
|
* This is computed from frame height aligned to a multiple of 8.
|
|
*/
|
|
int mb_rows;
|
|
/*!
|
|
* Number of cols in the frame in 16 pixel units.
|
|
* This is computed from frame width aligned to a multiple of 8.
|
|
*/
|
|
int mb_cols;
|
|
|
|
/*!
|
|
* Total MBs = mb_rows * mb_cols.
|
|
*/
|
|
int MBs;
|
|
|
|
/*!
|
|
* Number of rows in the frame in 4 pixel (MB_MODE_INFO) units.
|
|
* This is computed from frame height aligned to a multiple of 8.
|
|
*/
|
|
int mi_rows;
|
|
/*!
|
|
* Number of cols in the frame in 4 pixel (MB_MODE_INFO) units.
|
|
* This is computed from frame width aligned to a multiple of 8.
|
|
*/
|
|
int mi_cols;
|
|
|
|
/*!
|
|
* An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
|
|
* in the frame.
|
|
* Note: This array should be treated like a scratch memory, and should NOT be
|
|
* accessed directly, in most cases. Please use 'mi_grid_base' array instead.
|
|
*/
|
|
MB_MODE_INFO *mi_alloc;
|
|
/*!
|
|
* Number of allocated elements in 'mi_alloc'.
|
|
*/
|
|
int mi_alloc_size;
|
|
/*!
|
|
* Stride for 'mi_alloc' array.
|
|
*/
|
|
int mi_alloc_stride;
|
|
/*!
|
|
* The minimum block size that each element in 'mi_alloc' can correspond to.
|
|
* For decoder, this is always BLOCK_4X4.
|
|
* For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode
|
|
* case. Otherwise, this is BLOCK_4X4.
|
|
*/
|
|
BLOCK_SIZE mi_alloc_bsize;
|
|
|
|
/*!
|
|
* Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
|
|
* It's possible that:
|
|
* - Multiple pointers in the grid point to the same element in 'mi_alloc'
|
|
* (for example, for all 4x4 blocks that belong to the same partition block).
|
|
* - Some pointers can be NULL (for example, for blocks outside visible area).
|
|
*/
|
|
MB_MODE_INFO **mi_grid_base;
|
|
/*!
|
|
* Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
|
|
*/
|
|
int mi_grid_size;
|
|
/*!
|
|
* Stride for 'mi_grid_base' (and 'tx_type_map' also).
|
|
*/
|
|
int mi_stride;
|
|
|
|
/*!
|
|
* An array of tx types for each 4x4 block in the frame.
|
|
* Number of allocated elements is same as 'mi_grid_size', and stride is
|
|
* same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
|
|
* 'mi_grid_base'.
|
|
*/
|
|
TX_TYPE *tx_type_map;
|
|
|
|
/**
|
|
* \name Function pointers to allow separate logic for encoder and decoder.
|
|
*/
|
|
/**@{*/
|
|
/*!
|
|
* Free the memory allocated to arrays in 'mi_params'.
|
|
* \param[in,out] mi_params object containing common mode info parameters
|
|
*/
|
|
void (*free_mi)(struct CommonModeInfoParams *mi_params);
|
|
/*!
|
|
* Initialize / reset appropriate arrays in 'mi_params'.
|
|
* \param[in,out] mi_params object containing common mode info parameters
|
|
*/
|
|
void (*setup_mi)(struct CommonModeInfoParams *mi_params);
|
|
/*!
|
|
* Allocate required memory for arrays in 'mi_params'.
|
|
* \param[in,out] mi_params object containing common mode info
|
|
* parameters
|
|
* \param width frame width
|
|
* \param height frame height
|
|
* \param min_partition_size minimum partition size allowed while
|
|
* encoding
|
|
*/
|
|
void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
|
|
int height, BLOCK_SIZE min_partition_size);
|
|
/**@}*/
|
|
};
|
|
|
|
typedef struct CommonQuantParams CommonQuantParams;
|
|
/*!
|
|
* \brief Parameters related to quantization at the frame level.
|
|
*/
|
|
struct CommonQuantParams {
|
|
/*!
|
|
* Base qindex of the frame in the range 0 to 255.
|
|
*/
|
|
int base_qindex;
|
|
|
|
/*!
|
|
* Delta of qindex (from base_qindex) for Y plane DC coefficient.
|
|
* Note: y_ac_delta_q is implicitly 0.
|
|
*/
|
|
int y_dc_delta_q;
|
|
|
|
/*!
|
|
* Delta of qindex (from base_qindex) for U plane DC coefficients.
|
|
*/
|
|
int u_dc_delta_q;
|
|
/*!
|
|
* Delta of qindex (from base_qindex) for U plane AC coefficients.
|
|
*/
|
|
int v_dc_delta_q;
|
|
|
|
/*!
|
|
* Delta of qindex (from base_qindex) for V plane DC coefficients.
|
|
* Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
|
|
*/
|
|
int u_ac_delta_q;
|
|
/*!
|
|
* Delta of qindex (from base_qindex) for V plane AC coefficients.
|
|
* Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
|
|
*/
|
|
int v_ac_delta_q;
|
|
|
|
/*
|
|
* Note: The qindex per superblock may have a delta from the qindex obtained
|
|
* at frame level from parameters above, based on 'cm->delta_q_info'.
|
|
*/
|
|
|
|
/**
|
|
* \name True dequantizers.
|
|
* The dequantizers below are true dequantizers used only in the
|
|
* dequantization process. They have the same coefficient
|
|
* shift/scale as TX.
|
|
*/
|
|
/**@{*/
|
|
int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */
|
|
int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */
|
|
int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */
|
|
/**@}*/
|
|
|
|
/**
|
|
* \name Global quantization matrix tables.
|
|
*/
|
|
/**@{*/
|
|
/*!
|
|
* Global dequantization matrix table.
|
|
*/
|
|
const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
|
|
/*!
|
|
* Global quantization matrix table.
|
|
*/
|
|
const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
|
|
/**@}*/
|
|
|
|
/**
|
|
* \name Local dequantization matrix tables for each frame.
|
|
*/
|
|
/**@{*/
|
|
/*!
