unplugged-system/frameworks/native/services/surfaceflinger/Scheduler/Scheduler.cpp

1341 lines
50 KiB
C++

/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "Scheduler"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "Scheduler.h"
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#include <ftl/enum.h>
#include <ftl/fake_guard.h>
#include <ftl/small_map.h>
#include <gui/TraceUtils.h>
#include <gui/WindowInfo.h>
#include <system/window.h>
#include <utils/Timers.h>
#include <cutils/properties.h>
#include <FrameTimeline/FrameTimeline.h>
#include <scheduler/interface/ICompositor.h>
#include <algorithm>
#include <cinttypes>
#include <cstdint>
#include <functional>
#include <memory>
#include <numeric>
#include "../Layer.h"
#include "Display/DisplayMap.h"
#include "EventThread.h"
#include "FrameRateOverrideMappings.h"
#include "FrontEnd/LayerHandle.h"
#include "OneShotTimer.h"
#include "SurfaceFlingerProperties.h"
#include "VSyncTracker.h"
#include "VsyncController.h"
#include "VsyncSchedule.h"
#ifdef MTK_SF_DEBUG_SUPPORT
#include "mediatek/MtkDebugAPI.h"
#endif
#ifdef MTK_SF_SCHEDULE_DELAY
#include <mediatek/ScheduleHelper.h>
#endif
#define RETURN_IF_INVALID_HANDLE(handle, ...) \
do { \
if (mConnections.count(handle) == 0) { \
ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \
return __VA_ARGS__; \
} \
} while (false)
namespace android::scheduler {
Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features,
sp<VsyncModulator> modulatorPtr)
: impl::MessageQueue(compositor),
mFeatures(features),
mVsyncModulator(std::move(modulatorPtr)),
mSchedulerCallback(callback) {
#ifdef MTK_AOSP_DISPLAY_BUGFIX
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.set_binder_thread_rt", value, "0");
mSetInheritRT = atoi(value);
ALOGD("setInheritRT %d",mSetInheritRT);
#endif
}
Scheduler::~Scheduler() {
// MessageQueue depends on VsyncSchedule, so first destroy it.
// Otherwise, MessageQueue will get destroyed after Scheduler's dtor,
// which will cause a use-after-free issue.
Impl::destroyVsync();
// Stop timers and wait for their threads to exit.
mDisplayPowerTimer.reset();
mTouchTimer.reset();
// Stop idle timer and clear callbacks, as the RefreshRateSelector may outlive the Scheduler.
demotePacesetterDisplay();
}
void Scheduler::startTimers() {
using namespace sysprop;
using namespace std::string_literals;
#ifdef MTK_SF_MSYNC_3
const int32_t touchTimerMs = base::GetIntProperty("debug.sf.set_touch_timer_ms", 0);
if (const int64_t millis = touchTimerMs ? touchTimerMs : set_touch_timer_ms(0); millis > 0) {
#else
if (const int64_t millis = set_touch_timer_ms(0); millis > 0) {
#endif
// Touch events are coming to SF every 100ms, so the timer needs to be higher than that
mTouchTimer.emplace(
"TouchTimer", std::chrono::milliseconds(millis),
[this] { touchTimerCallback(TimerState::Reset); },
[this] { touchTimerCallback(TimerState::Expired); });
mTouchTimer->start();
}
if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
mDisplayPowerTimer.emplace(
"DisplayPowerTimer", std::chrono::milliseconds(millis),
[this] { displayPowerTimerCallback(TimerState::Reset); },
[this] { displayPowerTimerCallback(TimerState::Expired); });
mDisplayPowerTimer->start();
}
}
void Scheduler::setPacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) {
demotePacesetterDisplay();
promotePacesetterDisplay(pacesetterIdOpt);
}
void Scheduler::registerDisplay(PhysicalDisplayId displayId, RefreshRateSelectorPtr selectorPtr) {
registerDisplayInternal(displayId, std::move(selectorPtr),
std::make_shared<VsyncSchedule>(displayId, mFeatures));
}
void Scheduler::registerDisplayInternal(PhysicalDisplayId displayId,
RefreshRateSelectorPtr selectorPtr,
VsyncSchedulePtr schedulePtr) {
demotePacesetterDisplay();
std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule;
{
std::scoped_lock lock(mDisplayLock);
mDisplays.emplace_or_replace(displayId, std::move(selectorPtr), std::move(schedulePtr));
pacesetterVsyncSchedule = promotePacesetterDisplayLocked();
}
applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule));
}
void Scheduler::unregisterDisplay(PhysicalDisplayId displayId) {
demotePacesetterDisplay();
std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule;
{
std::scoped_lock lock(mDisplayLock);
mDisplays.erase(displayId);
// Do not allow removing the final display. Code in the scheduler expects
// there to be at least one display. (This may be relaxed in the future with
// headless virtual display.)
