386 lines
14 KiB
C++
386 lines
14 KiB
C++
/*
|
|
* Copyright (C) 2023 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "TfLiteMotionPredictor"
|
|
#include <input/TfLiteMotionPredictor.h>
|
|
|
|
#include <fcntl.h>
|
|
#include <sys/mman.h>
|
|
#include <unistd.h>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <span>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include <android-base/file.h>
|
|
#include <android-base/logging.h>
|
|
#include <android-base/mapped_file.h>
|
|
#define ATRACE_TAG ATRACE_TAG_INPUT
|
|
#include <cutils/trace.h>
|
|
#include <log/log.h>
|
|
|
|
#include "tensorflow/lite/core/api/error_reporter.h"
|
|
#include "tensorflow/lite/core/api/op_resolver.h"
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/builtin_op_kernels.h"
|
|
#include "tensorflow/lite/model.h"
|
|
#include "tensorflow/lite/mutable_op_resolver.h"
|
|
|
|
namespace android {
|
|
namespace {
|
|
|
|
constexpr char SIGNATURE_KEY[] = "serving_default";
|
|
|
|
// Input tensor names.
|
|
constexpr char INPUT_R[] = "r";
|
|
constexpr char INPUT_PHI[] = "phi";
|
|
constexpr char INPUT_PRESSURE[] = "pressure";
|
|
constexpr char INPUT_TILT[] = "tilt";
|
|
constexpr char INPUT_ORIENTATION[] = "orientation";
|
|
|
|
// Output tensor names.
|
|
constexpr char OUTPUT_R[] = "r";
|
|
constexpr char OUTPUT_PHI[] = "phi";
|
|
constexpr char OUTPUT_PRESSURE[] = "pressure";
|
|
|
|
// Ideally, we would just use std::filesystem::exists here, but it requires libc++fs, which causes
|
|
// build issues in other parts of the system.
|
|
#if defined(__ANDROID__)
|
|
bool fileExists(const char* filename) {
|
|
struct stat buffer;
|
|
return stat(filename, &buffer) == 0;
|
|
}
|
|
#endif
|
|
|
|
std::string getModelPath() {
|
|
#if defined(__ANDROID__)
|
|
static const char* oemModel = "/vendor/etc/motion_predictor_model.fb";
|
|
if (fileExists(oemModel)) {
|
|
return oemModel;
|
|
}
|
|
return "/system/etc/motion_predictor_model.fb";
|
|
#else
|
|
return base::GetExecutableDirectory() + "/motion_predictor_model.fb";
|
|
#endif
|
|
}
|
|
|
|
// A TFLite ErrorReporter that logs to logcat.
|
|
class LoggingErrorReporter : public tflite::ErrorReporter {
|
|
public:
|
|
int Report(const char* format, va_list args) override {
|
|
return LOG_PRI_VA(ANDROID_LOG_ERROR, LOG_TAG, format, args);
|
|
}
|
|
};
|
|
|
|
// Searches a runner for an input tensor.
|
|
TfLiteTensor* findInputTensor(const char* name, tflite::SignatureRunner* runner) {
|
|
TfLiteTensor* tensor = runner->input_tensor(name);
|
|
LOG_ALWAYS_FATAL_IF(!tensor, "Failed to find input tensor '%s'", name);
|
|
return tensor;
|
|
}
|
|
|
|
// Searches a runner for an output tensor.
|
|
const TfLiteTensor* findOutputTensor(const char* name, tflite::SignatureRunner* runner) {
|
|
const TfLiteTensor* tensor = runner->output_tensor(name);
|
|
LOG_ALWAYS_FATAL_IF(!tensor, "Failed to find output tensor '%s'", name);
|
|
return tensor;
|
|
}
|
|
|
|
// Returns the buffer for a tensor of type T.
|
|
template <typename T>
|
|
std::span<T> getTensorBuffer(typename std::conditional<std::is_const<T>::value, const TfLiteTensor*,
|
|
TfLiteTensor*>::type tensor) {
|
|
LOG_ALWAYS_FATAL_IF(!tensor);
|
|
|
|
const TfLiteType type = tflite::typeToTfLiteType<typename std::remove_cv<T>::type>();
|
|
LOG_ALWAYS_FATAL_IF(tensor->type != type, "Unexpected type for '%s' tensor: %s (expected %s)",
|
|
tensor->name, TfLiteTypeGetName(tensor->type), TfLiteTypeGetName(type));
|
|
|
|
LOG_ALWAYS_FATAL_IF(!tensor->data.data);
|
|
return {reinterpret_cast<T*>(tensor->data.data),
|
|
static_cast<typename std::span<T>::index_type>(tensor->bytes / sizeof(T))};
|
|
}
|
|
|
|
// Verifies that a tensor exists and has an underlying buffer of type T.
