384 lines
15 KiB
Python
384 lines
15 KiB
Python
#!/usr/bin/env python3
|
|
#
|
|
# Copyright (c) 2020, The OpenThread Authors.
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
# 1. Redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer.
|
|
# 2. Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution.
|
|
# 3. Neither the name of the copyright holder nor the
|
|
# names of its contributors may be used to endorse or promote products
|
|
# derived from this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
# POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
import time
|
|
import wpan
|
|
from wpan import verify
|
|
|
|
# -----------------------------------------------------------------------------------------------------------------------
|
|
# Test description: Address Cache Table
|
|
#
|
|
# This test verifies the behavior of `AddressResolver` and how the cache
|
|
# table is managed. In particular it verifies behavior query timeout and
|
|
# query retry and snoop optimization.
|
|
|
|
test_name = __file__[:-3] if __file__.endswith('.py') else __file__
|
|
print('-' * 120)
|
|
print('Starting \'{}\''.format(test_name))
|
|
|
|
# -----------------------------------------------------------------------------------------------------------------------
|
|
# Creating `wpan.Nodes` instances
|
|
|
|
speedup = 4
|
|
wpan.Node.set_time_speedup_factor(speedup)
|
|
|
|
r1 = wpan.Node()
|
|
r2 = wpan.Node()
|
|
r3 = wpan.Node()
|
|
|
|
c2 = wpan.Node()
|
|
c3 = wpan.Node()
|
|
|
|
# -----------------------------------------------------------------------------------------------------------------------
|
|
# Init all nodes
|
|
|
|
wpan.Node.init_all_nodes()
|
|
|
|
# -----------------------------------------------------------------------------------------------------------------------
|
|
# Build network topology
|
|
#
|
|
# r3 ---- r1 ---- r2
|
|
# | |
|
|
# | |
|
|
# c3 c2
|
|
#
|
|
|
|
PREFIX = "fd00:1234::"
|
|
POLL_INTERVAL = 200
|
|
|
|
MAX_SNOOPED_NON_EVICTABLE = 2
|
|
INITIAL_RETRY_DELAY = 4
|
|
MAX_CACHE_ENTRIES = 16
|
|
|
|
r1.form("sekiro") # shadows die twice!
|
|
|
|
r1.add_prefix(PREFIX, stable=True, on_mesh=True, slaac=False, preferred=True)
|
|
|
|
r1.allowlist_node(r2)
|
|
r2.allowlist_node(r1)
|
|
r2.join_node(r1, wpan.JOIN_TYPE_ROUTER)
|
|
|
|
c2.allowlist_node(r2)
|
|
r2.allowlist_node(c2)
|
|
c2.join_node(r2, wpan.JOIN_TYPE_END_DEVICE)
|
|
|
|
r1.allowlist_node(r3)
|
|
r3.allowlist_node(r1)
|
|
r3.join_node(r1, wpan.JOIN_TYPE_ROUTER)
|
|
|
|
c3.allowlist_node(r3)
|
|
r3.allowlist_node(c3)
|
|
c3.join_node(r3, wpan.JOIN_TYPE_SLEEPY_END_DEVICE)
|
|
c3.set(wpan.WPAN_POLL_INTERVAL, str(POLL_INTERVAL))
|
|
|
|
# -----------------------------------------------------------------------------------------------------------------------
|
|
# Test implementation
|
|
#
|
|
|
|
# Add IPv6 addresses on different nodes.
|
|
|
|
r1_address = PREFIX + "1"
|
|
r1.add_ip6_address_on_interface(r1_address)
|
|
|
|
WAIT_TIME = 10
|
|
PORT = 1234
|
|
|
|
NUM_ADDRESSES = 4 # Number of addresses to add on r2, r3, c2, and c3
|
|
|
|
for num in range(NUM_ADDRESSES):
|
|
r2.add_ip6_address_on_interface(PREFIX + "2:" + str(num))
|
|
r3.add_ip6_address_on_interface(PREFIX + "3:" + str(num))
|
|
c2.add_ip6_address_on_interface(PREFIX + "c2:" + str(num))
|
|
c3.add_ip6_address_on_interface(PREFIX + "c3:" + str(num))