|
|
* Local dequant matrix for Y plane.
|
|
*/
|
|
const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
|
|
/*!
|
|
* Local dequant matrix for U plane.
|
|
*/
|
|
const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
|
|
/*!
|
|
* Local dequant matrix for V plane.
|
|
*/
|
|
const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
|
|
/**@}*/
|
|
|
|
/*!
|
|
* Flag indicating whether quantization matrices are being used:
|
|
* - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
|
|
* indices to be used to access appropriate global quant matrix tables.
|
|
* - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
|
|
*/
|
|
bool using_qmatrix;
|
|
/**
|
|
* \name Valid only when using_qmatrix == true
|
|
* Indicate the level indices to be used to access appropriate global quant
|
|
* matrix tables.
|
|
*/
|
|
/**@{*/
|
|
int qmatrix_level_y; /*!< Level index for Y plane */
|
|
int qmatrix_level_u; /*!< Level index for U plane */
|
|
int qmatrix_level_v; /*!< Level index for V plane */
|
|
/**@}*/
|
|
};
|
|
|
|
typedef struct CommonContexts CommonContexts;
|
|
/*!
|
|
* \brief Contexts used for transmitting various symbols in the bitstream.
|
|
*/
|
|
struct CommonContexts {
|
|
/*!
|
|
* Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
|
|
* partition[i][j] is the context for ith tile row, jth mi_col.
|
|
*/
|
|
PARTITION_CONTEXT **partition;
|
|
|
|
/*!
|
|
* Context used to derive context for multiple symbols:
|
|
* - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
|
|
* to transmit skip_txfm flag.
|
|
* - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
|
|
* sign.
|
|
* entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
|
|
*/
|
|
ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
|
|
|
|
/*!
|
|
* Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
|
|
* transmit 'is_split' flag to indicate if this transform block should be
|
|
* split into smaller sub-blocks.
|
|
* txfm[i][j] is the context for ith tile row, jth mi_col.
|
|
*/
|
|
TXFM_CONTEXT **txfm;
|
|
|
|
/*!
|
|
* Dimensions that were used to allocate the arrays above.
|
|
* If these dimensions change, the arrays may have to be re-allocated.
|
|
*/
|
|
int num_planes; /*!< Corresponds to av1_num_planes(cm) */
|
|
int num_tile_rows; /*!< Corresponds to cm->tiles.row */
|
|
int num_mi_cols; /*!< Corresponds to cm->mi_params.mi_cols */
|
|
};
|
|
|
|
/*!
|
|
* \brief Top level common structure used by both encoder and decoder.
|
|
*/
|
|
typedef struct AV1Common {
|
|
/*!
|
|
* Information about the current frame that is being coded.
|
|
*/
|
|
CurrentFrame current_frame;
|
|
/*!
|
|
* Code and details about current error status.
|
|
*/
|
|
struct aom_internal_error_info *error;
|
|
|
|
/*!
|
|
* AV1 allows two types of frame scaling operations:
|
|
* 1. Frame super-resolution: that allows coding a frame at lower resolution
|
|
* and after decoding the frame, normatively scales and restores the frame --
|
|
* inside the coding loop.
|
|
* 2. Frame resize: that allows coding frame at lower/higher resolution, and
|
|
* then non-normatively upscale the frame at the time of rendering -- outside
|
|
* the coding loop.
|
|
* Hence, the need for 3 types of dimensions.
|
|
*/
|
|
|
|
/**
|
|
* \name Coded frame dimensions.
|
|
*/
|
|
/**@{*/
|
|
int width; /*!< Coded frame width */
|
|
int height; /*!< Coded frame height */
|
|
/**@}*/
|
|
|
|
/**
|
|
* \name Rendered frame dimensions.
|
|
* Dimensions after applying both super-resolution and resize to the coded
|
|
* frame. Different from coded dimensions if super-resolution and/or resize
|
|
* are being used for this frame.
|
|
*/
|
|
/**@{*/
|
|
int render_width; /*!< Rendered frame width */
|
|
int render_height; /*!< Rendered frame height */
|
|
/**@}*/
|
|
|
|
/**
|
|
* \name Super-resolved frame dimensions.
|
|
* Frame dimensions after applying super-resolution to the coded frame (if
|
|
* present), but before applying resize.
|
|
* Larger than the coded dimensions if super-resolution is being used for
|
|
* this frame.
|
|
* Different from rendered dimensions if resize is being used for this frame.
|
|
*/
|
|
/**@{*/
|
|
int superres_upscaled_width; /*!< Super-resolved frame width */
|
|
int superres_upscaled_height; /*!< Super-resolved frame height */
|
|
/**@}*/
|
|
|
|
/*!
|
|
* The denominator of the superres scale used by this frame.
|
|
* Note: The numerator is fixed to be SCALE_NUMERATOR.
|
|
*/
|
|
uint8_t superres_scale_denominator;
|
|
|
|
/*!
|
|
* buffer_removal_times[op_num] specifies the frame removal time in units of
|
|
* DecCT clock ticks counted from the removal time of the last random access
|
|
* point for operating point op_num.
|
|
* TODO(urvang): We probably don't need the +1 here.
|
|
*/
|
|
uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
|
|
/*!
|
|
* Presentation time of the frame in clock ticks DispCT counted from the
|
|
* removal time of the last random access point for the operating point that
|
|
* is being decoded.
|
|
*/
|
|
uint32_t frame_presentation_time;
|
|
|
|
/*!
|
|
* Buffer where previous frame is stored.
|
|
*/
|
|
RefCntBuffer *prev_frame;
|
|
|
|
/*!
|
|
* Buffer into which the current frame will be stored and other related info.
|
|
* TODO(hkuang): Combine this with cur_buf in macroblockd.
|
|
*/
|
|
RefCntBuffer *cur_frame;
|
|
|
|
/*!
|
|
* For encoder, we have a two-level mapping from reference frame type to the
|
|
* corresponding buffer in the buffer pool:
|
|
* * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
|
|
* EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
|
|
* * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
|
|
* the reference counted buffer structure RefCntBuffer, taken from the buffer
|
|
* pool cm->buffer_pool->frame_bufs.