LOG_ALWAYS_FATAL_IF(mDisplays.empty(), "Cannot unregister all displays!");
pacesetterVsyncSchedule = promotePacesetterDisplayLocked();
}
applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule));
}
void Scheduler::run() {
while (true) {
waitMessage();
}
}
void Scheduler::onFrameSignal(ICompositor& compositor, VsyncId vsyncId,
TimePoint expectedVsyncTime) {
const TimePoint frameTime = SchedulerClock::now();
if (!compositor.commit(frameTime, vsyncId, expectedVsyncTime)) {
return;
}
compositor.composite(frameTime, vsyncId);
compositor.sample();
#ifdef MTK_SF_DEBUG_SUPPORT
slowMotion();
#endif
}
std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const {
const bool supportsFrameRateOverrideByContent =
pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent();
return mFrameRateOverrideMappings
.getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent);
}
bool Scheduler::isVsyncValid(TimePoint expectedVsyncTimestamp, uid_t uid) const {
const auto frameRate = getFrameRateOverride(uid);
if (!frameRate.has_value()) {
return true;
}
ATRACE_FORMAT("%s uid: %d frameRate: %s", __func__, uid, to_string(*frameRate).c_str());
return getVsyncSchedule()->getTracker().isVSyncInPhase(expectedVsyncTimestamp.ns(), *frameRate);
}
bool Scheduler::isVsyncInPhase(TimePoint timePoint, const Fps frameRate) const {
return getVsyncSchedule()->getTracker().isVSyncInPhase(timePoint.ns(), frameRate);
}
impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const {
return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) {
return !isVsyncValid(TimePoint::fromNs(expectedVsyncTimestamp), uid);
};
}
impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const {
return [this](uid_t uid) {
const auto [refreshRate, period] = [this] {
std::scoped_lock lock(mDisplayLock);
const auto pacesetterOpt = pacesetterDisplayLocked();
LOG_ALWAYS_FATAL_IF(!pacesetterOpt);
const Display& pacesetter = *pacesetterOpt;
return std::make_pair(pacesetter.selectorPtr->getActiveMode().fps,
pacesetter.schedulePtr->period());
}();
const Period currentPeriod = period != Period::zero() ? period : refreshRate.getPeriod();
const auto frameRate = getFrameRateOverride(uid);
if (!frameRate.has_value()) {
return currentPeriod.ns();
}
const auto divisor = RefreshRateSelector::getFrameRateDivisor(refreshRate, *frameRate);
if (divisor <= 1) {
return currentPeriod.ns();
}
return currentPeriod.ns() * divisor;
};
}
ConnectionHandle Scheduler::createEventThread(Cycle cycle,
frametimeline::TokenManager* tokenManager,
std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration) {
auto eventThread = std::make_unique<impl::EventThread>(cycle == Cycle::Render ? "app" : "appSf",
getVsyncSchedule(), tokenManager,
makeThrottleVsyncCallback(),
makeGetVsyncPeriodFunction(),
workDuration, readyDuration);
auto& handle = cycle == Cycle::Render ? mAppConnectionHandle : mSfConnectionHandle;
handle = createConnection(std::move(eventThread));
return handle;
}
ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) {
const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++};
ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id);
auto connection = createConnectionInternal(eventThread.get());
std::lock_guard<std::mutex> lock(mConnectionsLock);
mConnections.emplace(handle, Connection{connection, std::move(eventThread)});
return handle;
}
sp<EventThreadConnection> Scheduler::createConnectionInternal(
EventThread* eventThread, EventRegistrationFlags eventRegistration,
const sp<IBinder>& layerHandle) {
int32_t layerId = static_cast<int32_t>(LayerHandle::getLayerId(layerHandle));
auto connection = eventThread->createEventConnection([&] { resync(); }, eventRegistration);
#ifdef MTK_AOSP_DISPLAY_BUGFIX
if (mSetInheritRT == 1) {
connection->setInheritRt(true);
}
#endif
mLayerHistory.attachChoreographer(layerId, connection);
return connection;
}
sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
ConnectionHandle handle, EventRegistrationFlags eventRegistration,
const sp<IBinder>& layerHandle) {
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle, nullptr);
return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration,
layerHandle);
}
sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) {
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle, nullptr);
return mConnections[handle].connection;
}
void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId,
bool connected) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onHotplugReceived(displayId, connected);
}
void Scheduler::enableSyntheticVsync(bool enable) {
// TODO(b/241285945): Remove connection handles.