|
|
template <typename T>
|
|
void checkTensor(const TfLiteTensor* tensor) {
|
|
LOG_ALWAYS_FATAL_IF(!tensor);
|
|
|
|
const auto buffer = getTensorBuffer<const T>(tensor);
|
|
LOG_ALWAYS_FATAL_IF(buffer.empty(), "No buffer for tensor '%s'", tensor->name);
|
|
}
|
|
|
|
std::unique_ptr<tflite::OpResolver> createOpResolver() {
|
|
auto resolver = std::make_unique<tflite::MutableOpResolver>();
|
|
resolver->AddBuiltin(::tflite::BuiltinOperator_CONCATENATION,
|
|
::tflite::ops::builtin::Register_CONCATENATION());
|
|
resolver->AddBuiltin(::tflite::BuiltinOperator_FULLY_CONNECTED,
|
|
::tflite::ops::builtin::Register_FULLY_CONNECTED());
|
|
return resolver;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TfLiteMotionPredictorBuffers::TfLiteMotionPredictorBuffers(size_t inputLength)
|
|
: mInputR(inputLength, 0),
|
|
mInputPhi(inputLength, 0),
|
|
mInputPressure(inputLength, 0),
|
|
mInputTilt(inputLength, 0),
|
|
mInputOrientation(inputLength, 0) {
|
|
LOG_ALWAYS_FATAL_IF(inputLength == 0, "Buffer input size must be greater than 0");
|
|
}
|
|
|
|
void TfLiteMotionPredictorBuffers::reset() {
|
|
std::fill(mInputR.begin(), mInputR.end(), 0);
|
|
std::fill(mInputPhi.begin(), mInputPhi.end(), 0);
|
|
std::fill(mInputPressure.begin(), mInputPressure.end(), 0);
|
|
std::fill(mInputTilt.begin(), mInputTilt.end(), 0);
|
|
std::fill(mInputOrientation.begin(), mInputOrientation.end(), 0);
|
|
mAxisFrom.reset();
|
|
mAxisTo.reset();
|
|
}
|
|
|
|
void TfLiteMotionPredictorBuffers::copyTo(TfLiteMotionPredictorModel& model) const {
|
|
LOG_ALWAYS_FATAL_IF(mInputR.size() != model.inputLength(),
|
|
"Buffer length %zu doesn't match model input length %zu", mInputR.size(),
|
|
model.inputLength());
|
|
LOG_ALWAYS_FATAL_IF(!isReady(), "Buffers are incomplete");
|
|
|
|
std::copy(mInputR.begin(), mInputR.end(), model.inputR().begin());
|
|
std::copy(mInputPhi.begin(), mInputPhi.end(), model.inputPhi().begin());
|
|
std::copy(mInputPressure.begin(), mInputPressure.end(), model.inputPressure().begin());
|
|
std::copy(mInputTilt.begin(), mInputTilt.end(), model.inputTilt().begin());
|
|
std::copy(mInputOrientation.begin(), mInputOrientation.end(), model.inputOrientation().begin());
|
|
}
|
|
|
|
void TfLiteMotionPredictorBuffers::pushSample(int64_t timestamp,
|
|
const TfLiteMotionPredictorSample sample) {
|
|
// Convert the sample (x, y) into polar (r, φ) based on a reference axis
|
|
// from the preceding two points (mAxisFrom/mAxisTo).
|
|
|
|
mTimestamp = timestamp;
|
|
|
|
if (!mAxisTo) { // First point.
|
|
mAxisTo = sample;
|
|
return;
|
|
}
|
|
|
|
// Vector from the last point to the current sample point.
|
|
const TfLiteMotionPredictorSample::Point v = sample.position - mAxisTo->position;
|
|
|
|
const float r = std::hypot(v.x, v.y);
|
|
float phi = 0;
|
|
float orientation = 0;
|
|
|
|
// Ignore the sample if there is no movement. These samples can occur when there's change to a
|
|
// property other than the coordinates and pollute the input to the model.
|
|
if (r == 0) {
|
|
return;
|
|
}
|
|
|
|
if (!mAxisFrom) { // Second point.
