unplugged-system/external/ltp/testcases/kernel/syscalls/setsockopt/setsockopt08.c

167 lines
6.0 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2021 SUSE LLC <rpalethorpe@suse.com>
* Based on reproducer by Nicolai Stange based on PoC Andy Nguyen
*/
/*\
* [Description]
*
* This will reproduce the bug on x86_64 in 32bit compatibility
* mode. It is most reliable with KASAN enabled. Otherwise it relies
* on the out-of-bounds write corrupting something which leads to a
* crash. It will run in other scenarious, but is not a test for the
* CVE.
*
* See https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
*
* Also below is Nicolai's detailed description of the bug itself.
*
* The problem underlying CVE-2021-22555 fixed by upstream commit
* b29c457a6511 ("netfilter: x_tables: fix compat match/target pad
* out-of-bound write") is that the (now removed) padding zeroing code
* in xt_compat_target_from_user() had been based on the premise that
* the user specified ->u.user.target_size, which will be considered
* for the target buffer allocation size, is greater or equal than
* what's needed to fit the corresponding xt_target instance's
* ->targetsize: if OTOH the user specified ->u.user.target_size is
* too small, then the memset() destination address calculated by
* adding ->targetsize to the payload start will not point at, but
* into or even past the padding. For the table's last entry's target
* record, this will result in an out-of-bounds write past the
* destination buffer allocated for the converted table. The code
* below will create a (compat) table such that the converted table's
* calculated size will fit exactly into a slab size of 1024 bytes and
* that the memset() in xt_compat_target_from_user() will write past
* this slab.
*
* The table will consist of
* - the mandatory struct compat_ipt_replace header,
* - a single entry consisting of
* - the mandatory compat_ipt_entry header
* - a single 'state' match entry of appropriate size for
* controlling the out-of-bounds write when converting
* the target entry following next,
* - a single 'REJECT' target entry.
* The kernel will transform this into a buffer containing (in
* this order)
* - a xt_table_info
* - a single entry consisting of
* - its ipt_entry header
* - a single 'state' match entry
* - followed by a single 'REJECT' target entry.
*
* The expected sizes for the 'state' match entries as well as the
* 'REJECT' target are the size of the base header struct (32 bytes)
* plus the size of an unsigned int (4 bytes) each. In the course of
* the compat => non-compat conversion, the kernel will insert four
* bytes of padding after the unsigned int payload (c.f. 'off'
* adjustments via xt_compat_match_offset() and
* xt_compat_target_offset() in xt_compat_match_from_user() and
* xt_compat_target_from_user() resp.). This code is based on the
* premise that the user sets the given ->u.user.match_size or
* ->u.user.target_size consistent to the COMPAT_XT_ALIGN()ed payload
* size as specified by the corresponding xt_match instance's
* ->matchsize or xt_target instance's ->targetsize. That is, the
* padding gets inserted unconditionally during the transformation,
* independent of the actual values of ->u.user.match_size or
* ->u.user.target_size and the result ends up getting layed out with
* proper alignment only if said values match the expectations. That's
* not a problem in itself, but this unconditional insertion of
* padding must be taken into account in the match_size calculation
* below.
*
* For the match_size calculation below, note that the chosen
* target slab size is 1024 and that
* - sizeof(xt_table_info) = 64
* - sizeof(ipt_entry) = 112
* - the kernel will insert four bytes of padding
* after the match and target entries each.
* - sizeof(struct xt_entry_target) = 32
*/
#include <netinet/in.h>
#include "tst_test.h"
#include "tst_safe_net.h"
#include "lapi/ip_tables.h"
static void *buffer;
void setup(void)
{
if (tst_kernel_bits() == 32 || sizeof(long) > 4) {
tst_res(TINFO,
"The vulnerability was only present in 32-bit compat mode");
}
tst_setup_netns();
}
void run(void)
{
const char *const res_fmt_str =
"setsockopt(%d, IPPROTO_IP, IPT_SO_SET_REPLACE, %p, 1)";
struct ipt_replace *ipt_replace = buffer;
struct ipt_entry *ipt_entry = &ipt_replace->entries[0];
struct xt_entry_match *xt_entry_match =
(struct xt_entry_match *)&ipt_entry->elems[0];
const size_t tgt_size = 32;
const size_t match_size = 1024 - 64 - 112 - 4 - tgt_size - 4;
struct xt_entry_target *xt_entry_tgt =
((struct xt_entry_target *) (&ipt_entry->elems[0] + match_size));
int fd = SAFE_SOCKET(AF_INET, SOCK_DGRAM, 0);
int result;
xt_entry_match->u.user.match_size = (u_int16_t)match_size;
strcpy(xt_entry_match->u.user.name, "state");
xt_entry_tgt->u.user.target_size = (u_int16_t)tgt_size;
strcpy(xt_entry_tgt->u.user.name, "REJECT");
ipt_entry->target_offset =
(__builtin_offsetof(struct ipt_entry, elems) + match_size);
ipt_entry->next_offset = ipt_entry->target_offset + tgt_size;
strcpy(ipt_replace->name, "filter");
ipt_replace->num_entries = 1;
ipt_replace->num_counters = 1;
ipt_replace->size = ipt_entry->next_offset;
TEST(setsockopt(fd, IPPROTO_IP, IPT_SO_SET_REPLACE, buffer, 1));
if (TST_RET == -1 && TST_ERR == ENOPROTOOPT)
tst_brk(TCONF | TTERRNO, res_fmt_str, fd, buffer);
result = (TST_RET == -1 && TST_ERR == EINVAL) ? TPASS : TFAIL;
tst_res(result | TTERRNO, res_fmt_str, fd, buffer);
SAFE_CLOSE(fd);
}
static struct tst_test test = {
.setup = setup,
.test_all = run,
.taint_check = TST_TAINT_W | TST_TAINT_D,
.forks_child = 1,
.bufs = (struct tst_buffers []) {
{&buffer, .size = 2048},
{},
},
.needs_kconfigs = (const char *[]) {
"CONFIG_NETFILTER_XT_MATCH_STATE",
"CONFIG_IP_NF_TARGET_REJECT",
"CONFIG_USER_NS=y",
"CONFIG_NET_NS=y",
NULL
},
.save_restore = (const struct tst_path_val[]) {
{"/proc/sys/user/max_user_namespaces", "1024", TST_SR_SKIP},
{}
},
.tags = (const struct tst_tag[]) {
{"linux-git", "b29c457a6511"},
{"CVE", "2021-22555"},
{}
}
};