|
|
*
|
|
* LAST_FRAME, ..., EXTREF_FRAME
|
|
* | |
|
|
* v v
|
|
* remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1]
|
|
* | |
|
|
* v v
|
|
* ref_frame_map[], ..., ref_frame_map[]
|
|
*
|
|
* Note: INTRA_FRAME always refers to the current frame, so there's no need to
|
|
* have a remapped index for the same.
|
|
*/
|
|
int remapped_ref_idx[REF_FRAMES];
|
|
|
|
/*!
|
|
* Scale of the current frame with respect to itself.
|
|
* This is currently used for intra block copy, which behaves like an inter
|
|
* prediction mode, where the reference frame is the current frame itself.
|
|
*/
|
|
struct scale_factors sf_identity;
|
|
|
|
/*!
|
|
* Scale factors of the reference frame with respect to the current frame.
|
|
* This is required for generating inter prediction and will be non-identity
|
|
* for a reference frame, if it has different dimensions than the coded
|
|
* dimensions of the current frame.
|
|
*/
|
|
struct scale_factors ref_scale_factors[REF_FRAMES];
|
|
|
|
/*!
|
|
* For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
|
|
* the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
|
|
* For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
|
|
* remapped reference index 'j' (that is, original reference type 'i') to
|
|
* a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
|
|
*/
|
|
RefCntBuffer *ref_frame_map[REF_FRAMES];
|
|
|
|
/*!
|
|
* If true, this frame is actually shown after decoding.
|
|
* If false, this frame is coded in the bitstream, but not shown. It is only
|
|
* used as a reference for other frames coded later.
|
|
*/
|
|
int show_frame;
|
|
|
|
/*!
|
|
* If true, this frame can be used as a show-existing frame for other frames
|
|
* coded later.
|
|
* When 'show_frame' is true, this is always true for all non-keyframes.
|
|
* When 'show_frame' is false, this value is transmitted in the bitstream.
|
|
*/
|
|
int showable_frame;
|
|
|
|
/*!
|
|
* If true, show an existing frame coded before, instead of actually coding a
|
|
* frame. The existing frame comes from one of the existing reference buffers,
|
|
* as signaled in the bitstream.
|
|
*/
|
|
int show_existing_frame;
|
|
|
|
/*!
|
|
* Whether some features are allowed or not.
|
|
*/
|
|
FeatureFlags features;
|
|
|
|
/*!
|
|
* Params related to MB_MODE_INFO arrays and related info.
|
|
*/
|
|
CommonModeInfoParams mi_params;
|
|
|
|
#if CONFIG_ENTROPY_STATS
|
|
/*!
|
|
* Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1).
|
|
*/
|
|
int coef_cdf_category;
|
|
#endif // CONFIG_ENTROPY_STATS
|
|
|
|
/*!
|
|
* Quantization params.
|
|
*/
|
|
CommonQuantParams quant_params;
|
|
|
|
/*!
|
|
* Segmentation info for current frame.
|
|
*/
|
|
struct segmentation seg;
|
|
|
|
/*!
|
|
* Segmentation map for previous frame.
|
|
*/
|
|
uint8_t *last_frame_seg_map;
|
|
|
|
/**
|
|
* \name Deblocking filter parameters.
|
|
*/
|
|
/**@{*/
|
|
loop_filter_info_n lf_info; /*!< Loop filter info */
|
|
struct loopfilter lf; /*!< Loop filter parameters */
|
|
/**@}*/
|
|
|
|
/**
|
|
* \name Loop Restoration filter parameters.
|
|
*/
|
|
/**@{*/
|
|
RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */
|
|
int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */
|
|
RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */
|
|
YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */
|
|
/**@}*/
|
|
|
|
/*!
|
|
* CDEF (Constrained Directional Enhancement Filter) parameters.
|
|
*/
|
|
CdefInfo cdef_info;
|
|
|
|
/*!
|
|
* Parameters for film grain synthesis.
|
|
*/
|
|
aom_film_grain_t film_grain_params;
|
|
|
|
/*!
|
|
* Parameters for delta quantization and delta loop filter level.
|
|
*/
|
|
DeltaQInfo delta_q_info;
|
|
|
|
/*!
|
|
* Global motion parameters for each reference frame.
|
|
*/
|
|
WarpedMotionParams global_motion[REF_FRAMES];
|
|
|
|
/*!
|
|
* Elements part of the sequence header, that are applicable for all the
|
|
* frames in the video.
|
|
*/
|
|
SequenceHeader *seq_params;
|
|
|
|
/*!
|
|
* Current CDFs of all the symbols for the current frame.
|
|
*/
|
|
FRAME_CONTEXT *fc;
|
|
/*!
|
|
* Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
|
|
* (e.g. for a keyframe). These default CDFs are defined by the bitstream and
|
|
* copied from default CDF tables for each symbol.
|
|
*/
|
|
FRAME_CONTEXT *default_frame_context;
|
|
|
|
/*!
|
|
* Parameters related to tiling.
|
|
*/
|
|
CommonTileParams tiles;
|
|
|
|
/*!
|
|
* External BufferPool passed from outside.
|
|
*/
|
|
BufferPool *buffer_pool;
|
|
|
|
/*!
|
|
* Above context buffers and their sizes.
|
|
* Note: above contexts are allocated in this struct, as their size is
|
|
* dependent on frame width, while left contexts are declared and allocated in
|
|
* MACROBLOCKD struct, as they have a fixed size.
|
|
*/
|
|
CommonContexts above_contexts;
|
|
|
|
/**
|
|
* \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1
|
|
*/
|
|
/**@{*/
|
|
int current_frame_id; /*!< frame ID for the current frame. */
|
|
int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */
|
|
/**@}*/
|
|
|
|
/*!
|
|
* Motion vectors provided by motion field estimation.
|
|
* tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
|
|
* mi_row = 2 * row,
|
|
* mi_col = 2 * col, and
|
|
* stride = cm->mi_params.mi_stride / 2
|
|
*/
|
|
TPL_MV_REF *tpl_mvs;
|
|
/*!
|
|
* Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
|
|
*/
|
|
int tpl_mvs_mem_size;
|
|
/*!
