unplugged-system/external/rappor/analysis/cpp/find_cliques.cc

547 lines
15 KiB
C++

// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <assert.h>
#include <stdarg.h> // va_list, etc.
#include <stdio.h>
#include <stdint.h> // uint16_t
#include <string>
// Using unordered_{set,map} and not the older set,map since they only require
// implementing equality, not comparison. They require a C++ 11 compiler.
#include <unordered_map>
#include <unordered_set>
#include <vector>
// find_cliques.cc: Find k-cliques in a k-partite graph. This is part of the
// RAPPOR analysis for unknown dictionaries.
//
// A clique is a complete subgraph; it has (|N| choose 2) edges.
//
// This does the same computation as FindFeasibleStrings in
// analysis/R/decode_ngrams.R.
// Graph format:
//
// num_partitions 3
// 0.ab 1.bc
// 0.ab 2.de
//
// See WriteKPartiteGraph in analysis/R/decode_ngrams.R for details.
//
// PERFORMANCE
//
// The code is optimized in terms of memory locality. Nodes are 4 bytes; Edges
// are 8 bytes; PathArray is a contiguous block of memory.
using std::unordered_map;
using std::unordered_set;
using std::string;
using std::vector;
// TODO: log to stderr. Add VERBOSE logging.
void log(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
vprintf(fmt, args);
va_end(args);
printf("\n");
}
// Nodes and Edges are value types. A node is 4 bytes. 2^16 = 65536
// partitions is plenty.
struct Node {
uint16_t partition;
// Right now we support bigrams. We may want to support trigrams or
// arbitrary n-grams, although there will be a performance hit.
char ngram[2];
// for debugging only
string ToString() const {
char buf[100];
snprintf(buf, sizeof(buf), "%d.%c%c", partition, ngram[0], ngram[1]);
return string(buf); // copies buf
}
};
// Implement hash and equality functors for unordered_set.
struct NodeHash {
int operator() (const Node& node) const {
// DJB hash: http://floodyberry.com/noncryptohashzoo/DJB.html
int h = 5381;
h = (h << 5) + h + node.partition;
h = (h << 5) + h + node.ngram[0];
h = (h << 5) + h + node.ngram[1];
// log("hash %s = %d", node.ToString().c_str(), h);
return h;
}
};
struct NodeEq {
bool operator() (const Node& x, const Node& y) const {
// TODO: optimize to 4 byte comparison with memcmp(&x, &y, sizeof(Node))?
// NOTE: x.ngram == y.ngram is wrong; it compares pointers!
return x.partition == y.partition &&
x.ngram[0] == y.ngram[0] &&
x.ngram[1] == y.ngram[1];
}
};
// This is an undirected edge, but we still call them "left" and "right"
// because the partition of "left" must be less than that of "right".
//
// NOTE: To reduce the size further, we could have a NodePool, and then typedef
// uint16_t NodeId. Edge and Path can both use a 2 byte NodeId instead of a 4
// byte Node. ToString() can take the NodePool for pretty printing.
//
// This will be better for the EnumeratePaths stage, but it will be
// worse for the CheckForCliques stage (doing the lookups may reduce memory
// locality).
struct Edge {
Node left;
Node right;
// for debugging only
string ToString() const {
return left.ToString() + " - " + right.ToString();
}
};
// Implement hash and equality functors for unordered_set.
struct EdgeHash {
int operator() (const Edge& edge) const {
// DJB hash
int h = 5381;
h = (h << 5) + h + NodeHash()(edge.left);
h = (h << 5) + h + NodeHash()(edge.right);
return h;
}
};
struct EdgeEq {
bool operator() (const Edge& x, const Edge& y) const {
// TODO: optimize to 8 byte comparison with memcmp(&x, &y, sizeof(Edge))?
