unplugged-system/external/rappor/analysis/R/ngrams_simulation.R

272 lines
9.8 KiB
R
Executable File

# Copyright 2014 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Authors: vpihur@google.com (Vasyl Pihur) and fanti@google.com (Giulia Fanti)
#
# Tools used to simulate sending partial ngrams to the server for estimating the
# dictionary of terms over which we want to learn a distribution. This
# mostly contains functions that aid in the generation of synthetic data.
library(RUnit)
library(parallel)
source("analysis/R/encode.R")
source("analysis/R/decode.R")
source("analysis/R/simulation.R")
source("analysis/R/association.R")
source("analysis/R/decode_ngrams.R")
# The alphabet is the set of all possible characters that will appear in a
# string. Here we use the English alphabet, but one might want to include
# numbers or punctuation marks.
alphabet <- letters
GenerateCandidates <- function(alphabet, ngram_size = 2) {
# Draws a random string for each individual in the
# population from distribution.
#
# Args:
# N: Number of individuals in the population
# num_strs: Number of strings from which to draw strings
# str_len: Length of each string
#
# Returns:
# Vector of strings for each individual in the population
cands <- do.call(expand.grid, lapply(seq(ngram_size), function(i) alphabet))
apply(cands, 1, function(x) paste0(x, collapse = ""))
}
GenerateString <- function(n) {
# Generates a string of a given length from the alphabet.
#
# Args:
# n: Number of characters in the string
#
# Returns:
# String of length n
paste0(sample(alphabet, n, replace = TRUE), collapse = "")
}
GeneratePopulation <- function(N, num_strs, str_len = 10,
distribution = 1) {
# Generates a string for each individual in the population from distribution.
#
# Args:
# N: Number of individuals in the population
# num_strs: Number of strings from which to draw strings
# str_len: Length of each string
# distribution: which type of distribution to use
# 1: Zipfian
# 2: Geometric (exponential)
# 3: Step function
#
# Returns:
# Vector of strings for each individual in the population
strs <- sapply(1:num_strs, function(i) GenerateString(str_len))
if (distribution == 1) {
# Zipfian-ish distribution
prob <- (1:num_strs)^20
prob <- prob / sum(prob) + 0.001
prob <- prob / sum(prob)
} else if (distribution == 2) {
# Geometric distribution (discrete approximation to exponential)
p <- 0.3
prob <- p * (1 - p)^(1:num_strs - 1)
prob <- prob / sum(prob)
} else {
# Uniform
prob <- rep(1 / num_strs, num_strs)
}
sample(strs, N, replace = TRUE, prob = prob)
}
SelectNGrams <- function(str, num_ngrams, size, max_str_len = 6) {
# Selects which ngrams each user will encode and then submit.
#
# Args:
# str: String from which ngram is built.
# num_ngrams: Number of ngrams to choose
# size: Number of characters per ngram
# max_str_len: Maximum number of characters in the string
#
# Returns:
# List of each individual's ngrams and which positions the ngrams
# were drawn from.
start <- sort(sample(seq(1, max_str_len, by = size), num_ngrams))
ngrams <- mapply(function(x, y, str) substr(str, x, y),
start, start + size - 1,
MoreArgs = list(str = str))
list(ngrams = ngrams, starts = start)
}
UpdateMapWithCandidates <- function(str_candidates, sim, params) {
# Generates a new map based on the returned candidates.
# Normally this would be created on the spot by having the
# aggregator hash the string candidates. But since we already have
# the map from simulation, we'll just choose the appropriate
# column
#
# Arguments:
# str_candidates: Vector of string candidates
# sim: Simulation object containing the original map
# params: RAPPOR parameter list
k <- params$k
h <- params$h
m <- params$m
# First add the real candidates to the map
valid_cands <- intersect(str_candidates, colnames(sim$full_map$map_by_cohort[[1]]))
updated_map <- sim$full_map
updated_map$map_by_cohort <- lapply(1:m, function(i) {
sim$full_map$map_by_cohort[[i]][, valid_cands]
})
# Now add the false positives (we can just draw random strings for
# these since they didn't appear in the original dataset anyway)
new_cands <- setdiff(str_candidates, colnames(sim$full_map$map_by_cohort[[1]]))
M <- length(new_cands)
if (M > 0) {
for (i in 1:m) {
ones <- sample(1:k, M * h, replace = TRUE)
cols <- rep(1:M, each = h)
strs <- c(sort(valid_cands), new_cands)
updated_map$map_by_cohort[[i]] <-
do.call(cBind, list(updated_map$map_by_cohort[[i]],
sparseMatrix(ones, cols, dims = c(k, M))))
colnames(updated_map$map_by_cohort[[i]]) <- strs
}
}
if (class(updated_map$map_by_cohort[[1]]) == "logical") {
updated_map$all_cohorts_map <- unlist(updated_map$map_by_cohort)
updated_map$all_cohorts_map <- Matrix(updated_map$all_cohorts_map, sparse = TRUE)
colnames(updated_map$all_cohorts_map) <- c(valid_cands, new_cands)
} else {
updated_map$all_cohorts_map <- do.call("rBind", updated_map$map_by_cohort)