|
|
* ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
|
|
* current frame is positive; and 0 otherwise.
|
|
*/
|
|
int ref_frame_sign_bias[REF_FRAMES];
|
|
/*!
|
|
* ref_frame_side[k] is 1 if relative distance between reference 'k' and
|
|
* current frame is positive, -1 if relative distance is 0; and 0 otherwise.
|
|
* TODO(jingning): This can be combined with sign_bias later.
|
|
*/
|
|
int8_t ref_frame_side[REF_FRAMES];
|
|
|
|
/*!
|
|
* Temporal layer ID of this frame
|
|
* (in the range 0 ... (number_temporal_layers - 1)).
|
|
*/
|
|
int temporal_layer_id;
|
|
|
|
/*!
|
|
* Spatial layer ID of this frame
|
|
* (in the range 0 ... (number_spatial_layers - 1)).
|
|
*/
|
|
int spatial_layer_id;
|
|
|
|
#if TXCOEFF_TIMER
|
|
int64_t cum_txcoeff_timer;
|
|
int64_t txcoeff_timer;
|
|
int txb_count;
|
|
#endif // TXCOEFF_TIMER
|
|
|
|
#if TXCOEFF_COST_TIMER
|
|
int64_t cum_txcoeff_cost_timer;
|
|
int64_t txcoeff_cost_timer;
|
|
int64_t txcoeff_cost_count;
|
|
#endif // TXCOEFF_COST_TIMER
|
|
} AV1_COMMON;
|
|
|
|
/*!\cond */
|
|
|
|
// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
|
|
// frame reference count.
|
|
static void lock_buffer_pool(BufferPool *const pool) {
|
|
#if CONFIG_MULTITHREAD
|
|
pthread_mutex_lock(&pool->pool_mutex);
|
|
#else
|
|
(void)pool;
|
|
#endif
|
|
}
|
|
|
|
static void unlock_buffer_pool(BufferPool *const pool) {
|
|
#if CONFIG_MULTITHREAD
|
|
pthread_mutex_unlock(&pool->pool_mutex);
|
|
#else
|
|
(void)pool;
|
|
#endif
|
|
}
|
|
|
|
static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
|
|
if (index < 0 || index >= REF_FRAMES) return NULL;
|
|
if (cm->ref_frame_map[index] == NULL) return NULL;
|
|
return &cm->ref_frame_map[index]->buf;
|
|
}
|
|
|
|
static INLINE int get_free_fb(AV1_COMMON *cm) {
|
|
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
|
|
int i;
|
|
|
|
lock_buffer_pool(cm->buffer_pool);
|
|
for (i = 0; i < FRAME_BUFFERS; ++i)
|
|
if (frame_bufs[i].ref_count == 0) break;
|
|
|
|
if (i != FRAME_BUFFERS) {
|
|
if (frame_bufs[i].buf.use_external_reference_buffers) {
|
|
// If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
|
|
// external reference buffers. Restore the buffer pointers to point to the
|
|
// internally allocated memory.
|
|
YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
|
|
ybf->y_buffer = ybf->store_buf_adr[0];
|
|
ybf->u_buffer = ybf->store_buf_adr[1];
|
|
ybf->v_buffer = ybf->store_buf_adr[2];
|
|
ybf->use_external_reference_buffers = 0;
|
|
}
|
|
|
|
frame_bufs[i].ref_count = 1;
|
|
} else {
|
|
// We should never run out of free buffers. If this assertion fails, there
|
|
// is a reference leak.
|
|
assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
|
|
// Reset i to be INVALID_IDX to indicate no free buffer found.
|
|
i = INVALID_IDX;
|
|
}
|
|
|
|
unlock_buffer_pool(cm->buffer_pool);
|
|
return i;
|
|
}
|
|
|
|
static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
|
|
// Release the previously-used frame-buffer
|
|
if (cm->cur_frame != NULL) {
|
|
--cm->cur_frame->ref_count;
|
|
cm->cur_frame = NULL;
|
|
}
|
|
|
|
// Assign a new framebuffer
|
|
const int new_fb_idx = get_free_fb(cm);
|
|
if (new_fb_idx == INVALID_IDX) return NULL;
|
|
|
|
cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
|
|
cm->cur_frame->buf.buf_8bit_valid = 0;
|
|
av1_zero(cm->cur_frame->interp_filter_selected);
|
|
return cm->cur_frame;
|
|
}
|
|
|
|
// Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
|
|
// counts accordingly.
|
|
static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
|
|
RefCntBuffer *rhs_ptr) {
|
|
RefCntBuffer *const old_ptr = *lhs_ptr;
|
|
if (old_ptr != NULL) {
|
|
assert(old_ptr->ref_count > 0);
|
|
// One less reference to the buffer at 'old_ptr', so decrease ref count.
|
|
--old_ptr->ref_count;
|
|
}
|
|
|
|
*lhs_ptr = rhs_ptr;
|
|
// One more reference to the buffer at 'rhs_ptr', so increase ref count.
|
|
++rhs_ptr->ref_count;
|
|
}
|
|
|
|
static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
|
|
return cm->current_frame.frame_type == KEY_FRAME ||
|
|
cm->current_frame.frame_type == INTRA_ONLY_FRAME;
|
|
}
|
|
|
|
static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
|
|
return cm->current_frame.frame_type == S_FRAME;
|
|
}
|
|
|
|
// These functions take a reference frame label between LAST_FRAME and
|
|
// EXTREF_FRAME inclusive. Note that this is different to the indexing
|
|
// previously used by the frame_refs[] array.
|
|
static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
|
|
const MV_REFERENCE_FRAME ref_frame) {
|
|
return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
|
|
? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
|
|
: INVALID_IDX;
|
|
}
|
|
|
|
static INLINE RefCntBuffer *get_ref_frame_buf(
|
|
const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
|
|
const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
|
|
return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
|
|
}
|
|
|
|
// Both const and non-const versions of this function are provided so that it
|
|
// can be used with a const AV1_COMMON if needed.
