unplugged-system/external/libvpx/vp9/encoder/x86/vp9_quantize_ssse3.c

254 lines
7.8 KiB
C

/*
* Copyright (c) 2022 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <tmmintrin.h>
#include "./vp9_rtcd.h"
#include "vpx/vpx_integer.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_dsp/x86/bitdepth_conversion_sse2.h"
#include "vpx_dsp/x86/quantize_sse2.h"
#include "vpx_dsp/x86/quantize_ssse3.h"
void vp9_quantize_fp_ssse3(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *round_ptr, const int16_t *quant_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
const __m128i zero = _mm_setzero_si128();
__m128i thr;
int nzflag;
int index = 16;
__m128i round, quant, dequant;
__m128i coeff0, coeff1;
__m128i qcoeff0, qcoeff1;
__m128i eob;
(void)scan;
// Setup global values.
load_fp_values(round_ptr, &round, quant_ptr, &quant, dequant_ptr, &dequant);
// Do DC and first 15 AC.
coeff0 = load_tran_low(coeff_ptr);
coeff1 = load_tran_low(coeff_ptr + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
qcoeff0 = _mm_mulhi_epi16(qcoeff0, quant);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
qcoeff1 = _mm_mulhi_epi16(qcoeff1, quant);
// Reinsert signs.
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
store_tran_low(qcoeff0, qcoeff_ptr);
store_tran_low(qcoeff1, qcoeff_ptr + 8);
qcoeff0 = _mm_mullo_epi16(qcoeff0, dequant);
dequant = _mm_unpackhi_epi64(dequant, dequant);
qcoeff1 = _mm_mullo_epi16(qcoeff1, dequant);
store_tran_low(qcoeff0, dqcoeff_ptr);
store_tran_low(qcoeff1, dqcoeff_ptr + 8);
eob = scan_for_eob(&qcoeff0, &qcoeff1, iscan, 0, zero);
thr = _mm_srai_epi16(dequant, 1);
// AC only loop.
while (index < n_coeffs) {
coeff0 = load_tran_low(coeff_ptr + index);
coeff1 = load_tran_low(coeff_ptr + index + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
_mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
if (nzflag) {
__m128i eob0;
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
qcoeff0 = _mm_mulhi_epi16(qcoeff0, quant);
qcoeff1 = _mm_mulhi_epi16(qcoeff1, quant);
// Reinsert signs.
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
store_tran_low(qcoeff0, qcoeff_ptr + index);
store_tran_low(qcoeff1, qcoeff_ptr + index + 8);
qcoeff0 = _mm_mullo_epi16(qcoeff0, dequant);
qcoeff1 = _mm_mullo_epi16(qcoeff1, dequant);
store_tran_low(qcoeff0, dqcoeff_ptr + index);
store_tran_low(qcoeff1, dqcoeff_ptr + index + 8);
eob0 = scan_for_eob(&qcoeff0, &qcoeff1, iscan, index, zero);
eob = _mm_max_epi16(eob, eob0);
} else {
store_zero_tran_low(qcoeff_ptr + index);
store_zero_tran_low(qcoeff_ptr + index + 8);
store_zero_tran_low(dqcoeff_ptr + index);
store_zero_tran_low(dqcoeff_ptr + index + 8);
}
index += 16;
}
*eob_ptr = accumulate_eob(eob);
}
void vp9_quantize_fp_32x32_ssse3(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *round_ptr,
const int16_t *quant_ptr,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
const __m128i zero = _mm_setzero_si128();
const __m128i one_s16 = _mm_set1_epi16(1);
__m128i thr;
int nzflag;
int index = 16;
__m128i round, quant, dequant;
__m128i coeff0, coeff1;
__m128i qcoeff0, qcoeff1;
__m128i eob;
(void)scan;
// Setup global values.
load_fp_values(round_ptr, &round, quant_ptr, &quant, dequant_ptr, &dequant);
// The 32x32 halves round.
round = _mm_add_epi16(round, one_s16);
round = _mm_srli_epi16(round, 1);
// The 16x16 shifts by 16, the 32x32 shifts by 15. We want to use pmulhw so
// upshift quant to account for this.
quant = _mm_slli_epi16(quant, 1);
// Do DC and first 15 AC.
coeff0 = load_tran_low(coeff_ptr);
coeff1 = load_tran_low(coeff_ptr + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
qcoeff0 = _mm_mulhi_epi16(qcoeff0, quant);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
qcoeff1 = _mm_mulhi_epi16(qcoeff1, quant);
// Reinsert signs.
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
store_tran_low(qcoeff0, qcoeff_ptr);
store_tran_low(qcoeff1, qcoeff_ptr + 8);
// Get the abs value of qcoeff again so we can use shifts for division.
qcoeff0 = _mm_abs_epi16(qcoeff0);
qcoeff1 = _mm_abs_epi16(qcoeff1);
qcoeff0 = _mm_mullo_epi16(qcoeff0, dequant);
dequant = _mm_unpackhi_epi64(dequant, dequant);
qcoeff1 = _mm_mullo_epi16(qcoeff1, dequant);
// Divide by 2.
qcoeff0 = _mm_srli_epi16(qcoeff0, 1);
qcoeff1 = _mm_srli_epi16(qcoeff1, 1);
// Reinsert signs.
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
store_tran_low(qcoeff0, dqcoeff_ptr);
store_tran_low(qcoeff1, dqcoeff_ptr + 8);
eob = scan_for_eob(&qcoeff0, &qcoeff1, iscan, 0, zero);
thr = _mm_srai_epi16(dequant, 2);
// AC only loop.
while (index < n_coeffs) {
coeff0 = load_tran_low(coeff_ptr + index);
coeff1 = load_tran_low(coeff_ptr + index + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
_mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
if (nzflag) {
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
qcoeff0 = _mm_mulhi_epi16(qcoeff0, quant);
qcoeff1 = _mm_mulhi_epi16(qcoeff1, quant);
// Reinsert signs.
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
store_tran_low(qcoeff0, qcoeff_ptr + index);
store_tran_low(qcoeff1, qcoeff_ptr + index + 8);
// Get the abs value of qcoeff again so we can use shifts for division.
qcoeff0 = _mm_abs_epi16(qcoeff0);
qcoeff1 = _mm_abs_epi16(qcoeff1);
qcoeff0 = _mm_mullo_epi16(qcoeff0, dequant);
qcoeff1 = _mm_mullo_epi16(qcoeff1, dequant);
// Divide by 2.
qcoeff0 = _mm_srli_epi16(qcoeff0, 1);
qcoeff1 = _mm_srli_epi16(qcoeff1, 1);
// Reinsert signs.
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
store_tran_low(qcoeff0, dqcoeff_ptr + index);
store_tran_low(qcoeff1, dqcoeff_ptr + index + 8);
} else {
store_zero_tran_low(qcoeff_ptr + index);
store_zero_tran_low(qcoeff_ptr + index + 8);
store_zero_tran_low(dqcoeff_ptr + index);
store_zero_tran_low(dqcoeff_ptr + index + 8);
}
if (nzflag) {
const __m128i eob0 = scan_for_eob(&qcoeff0, &qcoeff1, iscan, index, zero);
eob = _mm_max_epi16(eob, eob0);
}
index += 16;
}
*eob_ptr = accumulate_eob(eob);
}