|
|
// We can only determine the distance from the first point, and not any
|
|
// angle. However, if the second point forms an axis, the orientation can
|
|
// be transformed relative to that axis.
|
|
const float axisPhi = std::atan2(v.y, v.x);
|
|
// A MotionEvent's orientation is measured clockwise from the vertical
|
|
// axis, but axisPhi is measured counter-clockwise from the horizontal
|
|
// axis.
|
|
orientation = M_PI_2 - sample.orientation - axisPhi;
|
|
} else {
|
|
const TfLiteMotionPredictorSample::Point axis = mAxisTo->position - mAxisFrom->position;
|
|
const float axisPhi = std::atan2(axis.y, axis.x);
|
|
phi = std::atan2(v.y, v.x) - axisPhi;
|
|
|
|
if (std::hypot(axis.x, axis.y) > 0) {
|
|
// See note above.
|
|
orientation = M_PI_2 - sample.orientation - axisPhi;
|
|
}
|
|
}
|
|
|
|
// Update the axis for the next point.
|
|
mAxisFrom = mAxisTo;
|
|
mAxisTo = sample;
|
|
|
|
// Push the current sample onto the end of the input buffers.
|
|
mInputR.pushBack(r);
|
|
mInputPhi.pushBack(phi);
|
|
mInputPressure.pushBack(sample.pressure);
|
|
mInputTilt.pushBack(sample.tilt);
|
|
mInputOrientation.pushBack(orientation);
|
|
}
|
|
|
|
std::unique_ptr<TfLiteMotionPredictorModel> TfLiteMotionPredictorModel::create() {
|
|
const std::string modelPath = getModelPath();
|
|
android::base::unique_fd fd(open(modelPath.c_str(), O_RDONLY));
|
|
if (fd == -1) {
|
|
PLOG(FATAL) << "Could not read model from " << modelPath;
|
|
}
|
|
|
|
const off_t fdSize = lseek(fd, 0, SEEK_END);
|
|
if (fdSize == -1) {
|
|
PLOG(FATAL) << "Failed to determine file size";
|
|
}
|
|
|
|
std::unique_ptr<android::base::MappedFile> modelBuffer =
|
|
android::base::MappedFile::FromFd(fd, /*offset=*/0, fdSize, PROT_READ);
|
|
if (!modelBuffer) {
|
|
PLOG(FATAL) << "Failed to mmap model";
|
|
}
|
|
|
|
return std::unique_ptr<TfLiteMotionPredictorModel>(
|
|
new TfLiteMotionPredictorModel(std::move(modelBuffer)));
|
|
}
|
|
|
|
TfLiteMotionPredictorModel::TfLiteMotionPredictorModel(
|
|
std::unique_ptr<android::base::MappedFile> model)
|
|
: mFlatBuffer(std::move(model)) {
|
|
CHECK(mFlatBuffer);
|
|
mErrorReporter = std::make_unique<LoggingErrorReporter>();
|
|
mModel = tflite::FlatBufferModel::VerifyAndBuildFromBuffer(mFlatBuffer->data(),
|
|
mFlatBuffer->size(),
|
|
/*extra_verifier=*/nullptr,
|
|
mErrorReporter.get());
|
|
LOG_ALWAYS_FATAL_IF(!mModel);
|
|
|
|
auto resolver = createOpResolver();
|
|
tflite::InterpreterBuilder builder(*mModel, *resolver);
|
|
|
|
if (builder(&mInterpreter) != kTfLiteOk || !mInterpreter) {
|
|
LOG_ALWAYS_FATAL("Failed to build interpreter");
|
|
}
|
|
|
|
mRunner = mInterpreter->GetSignatureRunner(SIGNATURE_KEY);
|
|
LOG_ALWAYS_FATAL_IF(!mRunner, "Failed to find runner for signature '%s'", SIGNATURE_KEY);
|
|
|
|
allocateTensors();
|
|
}
|
|
|
|
TfLiteMotionPredictorModel::~TfLiteMotionPredictorModel() {}
|
|
|
|
void TfLiteMotionPredictorModel::allocateTensors() {
|
|
if (mRunner->AllocateTensors() != kTfLiteOk) {
|
|
LOG_ALWAYS_FATAL("Failed to allocate tensors");
|
|
}
|
|
|
|
attachInputTensors();
|
|
attachOutputTensors();
|
|
|
|
checkTensor<float>(mInputR);
|
|
checkTensor<float>(mInputPhi);
|
|
checkTensor<float>(mInputPressure);
|
|
checkTensor<float>(mInputTilt);