|
|
static INLINE const struct scale_factors *get_ref_scale_factors_const(
|
|
const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
|
|
const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
|
|
return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
|
|
}
|
|
|
|
static INLINE struct scale_factors *get_ref_scale_factors(
|
|
AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
|
|
const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
|
|
return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
|
|
}
|
|
|
|
static INLINE RefCntBuffer *get_primary_ref_frame_buf(
|
|
const AV1_COMMON *const cm) {
|
|
const int primary_ref_frame = cm->features.primary_ref_frame;
|
|
if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
|
|
const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
|
|
return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
|
|
}
|
|
|
|
// Returns 1 if this frame might allow mvs from some reference frame.
|
|
static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
|
|
return !cm->features.error_resilient_mode &&
|
|
cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
|
|
cm->seq_params->order_hint_info.enable_order_hint &&
|
|
!frame_is_intra_only(cm);
|
|
}
|
|
|
|
// Returns 1 if this frame might use warped_motion
|
|
static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
|
|
return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
|
|
cm->seq_params->enable_warped_motion;
|
|
}
|
|
|
|
static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
|
|
const int buf_rows = buf->mi_rows;
|
|
const int buf_cols = buf->mi_cols;
|
|
const CommonModeInfoParams *const mi_params = &cm->mi_params;
|
|
|
|
if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
|
|
buf_cols != mi_params->mi_cols) {
|
|
aom_free(buf->mvs);
|
|
buf->mi_rows = mi_params->mi_rows;
|
|
buf->mi_cols = mi_params->mi_cols;
|
|
CHECK_MEM_ERROR(cm, buf->mvs,
|
|
(MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
|
|
((mi_params->mi_cols + 1) >> 1),
|
|
sizeof(*buf->mvs)));
|
|
aom_free(buf->seg_map);
|
|
CHECK_MEM_ERROR(
|
|
cm, buf->seg_map,
|
|
(uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
|
|
sizeof(*buf->seg_map)));
|
|
}
|
|
|
|
const int mem_size =
|
|
((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
|
|
int realloc = cm->tpl_mvs == NULL;
|
|
if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
|
|
|
|
if (realloc) {
|
|
aom_free(cm->tpl_mvs);
|
|
CHECK_MEM_ERROR(cm, cm->tpl_mvs,
|
|
(TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
|
|
cm->tpl_mvs_mem_size = mem_size;
|
|
}
|
|
}
|
|
|
|
void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
|
|
|
|
static INLINE int av1_num_planes(const AV1_COMMON *cm) {
|
|
return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
|
|
}
|
|
|
|
static INLINE void av1_init_above_context(CommonContexts *above_contexts,
|
|
int num_planes, int tile_row,
|
|
MACROBLOCKD *xd) {
|
|
for (int i = 0; i < num_planes; ++i) {
|
|
xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
|
|
}
|
|
xd->above_partition_context = above_contexts->partition[tile_row];
|
|
xd->above_txfm_context = above_contexts->txfm[tile_row];
|
|
}
|
|
|
|
static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
|
|
const int num_planes = av1_num_planes(cm);
|
|
const CommonQuantParams *const quant_params = &cm->quant_params;
|
|
|
|
for (int i = 0; i < num_planes; ++i) {
|
|
if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
|
|
memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
|
|
sizeof(quant_params->y_dequant_QTX));
|
|
memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
|
|
sizeof(quant_params->y_iqmatrix));
|
|
|
|
} else {
|
|
if (i == AOM_PLANE_U) {
|
|
memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
|
|
sizeof(quant_params->u_dequant_QTX));
|
|
memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
|
|
sizeof(quant_params->u_iqmatrix));
|
|
} else {
|
|
memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
|
|
sizeof(quant_params->v_dequant_QTX));
|
|
memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
|
|
sizeof(quant_params->v_iqmatrix));
|
|
}
|
|
}
|
|
}
|
|
xd->mi_stride = cm->mi_params.mi_stride;
|
|
xd->error_info = cm->error;
|
|
cfl_init(&xd->cfl, cm->seq_params);
|
|
}
|
|
|
|
static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
|
|
const int num_planes) {
|
|
int i;
|
|
int row_offset = mi_row;
|
|
int col_offset = mi_col;
|
|
for (i = 0; i < num_planes; ++i) {
|
|
struct macroblockd_plane *const pd = &xd->plane[i];
|
|
// Offset the buffer pointer
|
|
const BLOCK_SIZE bsize = xd->mi[0]->bsize;
|
|
if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
|
|
row_offset = mi_row - 1;
|
|
if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
|
|
col_offset = mi_col - 1;
|
|
int above_idx = col_offset;
|
|
int left_idx = row_offset & MAX_MIB_MASK;
|
|
pd->above_entropy_context =
|
|
&xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
|
|
pd->left_entropy_context =
|
|
&xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
|
|
}
|
|
}
|
|
|
|
static INLINE int calc_mi_size(int len) {
|
|
// len is in mi units. Align to a multiple of SBs.
|
|
return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
|
|
}
|
|
|
|
static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
|
|
const int num_planes) {
|
|
int i;
|
|
for (i = 0; i < num_planes; i++) {
|
|
xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
|
|
xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
|
|
|
|
xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
|
|
xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
|
|
}
|
|
}
|
|
|
|
static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
|
|
int mi_row, int bh, int mi_col, int bw,
|
|
int mi_rows, int mi_cols) {
|
|
xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
|
|
xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
|
|
xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
|
|
xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
|
|
|
|
xd->mi_row = mi_row;
|
|
xd->mi_col = mi_col;
|
|
|
|
// Are edges available for intra prediction?