|
|
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
# From r1 send msg to a group of addresses (not provided by any nodes in network).
|
|
|
|
NUM_QUERY_ADDRS = 5
|
|
MAX_STAGGER_INTERVAL = 2.5
|
|
|
|
for num in range(NUM_QUERY_ADDRS):
|
|
sender = r1.prepare_tx((r1_address, PORT), (PREFIX + "800:" + str(num), PORT), "hi nobody!", 1)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
# Wait before next tx to stagger the address queries
|
|
# request ensuring different timeouts
|
|
time.sleep(MAX_STAGGER_INTERVAL / (NUM_QUERY_ADDRS * speedup))
|
|
|
|
r2_rloc = int(r2.get(wpan.WPAN_THREAD_RLOC16), 16)
|
|
c2_rloc = int(c2.get(wpan.WPAN_THREAD_RLOC16), 16)
|
|
r3_rloc = int(r3.get(wpan.WPAN_THREAD_RLOC16), 16)
|
|
|
|
# Verify that we do see entries in cache table for all the addresses and all are in "query" state
|
|
|
|
addr_cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
verify(len(addr_cache_table) == NUM_QUERY_ADDRS)
|
|
for entry in addr_cache_table:
|
|
verify(entry.state == wpan.ADDRESS_CACHE_ENTRY_STATE_QUERY)
|
|
verify(not entry.can_evict())
|
|
verify(entry.timeout > 0)
|
|
verify(entry.retry_delay == INITIAL_RETRY_DELAY)
|
|
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
# Check the retry-query behavior
|
|
|
|
# Wait till all the address queries time out and verify they enter "retry-query" state.
|
|
|
|
|
|
def check_cache_entry_switch_to_retry_state():
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
for index in range(NUM_QUERY_ADDRS):
|
|
verify(cache_table[index].state == wpan.ADDRESS_CACHE_ENTRY_STATE_RETRY_QUERY)
|
|
verify(cache_table[index].retry_delay == 2 * INITIAL_RETRY_DELAY)
|
|
|
|
|
|
wpan.verify_within(check_cache_entry_switch_to_retry_state, WAIT_TIME)
|
|
|
|
# Try sending again to same addresses which are in "retry-delay" state.
|
|
|
|
for num in range(NUM_QUERY_ADDRS):
|
|
sender = r1.prepare_tx((r1_address, PORT), (PREFIX + "800:" + str(num), PORT), "hi nobody!", 1)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
|
|
# Make sure the entries stayed in retry-delay as before.
|
|
|
|
wpan.verify_within(check_cache_entry_switch_to_retry_state, WAIT_TIME)
|
|
|
|
# Now wait for them to get to zero timeout.
|
|
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
|
|
def check_cache_entry_in_retry_state_to_get_to_zero_timeout():
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
for index in range(NUM_QUERY_ADDRS):
|
|
verify(cache_table[index].state == wpan.ADDRESS_CACHE_ENTRY_STATE_RETRY_QUERY)
|
|
verify(cache_table[index].timeout == 0)
|
|
|
|
|
|
wpan.verify_within(check_cache_entry_in_retry_state_to_get_to_zero_timeout, WAIT_TIME)
|
|
|
|
# Now try again using the same addresses.
|
|
|
|
for num in range(NUM_QUERY_ADDRS):
|
|
sender = r1.prepare_tx((r1_address, PORT), (PREFIX + "800:" + str(num), PORT), "hi again nobody!", 1)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
|
|
# We expect now after the delay to see retries for same addresses.
|
|
|
|
|
|
def check_cache_entry_switch_to_query_state():
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
for index in range(NUM_QUERY_ADDRS):
|
|
verify(cache_table[index].state == wpan.ADDRESS_CACHE_ENTRY_STATE_QUERY)
|
|
verify(cache_table[index].can_evict() == True)
|
|
|
|
|
|
wpan.verify_within(check_cache_entry_switch_to_query_state, WAIT_TIME)