// This is in the inner loop for removing cadidates.
return NodeEq()(x.left, y.left) && NodeEq()(x.right, y.right);
}
};
typedef unordered_set<Edge, EdgeHash, EdgeEq> EdgeSet;
// The full graph. It is k-partite, which can be seen by the node naming
// convention.
struct Graph {
int num_partitions;
vector<Edge> edges;
};
// Given a Node, look up Nodes in the adjacent partition that it is connected
// to.
typedef unordered_map<Node, vector<Node>, NodeHash, NodeEq> Adjacency;
// for debugging only
string AdjacencyToString(const Adjacency& a) {
string s;
for (auto& kv : a) {
s += kv.first.ToString();
s += " : <";
for (auto& node : kv.second) {
s += node.ToString();
s += " ";
}
s += "> ";
}
return s;
}
// Subgraph where only edges between adjacent partitions are included.
//
// We have k partitions, numbered 0 to k-1. This means we have k-1 "columns",
// numbered 0 to k-2.
//
// A column is subgraph containing edges between adjacent partitions of the
// k-partite graph.
//
// The ColumnSubgraph class represents ALL columns (and is itself a subgraph).
class ColumnSubgraph {
public:
explicit ColumnSubgraph(int num_columns)
: num_columns_(num_columns),
adj_list_(new Adjacency[num_columns]) {
}
~ColumnSubgraph() {
delete[] adj_list_;
}
void AddEdge(Edge e) {
int part = e.left.partition;
assert(part < num_columns_);
adj_list_[part][e.left].push_back(e.right);
}
void GetColumn(int part, vector<Edge>* out) const {
const Adjacency& a = adj_list_[part];
for (auto& kv : a) {
for (auto& right : kv.second) {
Edge e;
e.left = kv.first;
e.right = right;
out->push_back(e);
}
}
}
// Get the nodes in the next partition adjacent to node N
void GetAdjacentNodes(Node n, vector<Node>* out) const {
int part = n.partition;
const Adjacency& a = adj_list_[part];
// log("GetAdjacentNodes %s, part %d", n.ToString().c_str(), part);
auto it = a.find(n);
if (it == a.end()) {
return;
}
// TODO: it would be better not to copy these.
for (auto node : it->second) {
out->push_back(node);
}
}
// accessor
int num_columns() const { return num_columns_; }
// for debugging only
string ToString() const {
string s("[\n");
char buf[100];
for (int i = 0; i < num_columns_; ++i) {
const Adjacency& a = adj_list_[i];
snprintf(buf, sizeof(buf), "%d (%zu) ", i, a.size());
s += string(buf);
s += AdjacencyToString(a);
s += "\n";
}
s += " ]";
return s;
}
private:
int num_columns_;
// Adjacency list. An array of k-1 maps.
// Lookup goes from nodes in partition i to nodes in partition i+1.
Adjacency* adj_list_;
};
void BuildColumnSubgraph(const Graph& g, ColumnSubgraph* a) {
for (const auto& e : g.edges) {
if (e.left.partition + 1 == e.right.partition) {
a->AddEdge(e);
}
}
}
// A 2D array of paths. It's an array because all paths are the same length.
// We use a single vector<> to represent it, to reduce memory allocation.
class PathArray {
public:
explicit PathArray(int path_length)
: path_length_(path_length),
num_paths_(0) {
}
void AddEdgeAsPath(Edge e) {
// Can only initialize PathArray with edges when path length is 2
assert(path_length_ == 2);
nodes_.push_back(e.left);
nodes_.push_back(e.right);
num_paths_++;
}
Node LastNodeInPath(int index) const {
int start = index * path_length_;
return nodes_[start + path_length_ -1];
}
// Pretty print a single path in this array. For debugging only.
string PathDebugString(int index) const {
string s("[ ");
for (int i = index * path_length_; i < (index + 1) * path_length_; ++i) {
s += nodes_[i].ToString();
s += " - ";
}
s += " ]";
return s;
}
// Print the word implied by the path.