|
|
xd->up_available = (mi_row > tile->mi_row_start);
|
|
|
|
const int ss_x = xd->plane[1].subsampling_x;
|
|
const int ss_y = xd->plane[1].subsampling_y;
|
|
|
|
xd->left_available = (mi_col > tile->mi_col_start);
|
|
xd->chroma_up_available = xd->up_available;
|
|
xd->chroma_left_available = xd->left_available;
|
|
if (ss_x && bw < mi_size_wide[BLOCK_8X8])
|
|
xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
|
|
if (ss_y && bh < mi_size_high[BLOCK_8X8])
|
|
xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
|
|
if (xd->up_available) {
|
|
xd->above_mbmi = xd->mi[-xd->mi_stride];
|
|
} else {
|
|
xd->above_mbmi = NULL;
|
|
}
|
|
|
|
if (xd->left_available) {
|
|
xd->left_mbmi = xd->mi[-1];
|
|
} else {
|
|
xd->left_mbmi = NULL;
|
|
}
|
|
|
|
const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
|
|
((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
|
|
xd->is_chroma_ref = chroma_ref;
|
|
if (chroma_ref) {
|
|
// To help calculate the "above" and "left" chroma blocks, note that the
|
|
// current block may cover multiple luma blocks (e.g., if partitioned into
|
|
// 4x4 luma blocks).
|
|
// First, find the top-left-most luma block covered by this chroma block
|
|
MB_MODE_INFO **base_mi =
|
|
&xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
|
|
|
|
// Then, we consider the luma region covered by the left or above 4x4 chroma
|
|
// prediction. We want to point to the chroma reference block in that
|
|
// region, which is the bottom-right-most mi unit.
|
|
// This leads to the following offsets:
|
|
MB_MODE_INFO *chroma_above_mi =
|
|
xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
|
|
xd->chroma_above_mbmi = chroma_above_mi;
|
|
|
|
MB_MODE_INFO *chroma_left_mi =
|
|
xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
|
|
xd->chroma_left_mbmi = chroma_left_mi;
|
|
}
|
|
|
|
xd->height = bh;
|
|
xd->width = bw;
|
|
|
|
xd->is_last_vertical_rect = 0;
|
|
if (xd->width < xd->height) {
|
|
if (!((mi_col + xd->width) & (xd->height - 1))) {
|
|
xd->is_last_vertical_rect = 1;
|
|
}
|
|
}
|
|
|
|
xd->is_first_horizontal_rect = 0;
|
|
if (xd->width > xd->height)
|
|
if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
|
|
}
|
|
|
|
static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
|
|
const MB_MODE_INFO *above_mi,
|
|
const MB_MODE_INFO *left_mi) {
|
|
const PREDICTION_MODE above = av1_above_block_mode(above_mi);
|
|
const PREDICTION_MODE left = av1_left_block_mode(left_mi);
|
|
const int above_ctx = intra_mode_context[above];
|
|
const int left_ctx = intra_mode_context[left];
|
|
return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
|
|
}
|
|
|
|
static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
|
|
int mi_col, BLOCK_SIZE subsize,
|
|
BLOCK_SIZE bsize) {
|
|
PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
|
|
PARTITION_CONTEXT *const left_ctx =
|
|
xd->left_partition_context + (mi_row & MAX_MIB_MASK);
|
|
|
|
const int bw = mi_size_wide[bsize];
|
|
const int bh = mi_size_high[bsize];
|
|
memset(above_ctx, partition_context_lookup[subsize].above, bw);
|
|
memset(left_ctx, partition_context_lookup[subsize].left, bh);
|
|
}
|
|
|
|
static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
int subsampling_x, int subsampling_y) {
|
|
assert(bsize < BLOCK_SIZES_ALL);
|
|
const int bw = mi_size_wide[bsize];
|
|
const int bh = mi_size_high[bsize];
|
|
int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
|
|
((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
|
|
return ref_pos;
|
|
}
|
|
|
|
static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
|
|
size_t element) {
|
|
assert(cdf != NULL);
|
|
return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
|
|
}
|
|
|
|
static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
|
|
const aom_cdf_prob *const in,
|
|
BLOCK_SIZE bsize) {
|
|
(void)bsize;
|
|
out[0] = CDF_PROB_TOP;
|
|
out[0] -= cdf_element_prob(in, PARTITION_HORZ);
|
|
out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
|
|
out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
|
|
out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
|
|
out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
|
|
if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
|
|
out[0] = AOM_ICDF(out[0]);
|
|
out[1] = AOM_ICDF(CDF_PROB_TOP);
|
|
}
|
|
|
|
static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
|
|
const aom_cdf_prob *const in,
|
|
BLOCK_SIZE bsize) {
|
|
(void)bsize;
|
|
out[0] = CDF_PROB_TOP;
|
|
out[0] -= cdf_element_prob(in, PARTITION_VERT);
|
|
out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
|
|
out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
|
|
out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
|
|
out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
|
|
if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
|
|
out[0] = AOM_ICDF(out[0]);
|
|
out[1] = AOM_ICDF(CDF_PROB_TOP);
|
|
}
|
|
|
|
static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
|
|
int mi_col, BLOCK_SIZE subsize,
|
|
BLOCK_SIZE bsize,
|
|
PARTITION_TYPE partition) {
|
|
if (bsize >= BLOCK_8X8) {
|
|
const int hbs = mi_size_wide[bsize] / 2;
|
|
BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
|
|
switch (partition) {
|
|
case PARTITION_SPLIT:
|
|
if (bsize != BLOCK_8X8) break;
|
|
AOM_FALLTHROUGH_INTENDED;
|
|
case PARTITION_NONE:
|
|
case PARTITION_HORZ:
|
|
case PARTITION_VERT:
|
|
case PARTITION_HORZ_4:
|
|
case PARTITION_VERT_4:
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
break;
|
|
case PARTITION_HORZ_A:
|
|
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
|
|
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
|
|
break;
|
|
case PARTITION_HORZ_B:
|
|
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
|
|
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
|
|
break;
|
|
case PARTITION_VERT_A:
|
|
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
|
|
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
|
|
break;
|
|
case PARTITION_VERT_B:
|
|
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
|
|
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
|
|
break;
|
|
default: assert(0 && "Invalid partition type");
|
|
}
|
|
}
|
|
}
|
|
|
|
static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize) {
|
|
const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
|
|
const PARTITION_CONTEXT *left_ctx =
|
|
xd->left_partition_context + (mi_row & MAX_MIB_MASK);
|
|
// Minimum partition point is 8x8. Offset the bsl accordingly.
|
|
const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
|
|
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
|
|
|
|
assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
|
|
assert(bsl >= 0);
|
|
|
|
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
|
|
}
|
|
|
|
// Return the number of elements in the partition CDF when
|
|
// partitioning the (square) block with luma block size of bsize.
