unplugged-system/frameworks/native/services/surfaceflinger/Scheduler/MessageQueue.cpp

338 lines
12 KiB
C++

/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <binder/IPCThreadState.h>
#include <gui/DisplayEventReceiver.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include <scheduler/interface/ICompositor.h>
#include "EventThread.h"
#include "FrameTimeline.h"
#include "MessageQueue.h"
#ifdef MTK_SF_MSYNC
#include "../mediatek/MSync/MSyncSfApi.h"
#include <android-base/properties.h>
#endif
#ifdef MTK_SF_MSYNC_3
#include <gui/TraceUtils.h>
#endif
namespace android::impl {
#ifdef MTK_SF_MSYNC
static bool isShowM2Trace() {
static bool enable = false;
static bool read = false;
if (!read) {
enable = android::base::GetBoolProperty("vendor.debug.sf.show_msync2_trace", false);
read = true;
}
return enable;
}
#define M2_TRACE(x, ...) \
{ \
if (isShowM2Trace()) { \
ATRACE_FORMAT("msync2_sf: " x, ##__VA_ARGS__); \
ALOGI("msync2_sf: " x, ##__VA_ARGS__); \
} \
}
#endif
void MessageQueue::Handler::dispatchFrame(VsyncId vsyncId, TimePoint expectedVsyncTime) {
if (!mFramePending.exchange(true)) {
mVsyncId = vsyncId;
mExpectedVsyncTime = expectedVsyncTime;
mQueue.mLooper->sendMessage(sp<MessageHandler>::fromExisting(this), Message());
}
}
bool MessageQueue::Handler::isFramePending() const {
return mFramePending.load();
}
void MessageQueue::Handler::handleMessage(const Message&) {
mFramePending.store(false);
mQueue.onFrameSignal(mQueue.mCompositor, mVsyncId, mExpectedVsyncTime);
}
MessageQueue::MessageQueue(ICompositor& compositor)
: MessageQueue(compositor, sp<Handler>::make(*this)) {}
constexpr bool kAllowNonCallbacks = true;
MessageQueue::MessageQueue(ICompositor& compositor, sp<Handler> handler)
: mCompositor(compositor),
mLooper(sp<Looper>::make(kAllowNonCallbacks)),
mHandler(std::move(handler)) {}
void MessageQueue::vsyncCallback(nsecs_t vsyncTime, nsecs_t targetWakeupTime, nsecs_t readyTime) {
/*#ifdef MTK_SF_MSYNC
{
std::lock_guard lock(mVsync.mutex);
M2_TRACE("vsyncCallback, vsyncTime=%" PRId64 ", readyTime=%" PRId64, vsyncTime, readyTime);
if (mVsyncCanceled && vsyncTime == readyTime) {
mVsyncCanceled = false;
M2_TRACE("Ignore AOSP vsyncCallback");
return;
}
}
#endif*/
ATRACE_CALL();
// Trace VSYNC-sf
mVsync.value = (mVsync.value + 1) % 2;
#ifdef MTK_ATRACE_PRESENT_FENCE
mVsyncSfToggleTime = systemTime();
#endif
const auto expectedVsyncTime = TimePoint::fromNs(vsyncTime);
#ifdef MTK_VSYNC_HINT_SUPPORT
VSyncHinter::getInstance().onDispSyncEvent(mVSyncInfo, 0);
#endif
{
std::lock_guard lock(mVsync.mutex);
mVsync.lastCallbackTime = expectedVsyncTime;
mVsync.scheduledFrameTime.reset();
}
const auto vsyncId = VsyncId{mVsync.tokenManager->generateTokenForPredictions(
{targetWakeupTime, readyTime, vsyncTime})};
mHandler->dispatchFrame(vsyncId, expectedVsyncTime);
}
void MessageQueue::initVsync(std::shared_ptr<scheduler::VSyncDispatch> dispatch,
frametimeline::TokenManager& tokenManager,
std::chrono::nanoseconds workDuration) {
std::unique_ptr<scheduler::VSyncCallbackRegistration> oldRegistration;
{
std::lock_guard lock(mVsync.mutex);
mVsync.workDuration = workDuration;
mVsync.tokenManager = &tokenManager;
oldRegistration = onNewVsyncScheduleLocked(std::move(dispatch));
}
// See comments in onNewVsyncSchedule. Today, oldRegistration should be
// empty, but nothing prevents us from calling initVsync multiple times, so
// go ahead and destruct it outside the lock for safety.