|
|
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
# Verify snoop optimization.
|
|
|
|
for num in range(NUM_ADDRESSES):
|
|
sender = r2.prepare_tx((PREFIX + "2:" + str(num), PORT), (r1_address, PORT), "hi r1 from r2 (snoop me)", 1)
|
|
recver = r1.prepare_rx(sender)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
verify(recver.was_successful)
|
|
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
# We expect to see new "snooped" entries at the top of list.
|
|
# Also verify that only MAX_SNOOPED_NON_EVICTABLE of snooped entries are non-evictable.
|
|
|
|
verify(len(cache_table) >= NUM_ADDRESSES)
|
|
|
|
for index in range(NUM_ADDRESSES):
|
|
verify(cache_table[index].address == PREFIX + "2:" + str(NUM_ADDRESSES - index - 1))
|
|
verify(cache_table[index].rloc16 == r2_rloc)
|
|
verify(cache_table[index].state == wpan.ADDRESS_CACHE_ENTRY_STATE_SNOOPED)
|
|
if index < NUM_ADDRESSES - MAX_SNOOPED_NON_EVICTABLE:
|
|
verify(cache_table[index].can_evict() == True)
|
|
verify(cache_table[index].timeout == 0)
|
|
else:
|
|
verify(cache_table[index].can_evict() == False)
|
|
verify(cache_table[index].timeout > 0)
|
|
|
|
# From r1 send to r2 using the addresses from snooped entries:
|
|
|
|
for num in range(NUM_ADDRESSES):
|
|
sender = r1.prepare_tx((r1_address, PORT), (PREFIX + "2:" + str(num), PORT), "hi back r2 from r1", 1)
|
|
recver = r2.prepare_rx(sender)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
verify(recver.was_successful)
|
|
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
# We expect to see the entries to be in "cached" state now.
|
|
|
|
verify(len(cache_table) >= NUM_ADDRESSES)
|
|
|
|
for index in range(NUM_ADDRESSES):
|
|
verify(cache_table[index].address == PREFIX + "2:" + str(NUM_ADDRESSES - index - 1))
|
|
verify(cache_table[index].rloc16 == r2_rloc)
|
|
verify(cache_table[index].state == wpan.ADDRESS_CACHE_ENTRY_STATE_CACHED)
|
|
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
# Check query requests, last transaction time
|
|
|
|
# Send from r1 to all addresses on r3.
|
|
|
|
for num in range(NUM_ADDRESSES):
|
|
sender = r1.prepare_tx((r1_address, PORT), (PREFIX + "3:" + str(num), PORT), "hi r3 from r1", 1)
|
|
recver = r3.prepare_rx(sender)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
verify(recver.was_successful)
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
# We expect to see the cache entries for the addresses pointing to r3.
|
|
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
for index in range(NUM_ADDRESSES):
|
|
verify(cache_table[index].address == PREFIX + "3:" + str(NUM_ADDRESSES - index - 1))
|
|
verify(cache_table[index].rloc16 == r3_rloc)
|
|
verify(cache_table[index].state == wpan.ADDRESS_CACHE_ENTRY_STATE_CACHED)
|
|
verify(cache_table[index].last_trans == 0)
|
|
|
|
# Send from r1 to all addresses on c3 (sleepy child of r3)
|
|
|
|
for num in range(NUM_ADDRESSES):
|
|
sender = r1.prepare_tx((r1_address, PORT), (PREFIX + "c3:" + str(num), PORT), "hi c3 from r1", 1)
|
|
recver = c3.prepare_rx(sender)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
verify(recver.was_successful)
|
|
|
|
# We expect to see the cache entries for c3 addresses pointing to r3.
|
|
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
for index in range(NUM_ADDRESSES):
|
|
verify(cache_table[index].address == PREFIX + "c3:" + str(NUM_ADDRESSES - index - 1))
|
|
verify(cache_table[index].rloc16 == r3_rloc)
|
|
verify(cache_table[index].state == wpan.ADDRESS_CACHE_ENTRY_STATE_CACHED)