}
updated_map
}
SimulateNGrams <- function(N, ngram_params, str_len, num_strs = 10,
alphabet, params, distribution = 1) {
# Simulates the creation and encoding of ngrams for each individual.
#
# Args:
# N: Number of individuals in the population
# ngram_params: Parameters about ngram size, etc.
# str_len: Length of each string
# num_strs: NUmber of strings in the dictionary
# alphabet: Alphabet used to generate strings
# params: RAPPOR parameters, like noise and cohorts
#
# Returns:
# List containing all the information needed for estimating and
# verifying the results.
# Get the list of strings for each user
strs <- GeneratePopulation(N, num_strs = num_strs,
str_len = str_len,
distribution)
# Split them into ngrams and encode
ngram <- lapply(strs, function(i)
SelectNGrams(i,
num_ngrams = ngram_params$num_ngrams_collected,
size = ngram_params$ngram_size,
max_str_len = str_len))
cands <- GenerateCandidates(alphabet, ngram_params$ngram_size)
map <- CreateMap(cands, params, FALSE)
cohorts <- sample(1:params$m, N, replace = TRUE)
g <- sapply(ngram, function(x) paste(x$starts, sep = "_",
collapse = "_"))
ug <- sort(unique(g))
pairings <- t(sapply(ug, function(x)
sapply(strsplit(x, "_"), function(y) as.numeric(y))))
inds <- lapply(1:length(ug), function(i) ind <- which(g == ug[i]))
reports <- lapply(1:length(ug), function(k) {
# Generate the ngram reports
lapply(1:ngram_params$num_ngrams_collected, function(x) {
EncodeAll(sapply(inds[[k]], function(j) ngram[[j]]$ngrams[x]),
cohorts[inds[[k]]], map$map_by_cohort, params)})
})
cat("Encoded the ngrams.\n")
# Now generate the full string reports
full_map <- CreateMap(sort(unique(strs)), params, FALSE)
full_reports <- EncodeAll(strs, cohorts, full_map$map_by_cohort, params)
list(reports = reports, cohorts = cohorts, ngram = ngram, map = map,
strs = strs, pairings = pairings, inds = inds, cands = cands,
full_reports = full_reports, full_map = full_map)
}
EstimateDictionaryTrial <- function(N, str_len, num_strs,
params, ngram_params,
distribution = 3) {
# Runs a single trial for simulation. Generates simulated reports,
# decodes them, and returns the result.
#
# Arguments:
# N: Number of users to simulation
# str_len: The length of strings to estimate
# num_strs: The number of strings in the dictionary
# params: RAPPOR parameter list
# ngram_params: Parameters related to the size of ngrams
# distribution: Tells what kind of distribution to use:
# 1: Zipfian
# 2: Geometric
# 3: Uniform (default)
#
# Returns:
# List with recovered and true marginals.
# We call the needed libraries here in order to make them available when this
# function gets called by BorgApply. Otherwise, they do not get included.
library(glmnet)
library(parallel)
sim <- SimulateNGrams(N, ngram_params, str_len, num_strs = num_strs,
alphabet, params, distribution)
res <- EstimateDictionary(sim, N, ngram_params, params)
str_candidates <- res$found_candidates
pairwise_candidates <- res$pairwise_candidates
if (length(str_candidates) == 0) {
return (NULL)
}
updated_map <- UpdateMapWithCandidates(str_candidates, sim, params)
# Compute the marginal for this new set of strings
variable_counts <- ComputeCounts(sim$full_reports, sim$cohorts, params)
# Our dictionary estimate
marginal <- Decode(variable_counts, updated_map$all_cohorts_map, params)$fit
# Estimate given full dictionary knowledge
marginal_full <- Decode(variable_counts, sim$full_map$all_cohorts_map, params)$fit
# The true (sampled) data distribution
truth <- sort(table(sim$strs)) / N
list(marginal = marginal, marginal_full = marginal_full,
truth = truth, pairwise_candidates = pairwise_candidates)
}