oldRegistration.reset();
}
void MessageQueue::onNewVsyncSchedule(std::shared_ptr<scheduler::VSyncDispatch> dispatch) {
std::unique_ptr<scheduler::VSyncCallbackRegistration> oldRegistration;
{
std::lock_guard lock(mVsync.mutex);
oldRegistration = onNewVsyncScheduleLocked(std::move(dispatch));
}
// The old registration needs to be deleted after releasing mVsync.mutex to
// avoid deadlock. This is because the callback may be running on the timer
// thread. In that case, timerCallback sets
// VSyncDispatchTimerQueueEntry::mRunning to true, then attempts to lock
// mVsync.mutex. But if it's already locked, the VSyncCallbackRegistration's
// destructor has to wait until VSyncDispatchTimerQueueEntry::mRunning is
// set back to false, but it won't be until mVsync.mutex is released.
oldRegistration.reset();
}
std::unique_ptr<scheduler::VSyncCallbackRegistration> MessageQueue::onNewVsyncScheduleLocked(
std::shared_ptr<scheduler::VSyncDispatch> dispatch) {
const bool reschedule = mVsync.registration &&
mVsync.registration->cancel() == scheduler::CancelResult::Cancelled;
auto oldRegistration = std::move(mVsync.registration);
mVsync.registration = std::make_unique<
scheduler::VSyncCallbackRegistration>(std::move(dispatch),
std::bind(&MessageQueue::vsyncCallback, this,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3),
"sf");
#ifdef MTK_VSYNC_HINT_SUPPORT
VSyncHinter::getInstance().fillVSyncInfo(mVSyncInfo, "sf");
#endif
if (reschedule) {
mVsync.scheduledFrameTime =
mVsync.registration->schedule({.workDuration = mVsync.workDuration.get().count(),
.readyDuration = 0,
.earliestVsync = mVsync.lastCallbackTime.ns()});
}
return oldRegistration;
}
void MessageQueue::destroyVsync() {
std::lock_guard lock(mVsync.mutex);
mVsync.tokenManager = nullptr;
mVsync.registration.reset();
}
void MessageQueue::setDuration(std::chrono::nanoseconds workDuration) {
ATRACE_CALL();
std::lock_guard lock(mVsync.mutex);
mVsync.workDuration = workDuration;
mVsync.scheduledFrameTime =
mVsync.registration->update({.workDuration = mVsync.workDuration.get().count(),
.readyDuration = 0,
.earliestVsync = mVsync.lastCallbackTime.ns()});
}
void MessageQueue::waitMessage() {
do {
IPCThreadState::self()->flushCommands();
int32_t ret = mLooper->pollOnce(-1);
switch (ret) {
case Looper::POLL_WAKE:
case Looper::POLL_CALLBACK:
continue;
case Looper::POLL_ERROR:
ALOGE("Looper::POLL_ERROR");
continue;
case Looper::POLL_TIMEOUT:
// timeout (should not happen)
continue;
default:
// should not happen
ALOGE("Looper::pollOnce() returned unknown status %d", ret);
continue;
}
} while (true);
}
void MessageQueue::postMessage(sp<MessageHandler>&& handler) {
mLooper->sendMessage(handler, Message());
}
#ifdef MTK_SF_SCHEDULE_DELAY
//TODO: remove MTK's API
void MessageQueue::postMessageDelayed(nsecs_t uptimeDelay, sp<MessageHandler>&& handler) {
mLooper->sendMessageDelayed(uptimeDelay, handler, Message());
}
#endif
void MessageQueue::postMessageDelayed(sp<MessageHandler>&& handler, nsecs_t uptimeDelay) {
mLooper->sendMessageDelayed(uptimeDelay, handler, Message());
}
void MessageQueue::scheduleConfigure() {
struct ConfigureHandler : MessageHandler {
explicit ConfigureHandler(ICompositor& compositor) : compositor(compositor) {}
void handleMessage(const Message&) override { compositor.configure(); }
ICompositor& compositor;
};
// TODO(b/241285876): Batch configure tasks that happen within some duration.