|
|
# SED's keep-alive period (`POLL_PERIOD`) is 200ms, `last_trans` should always be 0 as it is
|
|
# the number of seconds since a keep-alive was last received from the child.
|
|
verify(cache_table[index].last_trans == 0)
|
|
|
|
# Send again to r2. This should cause the related cache entries to be moved to top of the list:
|
|
|
|
for num in range(NUM_ADDRESSES):
|
|
sender = r1.prepare_tx((r1_address, PORT), (PREFIX + "2:" + str(num), PORT), "hi again r2 from r1", 1)
|
|
recver = r2.prepare_rx(sender)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
verify(recver.was_successful)
|
|
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
for index in range(NUM_ADDRESSES):
|
|
verify(cache_table[index].address == PREFIX + "2:" + str(NUM_ADDRESSES - index - 1))
|
|
verify(cache_table[index].rloc16 == r2_rloc)
|
|
verify(cache_table[index].state == wpan.ADDRESS_CACHE_ENTRY_STATE_CACHED)
|
|
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
# Check behavior when cache table is full.
|
|
|
|
verify(len(cache_table) == MAX_CACHE_ENTRIES)
|
|
|
|
for num in range(NUM_QUERY_ADDRS):
|
|
sender = r1.prepare_tx((r1_address, PORT), (PREFIX + "900:" + str(num), PORT), "hi nobody!", 1)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
verify(len(cache_table) == MAX_CACHE_ENTRIES)
|
|
|
|
# Send from c2 to r1 and verify that snoop optimization uses at most
|
|
# `MAX_SNOOPED_NON_EVICTABLE` entries.
|
|
|
|
for num in range(NUM_ADDRESSES):
|
|
sender = c2.prepare_tx((PREFIX + "c2:" + str(num), PORT), (r1_address, PORT), "hi r1 from c2 (snoop me)", 1)
|
|
recver = r1.prepare_rx(sender)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
verify(recver.was_successful)
|
|
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
verify(len(cache_table) == MAX_CACHE_ENTRIES)
|
|
|
|
snooped_entries = [entry for entry in cache_table if entry.state == wpan.ADDRESS_CACHE_ENTRY_STATE_SNOOPED]
|
|
verify(len(snooped_entries) == MAX_SNOOPED_NON_EVICTABLE)
|
|
|
|
for entry in snooped_entries:
|
|
verify(entry.rloc16 == c2_rloc)
|
|
verify(entry.state == wpan.ADDRESS_CACHE_ENTRY_STATE_SNOOPED)
|
|
verify(entry.can_evict() == False)
|
|
verify(entry.timeout > 0)
|
|
|
|
# Now send from r1 to c2, some of the snooped entries would be used,
|
|
# others would go through full address query.
|
|
|
|
for num in range(NUM_ADDRESSES):
|
|
sender = r1.prepare_tx((r1_address, PORT), (PREFIX + "c2:" + str(num), PORT), "hi c2 from r1", 1)
|
|
recver = c2.prepare_rx(sender)
|
|
wpan.Node.perform_async_tx_rx()
|
|
verify(sender.was_successful)
|
|
verify(recver.was_successful)
|
|
|
|
cache_table = wpan.parse_address_cache_table_result(r1.get(wpan.WPAN_THREAD_ADDRESS_CACHE_TABLE))
|
|
|
|
verify(len(cache_table) == MAX_CACHE_ENTRIES)
|
|
|
|
# Verify that c2 entries are now at the top of cache list.
|
|
|
|
for index in range(NUM_ADDRESSES):
|
|
verify(cache_table[index].address == PREFIX + "c2:" + str(NUM_ADDRESSES - index - 1))
|
|
verify(cache_table[index].rloc16 == c2_rloc)
|
|
verify(cache_table[index].state == wpan.ADDRESS_CACHE_ENTRY_STATE_CACHED)
|
|
|
|
# -----------------------------------------------------------------------------------------------------------------------
|
|
# Test finished
|
|
|
|
wpan.Node.finalize_all_nodes()
|
|
|
|
print('\'{}\' passed.'.format(test_name))
|