|
|
static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
|
|
if (bsize <= BLOCK_8X8)
|
|
return PARTITION_TYPES;
|
|
else if (bsize == BLOCK_128X128)
|
|
return EXT_PARTITION_TYPES - 2;
|
|
else
|
|
return EXT_PARTITION_TYPES;
|
|
}
|
|
|
|
static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
|
|
int plane) {
|
|
assert(bsize < BLOCK_SIZES_ALL);
|
|
int max_blocks_wide = block_size_wide[bsize];
|
|
|
|
if (xd->mb_to_right_edge < 0) {
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
|
|
}
|
|
|
|
// Scale the width in the transform block unit.
|
|
return max_blocks_wide >> MI_SIZE_LOG2;
|
|
}
|
|
|
|
static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
|
|
int plane) {
|
|
int max_blocks_high = block_size_high[bsize];
|
|
|
|
if (xd->mb_to_bottom_edge < 0) {
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
|
|
}
|
|
|
|
// Scale the height in the transform block unit.
|
|
return max_blocks_high >> MI_SIZE_LOG2;
|
|
}
|
|
|
|
static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
|
|
const MACROBLOCKD *xd,
|
|
int mi_col_start, int mi_col_end,
|
|
const int tile_row) {
|
|
const SequenceHeader *const seq_params = cm->seq_params;
|
|
const int num_planes = av1_num_planes(cm);
|
|
const int width = mi_col_end - mi_col_start;
|
|
const int aligned_width =
|
|
ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
|
|
const int offset_y = mi_col_start;
|
|
const int width_y = aligned_width;
|
|
const int offset_uv = offset_y >> seq_params->subsampling_x;
|
|
const int width_uv = width_y >> seq_params->subsampling_x;
|
|
CommonContexts *const above_contexts = &cm->above_contexts;
|
|
|
|
av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
|
|
if (num_planes > 1) {
|
|
if (above_contexts->entropy[1][tile_row] &&
|
|
above_contexts->entropy[2][tile_row]) {
|
|
av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
|
|
width_uv);
|
|
av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
|
|
width_uv);
|
|
} else {
|
|
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
|
|
"Invalid value of planes");
|
|
}
|
|
}
|
|
|
|
av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
|
|
aligned_width);
|
|
|
|
memset(above_contexts->txfm[tile_row] + mi_col_start,
|
|
tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
|
|
}
|
|
|
|
static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
|
|
av1_zero(xd->left_entropy_context);
|
|
av1_zero(xd->left_partition_context);
|
|
|
|
memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
|
|
sizeof(xd->left_txfm_context_buffer));
|
|
}
|
|
|
|
// Disable array-bounds checks as the TX_SIZE enum contains values larger than
|
|
// TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
|
|
// infeasible. The assert is enough for static analysis and this or other tools
|
|
// asan, valgrind would catch oob access at runtime.
|
|
#if defined(__GNUC__) && __GNUC__ >= 4
|
|
#pragma GCC diagnostic ignored "-Warray-bounds"
|
|
#endif
|
|
|
|
#if defined(__GNUC__) && __GNUC__ >= 4
|
|
#pragma GCC diagnostic warning "-Warray-bounds"
|
|
#endif
|
|
|
|
static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
|
|
int i;
|
|
for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
|
|
}
|
|
|
|
static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
|
|
const MACROBLOCKD *xd) {
|
|
uint8_t bw = tx_size_wide[tx_size];
|
|
uint8_t bh = tx_size_high[tx_size];
|
|
|
|
if (skip) {
|
|
bw = n4_w * MI_SIZE;
|
|
bh = n4_h * MI_SIZE;
|
|
}
|
|
|
|
set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
|
|
set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
|
|
}
|
|
|
|
static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
|
|
int mi_row, int mi_col) {
|
|
return mi_row * mi_params->mi_stride + mi_col;
|
|
}
|
|
|
|
static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
|
|
int mi_row, int mi_col) {
|
|
const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
|
|
const int mi_alloc_row = mi_row / mi_alloc_size_1d;
|
|
const int mi_alloc_col = mi_col / mi_alloc_size_1d;
|
|
|
|
return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
|
|
}
|
|
|
|
// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
|
|
static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
|
|
MACROBLOCKD *const xd, int mi_row,
|
|
int mi_col) {
|
|
// 'mi_grid_base' should point to appropriate memory in 'mi'.
|
|
const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
|
|
const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
|
|
mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
|
|
// 'xd->mi' should point to an offset in 'mi_grid_base';
|
|
xd->mi = mi_params->mi_grid_base + mi_grid_idx;
|
|
// 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
|
|
xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
|
|
xd->tx_type_map_stride = mi_params->mi_stride;
|
|
}
|
|
|
|
static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
|
|
TXFM_CONTEXT *left_ctx,
|
|
TX_SIZE tx_size, TX_SIZE txb_size) {
|
|
BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
|
|
int bh = mi_size_high[bsize];
|
|
int bw = mi_size_wide[bsize];
|
|
uint8_t txw = tx_size_wide[tx_size];
|
|
uint8_t txh = tx_size_high[tx_size];
|
|
int i;
|
|
for (i = 0; i < bh; ++i) left_ctx[i] = txh;
|
|
for (i = 0; i < bw; ++i) above_ctx[i] = txw;
|
|
}
|
|
|
|
static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
|
|
switch (tx_dim) {
|
|
case 128:
|
|
case 64: return TX_64X64; break;
|
|
case 32: return TX_32X32; break;
|
|
case 16: return TX_16X16; break;
|
|
case 8: return TX_8X8; break;
|
|
default: return TX_4X4;
|
|
}
|
|
}
|
|
|
|
static INLINE TX_SIZE get_tx_size(int width, int height) {
|
|
if (width == height) {
|
|
return get_sqr_tx_size(width);
|
|
}
|
|
if (width < height) {
|
|
if (width + width == height) {
|
|
switch (width) {
|
|
case 4: return TX_4X8; break;
|
|
case 8: return TX_8X16; break;
|
|
case 16: return TX_16X32; break;
|
|
case 32: return TX_32X64; break;
|
|
}
|
|
} else {
|
|
switch (width) {
|
|
case 4: return TX_4X16; break;
|
|
case 8: return TX_8X32; break;
|
|
case 16: return TX_16X64; break;
|
|
}
|
|
}
|
|
} else {
|
|
if (height + height == width) {
|
|
switch (height) {
|
|
case 4: return TX_8X4; break;
|
|
case 8: return TX_16X8; break;
|
|
case 16: return TX_32X16; break;
|
|
case 32: return TX_64X32; break;
|
|
}
|
|
} else {
|
|
switch (height) {
|
|
case 4: return TX_16X4; break;
|
|
case 8: return TX_32X8; break;
|
|
case 16: return TX_64X16; break;
|
|
}
|
|
}
|
|
}
|
|
assert(0);
|
|
return TX_4X4;
|
|
}
|
|
|
|
static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
|
|
const TXFM_CONTEXT *const left_ctx,
|
|
BLOCK_SIZE bsize, TX_SIZE tx_size) {
|
|
const uint8_t txw = tx_size_wide[tx_size];
|
|
const uint8_t txh = tx_size_high[tx_size];
|
|
const int above = *above_ctx < txw;
|
|
const int left = *left_ctx < txh;
|
|
int category = TXFM_PARTITION_CONTEXTS;
|
|
|
|
// dummy return, not used by others.