postMessage(sp<ConfigureHandler>::make(mCompositor));
}
#ifdef MTK_SF_MSYNC_3
void MessageQueue::cancelScheduledFrame() {
std::lock_guard lock(mVsync.mutex);
if (mVsync.registration->cancel() == android::scheduler::CancelResult::Cancelled) {
ATRACE_NAME("cancelScheduledFrame: name=sf, success");
} else {
ATRACE_NAME("cancelScheduledFrame: name=sf, fail");
}
}
nsecs_t MessageQueue::getCurrentVsyncTime() {
std::lock_guard lock(mVsync.mutex);
return mVsync.lastCallbackTime.ns();
}
#endif
void MessageQueue::scheduleFrame() {
#ifndef MTK_SF_MSYNC_3
ATRACE_CALL();
#endif
std::lock_guard lock(mVsync.mutex);
#ifdef MTK_SF_MSYNC_3
ATRACE_FORMAT("%s: name=sf, workDuration=%" PRId64, __func__, mVsync.workDuration.get().count());
#endif
mVsync.scheduledFrameTime =
mVsync.registration->schedule({.workDuration = mVsync.workDuration.get().count(),
.readyDuration = 0,
.earliestVsync = mVsync.lastCallbackTime.ns()});
}
auto MessageQueue::getScheduledFrameTime() const -> std::optional<Clock::time_point> {
if (mHandler->isFramePending()) {
return Clock::now();
}
std::lock_guard lock(mVsync.mutex);
if (const auto time = mVsync.scheduledFrameTime) {
return Clock::time_point(std::chrono::nanoseconds(*time));
}
return std::nullopt;
}
#ifdef MTK_SF_MSYNC
void MessageQueue::msyncVsyncCallback(bool bTriggerVsyncCallback) {
nsecs_t wakeupTime = systemTime(SYSTEM_TIME_MONOTONIC);
nsecs_t vsyncTime;
M2_TRACE("msyncVsyncCallback, bTriggerVsyncCallback=%d", bTriggerVsyncCallback);
bool bCancelled = true;
{
std::lock_guard lock(mVsync.mutex);
//mVsyncCanceled = true;
auto cancelResult = mVsync.registration->cancel();
if (cancelResult == android::scheduler::CancelResult::Cancelled) {
// need to set new vsyncTime as last dispached time
vsyncTime = wakeupTime + mVsync.workDuration.get().count();
M2_TRACE("cancel scheduleFrame success, new wakeupTime=%" PRId64 " and vsyncTime=%" PRId64, wakeupTime, vsyncTime);
if (bTriggerVsyncCallback) {
mVsync.registration->setLastDispatchTime(vsyncTime);
}
} else {
M2_TRACE("cancel scheduleFrame failed, error=%d", cancelResult);
bCancelled = false;
}
}
if (bCancelled && bTriggerVsyncCallback) {
// set readyTime < vsyncTime to indicate the vsync callback from msync2
vsyncCallback(vsyncTime, wakeupTime, vsyncTime-1/*readyTime*/);
}
}
nsecs_t MessageQueue::getLastVsyncWakeupTime() {
std::lock_guard lock(mVsync.mutex);
return mVsync.lastCallbackTime.ns() - mVsync.workDuration.get().count();
}
void MessageQueue::setMSyncSfApi(std::shared_ptr<MSyncSfApi> msyncSfApi) {
mMSyncSfApi = msyncSfApi;
}
#endif
#ifdef MTK_ATRACE_PRESENT_FENCE
nsecs_t MessageQueue::getVsyncSfToggleTime() {
return mVsyncSfToggleTime;
}
#endif
} // namespace android::impl