string PathAsString(int index) const {
string s;
for (int i = index * path_length_; i < (index + 1) * path_length_; ++i) {
s += nodes_[i].ngram[0];
s += nodes_[i].ngram[1];
}
return s;
}
const Node* GetPathStart(int index) const {
return &nodes_[index * path_length_];
}
void AddPath(const Node* start, int prefix_length, Node right) {
// Make sure it is one less
assert(prefix_length == path_length_-1);
// TODO: replace with memcpy? Is it faster?
for (int i = 0; i < prefix_length; ++i) {
nodes_.push_back(start[i]);
}
nodes_.push_back(right);
num_paths_++;
}
// accessors
int num_paths() const { return num_paths_; }
int path_length() const { return path_length_; }
private:
int path_length_;
int num_paths_;
vector<Node> nodes_;
};
// Given a PathArray of length i, produce one of length i+1.
//
// NOTE: It would be more efficient to filter 'right_nodes' here, and only add
// a new path if it forms a "partial clique" (at step i+1). This amounts to
// doing the membership tests in edge_set for each "column", instead of waiting
// until the end.
//
// This will reduce the exponential blowup of EnumeratePaths (although it
// doesn't change the worst case).
void EnumerateStep(
const ColumnSubgraph& subgraph, const PathArray& in, PathArray* out) {
int prefix_length = in.path_length();
for (int i = 0; i < in.num_paths(); ++i) {
// log("col %d, path %d", col, i);
// last node in every path
Node last_node = in.LastNodeInPath(i);
// TODO: avoid copying of nodes?
vector<Node> right_nodes;
subgraph.GetAdjacentNodes(last_node, &right_nodes);
// Get a pointer to the start of the path
const Node* start = in.GetPathStart(i);
for (Node right : right_nodes) {
out->AddPath(start, prefix_length, right);
}
}
}
// Given a the column subgraph, produce an array of all possible paths of
// length k. These will be subsequently checked to see if they are cliques.
void EnumeratePaths(
const ColumnSubgraph& subgraph, PathArray* candidates) {
// edges between partitions 0 and 1, a "column" of edges
vector<Edge> edges0;
subgraph.GetColumn(0, &edges0);
int num_columns = subgraph.num_columns();
PathArray** arrays = new PathArray*[num_columns];
// Initialize using column 0.
int path_length = 2;
arrays[0] = new PathArray(path_length);
for (auto& e : edges0) {
arrays[0]->AddEdgeAsPath(e);
}
// Iterate over columns 1 to k-1.
for (int i = 1; i < num_columns; ++i) {
log("--- Column %d", i);
path_length++;
if (i == num_columns - 1) {
arrays[i] = candidates; // final result, from output argument!
} else {
arrays[i] = new PathArray(path_length); // intermediate result
}
PathArray* in = arrays[i - 1];
PathArray* out = arrays[i];
EnumerateStep(subgraph, *in, out);
log("in num paths: %d", in->num_paths());
log("out num paths: %d", out->num_paths());
// We create an destroy a PathArray on every iteration. On each
// iteration, the PathArray grows both rows and columns, so it's hard to
// avoid this.
delete in;
}
}
// Inserts the path number 'p' in incomplete if the path is not a complete
// subgraph.
bool IsClique(const Node* path, int k, const EdgeSet& edge_set) {
// We need to ensure that (k choose 2) edges are all in edge_set.