|
|
checkTensor<float>(mInputOrientation);
|
|
checkTensor<float>(mOutputR);
|
|
checkTensor<float>(mOutputPhi);
|
|
checkTensor<float>(mOutputPressure);
|
|
|
|
const auto checkInputTensorSize = [this](const TfLiteTensor* tensor) {
|
|
const size_t size = getTensorBuffer<const float>(tensor).size();
|
|
LOG_ALWAYS_FATAL_IF(size != inputLength(),
|
|
"Tensor '%s' length %zu does not match input length %zu", tensor->name,
|
|
size, inputLength());
|
|
};
|
|
|
|
checkInputTensorSize(mInputR);
|
|
checkInputTensorSize(mInputPhi);
|
|
checkInputTensorSize(mInputPressure);
|
|
checkInputTensorSize(mInputTilt);
|
|
checkInputTensorSize(mInputOrientation);
|
|
}
|
|
|
|
void TfLiteMotionPredictorModel::attachInputTensors() {
|
|
mInputR = findInputTensor(INPUT_R, mRunner);
|
|
mInputPhi = findInputTensor(INPUT_PHI, mRunner);
|
|
mInputPressure = findInputTensor(INPUT_PRESSURE, mRunner);
|
|
mInputTilt = findInputTensor(INPUT_TILT, mRunner);
|
|
mInputOrientation = findInputTensor(INPUT_ORIENTATION, mRunner);
|
|
}
|
|
|
|
void TfLiteMotionPredictorModel::attachOutputTensors() {
|
|
mOutputR = findOutputTensor(OUTPUT_R, mRunner);
|
|
mOutputPhi = findOutputTensor(OUTPUT_PHI, mRunner);
|
|
mOutputPressure = findOutputTensor(OUTPUT_PRESSURE, mRunner);
|
|
}
|
|
|
|
bool TfLiteMotionPredictorModel::invoke() {
|
|
ATRACE_BEGIN("TfLiteMotionPredictorModel::invoke");
|
|
TfLiteStatus result = mRunner->Invoke();
|
|
ATRACE_END();
|
|
|
|
if (result != kTfLiteOk) {
|
|
return false;
|
|
}
|
|
|
|
// Invoke() might reallocate tensors, so they need to be reattached.
|
|
attachInputTensors();
|
|
attachOutputTensors();
|
|
|
|
if (outputR().size() != outputPhi().size() || outputR().size() != outputPressure().size()) {
|
|
LOG_ALWAYS_FATAL("Output size mismatch: (r: %zu, phi: %zu, pressure: %zu)",
|
|
outputR().size(), outputPhi().size(), outputPressure().size());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t TfLiteMotionPredictorModel::inputLength() const {
|
|
return getTensorBuffer<const float>(mInputR).size();
|
|
}
|
|
|
|
size_t TfLiteMotionPredictorModel::outputLength() const {
|
|
return getTensorBuffer<const float>(mOutputR).size();
|
|
}
|
|
|
|
std::span<float> TfLiteMotionPredictorModel::inputR() {
|
|
return getTensorBuffer<float>(mInputR);
|
|
}
|
|
|
|
std::span<float> TfLiteMotionPredictorModel::inputPhi() {
|
|
return getTensorBuffer<float>(mInputPhi);
|
|
}
|
|
|
|
std::span<float> TfLiteMotionPredictorModel::inputPressure() {
|
|
return getTensorBuffer<float>(mInputPressure);
|
|
}
|
|
|
|
std::span<float> TfLiteMotionPredictorModel::inputTilt() {
|
|
return getTensorBuffer<float>(mInputTilt);
|
|
}
|
|
|
|
std::span<float> TfLiteMotionPredictorModel::inputOrientation() {
|
|
return getTensorBuffer<float>(mInputOrientation);
|
|
}
|
|
|
|
std::span<const float> TfLiteMotionPredictorModel::outputR() const {
|
|
return getTensorBuffer<const float>(mOutputR);
|
|
}
|
|
|
|
std::span<const float> TfLiteMotionPredictorModel::outputPhi() const {
|
|
return getTensorBuffer<const float>(mOutputPhi);
|
|
}
|
|
|
|
std::span<const float> TfLiteMotionPredictorModel::outputPressure() const {
|
|
return getTensorBuffer<const float>(mOutputPressure);
|
|
}
|
|
|
|
} // namespace android
|