|
|
if (tx_size <= TX_4X4) return 0;
|
|
|
|
TX_SIZE max_tx_size =
|
|
get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
|
|
|
|
if (max_tx_size >= TX_8X8) {
|
|
category =
|
|
(txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
|
|
(TX_SIZES - 1 - max_tx_size) * 2;
|
|
}
|
|
assert(category != TXFM_PARTITION_CONTEXTS);
|
|
return category * 3 + above + left;
|
|
}
|
|
|
|
// Compute the next partition in the direction of the sb_type stored in the mi
|
|
// array, starting with bsize.
|
|
static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
const CommonModeInfoParams *const mi_params = &cm->mi_params;
|
|
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
|
|
return PARTITION_INVALID;
|
|
|
|
const int offset = mi_row * mi_params->mi_stride + mi_col;
|
|
MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
|
|
const BLOCK_SIZE subsize = mi[0]->bsize;
|
|
|
|
assert(bsize < BLOCK_SIZES_ALL);
|
|
|
|
if (subsize == bsize) return PARTITION_NONE;
|
|
|
|
const int bhigh = mi_size_high[bsize];
|
|
const int bwide = mi_size_wide[bsize];
|
|
const int sshigh = mi_size_high[subsize];
|
|
const int sswide = mi_size_wide[subsize];
|
|
|
|
if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
|
|
mi_col + bhigh / 2 < mi_params->mi_cols) {
|
|
// In this case, the block might be using an extended partition
|
|
// type.
|
|
const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
|
|
const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
|
|
|
|
if (sswide == bwide) {
|
|
// Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
|
|
// PARTITION_HORZ_B. To distinguish the latter two, check if the lower
|
|
// half was split.
|
|
if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
|
|
assert(sshigh * 2 == bhigh);
|
|
|
|
if (mbmi_below->bsize == subsize)
|
|
return PARTITION_HORZ;
|
|
else
|
|
return PARTITION_HORZ_B;
|
|
} else if (sshigh == bhigh) {
|
|
// Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
|
|
// PARTITION_VERT_B. To distinguish the latter two, check if the right
|
|
// half was split.
|
|
if (sswide * 4 == bwide) return PARTITION_VERT_4;
|
|
assert(sswide * 2 == bhigh);
|
|
|
|
if (mbmi_right->bsize == subsize)
|
|
return PARTITION_VERT;
|
|
else
|
|
return PARTITION_VERT_B;
|
|
} else {
|
|
// Smaller width and smaller height. Might be PARTITION_SPLIT or could be
|
|
// PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
|
|
// dimensions, we immediately know this is a split (which will recurse to
|
|
// get to subsize). Otherwise look down and to the right. With
|
|
// PARTITION_VERT_A, the right block will have height bhigh; with
|
|
// PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
|
|
// it's PARTITION_SPLIT.
|
|
if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
|
|
|
|
if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
|
|
if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
|
|
|
|
return PARTITION_SPLIT;
|
|
}
|
|
}
|
|
const int vert_split = sswide < bwide;
|
|
const int horz_split = sshigh < bhigh;
|
|
const int split_idx = (vert_split << 1) | horz_split;
|
|
assert(split_idx != 0);
|
|
|
|
static const PARTITION_TYPE base_partitions[4] = {
|
|
PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
|
|
};
|
|
|
|
return base_partitions[split_idx];
|
|
}
|
|
|
|
static INLINE void set_sb_size(SequenceHeader *const seq_params,
|
|
BLOCK_SIZE sb_size) {
|
|
seq_params->sb_size = sb_size;
|
|
seq_params->mib_size = mi_size_wide[seq_params->sb_size];
|
|
seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
|
|
}
|
|
|
|
// Returns true if the frame is fully lossless at the coded resolution.
|
|
// Note: If super-resolution is used, such a frame will still NOT be lossless at
|
|
// the upscaled resolution.
|
|
static INLINE int is_coded_lossless(const AV1_COMMON *cm,
|
|
const MACROBLOCKD *xd) {
|
|
int coded_lossless = 1;
|
|
if (cm->seg.enabled) {
|
|
for (int i = 0; i < MAX_SEGMENTS; ++i) {
|
|
if (!xd->lossless[i]) {
|
|
coded_lossless = 0;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
coded_lossless = xd->lossless[0];
|
|
}
|
|
return coded_lossless;
|
|
}
|
|
|
|
static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
|
|
return seq_level_idx == SEQ_LEVEL_MAX ||
|
|
(seq_level_idx < SEQ_LEVELS &&
|
|
// The following levels are currently undefined.
|
|
seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
|
|
seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
|
|
seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3);
|
|
}
|
|
|
|
/*!\endcond */
|
|
|
|
#ifdef __cplusplus
|
|
} // extern "C"
|
|
#endif
|
|
|
|
#endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
|