// We already know that k-1 of them are present, so we need to check (k
// choose 2) - (k-1).
for (int i = 0; i < k; ++i) {
for (int j = i + 1; j < k; ++j) {
if (i + 1 == j) {
// Already know this edge exists. NOTE: does this even speed things
// up? It's a branch in the middle of an inner loop.
continue;
}
Edge e;
e.left = path[i];
e.right = path[j];
if (edge_set.find(e) == edge_set.end()) {
log("Didn't find edge %s", e.ToString().c_str());
return false;
}
}
}
return true;
}
void CheckForCliques(const PathArray& candidates,
const EdgeSet& edge_set,
unordered_set<int>* incomplete) {
int k = candidates.path_length();
for (int p = 0; p < candidates.num_paths(); ++p) {
const Node* path = candidates.GetPathStart(p);
// NOTE: We could run many IsClique invocations in parallel. It reads from
// edge_set. The different 'incomplete' sets can be merged.
if (!IsClique(path, k, edge_set)) {
incomplete->insert(p);
return; // IMPORTANT: early return
}
}
}
// Parse text on stdin into a graph, and do some validation.
bool ParseGraph(Graph* g, EdgeSet* edge_set) {
// NOTE: It's possible that there NO k-cliques.
int ret = fscanf(stdin, "num_partitions %d\n", &(g->num_partitions));
if (ret != 1) {
log("ERROR: Expected 'num_partitions <integer>'\n");
return false;
}
log("num_partitions = %d", g->num_partitions);
int ngram_size;
ret = fscanf(stdin, "ngram_size %d\n", &ngram_size);
if (ret != 1) {
log("ERROR: Expected 'ngram_size <integer>'\n");
return false;
}
if (ngram_size != 2) {
log("ERROR: Only bigrams are currently supported (got n = %d)\n", ngram_size);
return false;
}
int num_edges = 0;
while (true) {
int part1, part2;
char c1, c2, c3, c4;
int ret = fscanf(stdin, "edge %d.%c%c %d.%c%c\n",
&part1, &c1, &c2, &part2, &c3, &c4);
if (ret == EOF) {
log("Read %d edges", num_edges);
break;
}
if (ret != 6) {
log("ERROR: Expected 6 values for edge, got %d", ret);
return false;
}
// log("%d -> %d", part1, part2);
if (part1 >= part2) {
log("ERROR: edge in wrong order (%d >= %d)", part1, part2);
return false;
}
Edge e;
e.left.partition = part1;
e.left.ngram[0] = c1;
e.left.ngram[1] = c2;
e.right.partition = part2;
e.right.ngram[0] = c3;
e.right.ngram[1] = c4;
g->edges.push_back(e);
// For lookup in CheckForCliques
edge_set->insert(e);
num_edges++;
}
return true;
}
int main() {
log("sizeof(Node) = %zu", sizeof(Node));
log("sizeof(Edge) = %zu", sizeof(Edge));
// This should be true no matter what platform we use, e.g. since we use
// uint16_t.
assert(sizeof(Node) == 4);
assert(sizeof(Edge) == 8);
Graph g;
EdgeSet edge_set;
log("ParseGraph");
if (!ParseGraph(&g, &edge_set)) {
log("Fatal error parsing graph.");
return 1;
}
// If there are k partitions, there are k-1 edge "columns".
ColumnSubgraph subgraph(g.num_partitions - 1);
log("BuildColumnSubgraph");
BuildColumnSubgraph(g, &subgraph);
log("%s", subgraph.ToString().c_str());
// PathArray candidates(num_partitions);
log("EnumeratePaths");
PathArray candidates(g.num_partitions);
EnumeratePaths(subgraph, &candidates);
log("EnumeratePaths produced %d candidates", candidates.num_paths());
for (int i = 0; i < candidates.num_paths(); ++i) {
log("%d %s", i, candidates.PathDebugString(i).c_str());
}
// array of indices of incomplete paths, i.e. paths that are not complete
// subgraphs
log("CheckForCliques");
unordered_set<int> incomplete;
CheckForCliques(candidates, edge_set, &incomplete);
for (auto p : incomplete) {
log("Path %d is incomplete", p);
}
log("Found the following cliques/words:");
// Now print all the complete ones to stdout
for (int i = 0; i < candidates.num_paths(); i++) {
if (incomplete.find(i) == incomplete.end()) {
log("%d %s", i, candidates.PathAsString(i).c_str());
}
}
log("Done");
}