const ConnectionHandle handle = mAppConnectionHandle;
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->enableSyntheticVsync(enable);
}
void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) {
const bool supportsFrameRateOverrideByContent =
pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent();
std::vector<FrameRateOverride> overrides =
mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent);
android::EventThread* thread;
{
std::lock_guard lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onFrameRateOverridesChanged(displayId, std::move(overrides));
}
void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) {
{
std::lock_guard<std::mutex> lock(mPolicyLock);
// Cache the last reported modes for primary display.
mPolicy.cachedModeChangedParams = {handle, mode};
// Invalidate content based refresh rate selection so it could be calculated
// again for the new refresh rate.
mPolicy.contentRequirements.clear();
}
onNonPrimaryDisplayModeChanged(handle, mode);
}
void Scheduler::dispatchCachedReportedMode() {
// Check optional fields first.
if (!mPolicy.modeOpt) {
ALOGW("No mode ID found, not dispatching cached mode.");
return;
}
if (!mPolicy.cachedModeChangedParams) {
ALOGW("No mode changed params found, not dispatching cached mode.");
return;
}
// If the mode is not the current mode, this means that a
// mode change is in progress. In that case we shouldn't dispatch an event
// as it will be dispatched when the current mode changes.
if (pacesetterSelectorPtr()->getActiveMode() != mPolicy.modeOpt) {
return;
}
// If there is no change from cached mode, there is no need to dispatch an event
if (*mPolicy.modeOpt == mPolicy.cachedModeChangedParams->mode) {
return;
}
mPolicy.cachedModeChangedParams->mode = *mPolicy.modeOpt;
onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->handle,
mPolicy.cachedModeChangedParams->mode);
}
void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onModeChanged(mode);
}
size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) {
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle, 0);
return mConnections[handle].thread->getEventThreadConnectionCount();
}
void Scheduler::dump(ConnectionHandle handle, std::string& result) const {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections.at(handle).thread.get();
}
thread->dump(result);
}
void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->setDuration(workDuration, readyDuration);
}
void Scheduler::setVsyncConfigSet(const VsyncConfigSet& configs, Period vsyncPeriod) {
setVsyncConfig(mVsyncModulator->setVsyncConfigSet(configs), vsyncPeriod);
}
void Scheduler::setVsyncConfig(const VsyncConfig& config, Period vsyncPeriod) {
setDuration(mAppConnectionHandle,
/* workDuration */ config.appWorkDuration,
/* readyDuration */ config.sfWorkDuration);
setDuration(mSfConnectionHandle,
/* workDuration */ vsyncPeriod,
/* readyDuration */ config.sfWorkDuration);
setDuration(config.sfWorkDuration);
#ifdef MTK_SF_SCHEDULE_DELAY
ScheduleHelper::getInstance().updateDurationVsync(config.sfWorkDuration.count(), vsyncPeriod.ns());
#endif
}
void Scheduler::enableHardwareVsync(PhysicalDisplayId id) {
auto schedule = getVsyncSchedule(id);
LOG_ALWAYS_FATAL_IF(!schedule);
schedule->enableHardwareVsync(mSchedulerCallback);
}
void Scheduler::disableHardwareVsync(PhysicalDisplayId id, bool disallow) {
auto schedule = getVsyncSchedule(id);
LOG_ALWAYS_FATAL_IF(!schedule);
schedule->disableHardwareVsync(mSchedulerCallback, disallow);
}
void Scheduler::resyncAllToHardwareVsync(bool allowToEnable) {
ATRACE_CALL();
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
for (const auto& [id, _] : mDisplays) {
resyncToHardwareVsyncLocked(id, allowToEnable);
}
}
void Scheduler::resyncToHardwareVsyncLocked(PhysicalDisplayId id, bool allowToEnable,
std::optional<Fps> refreshRate) {
const auto displayOpt = mDisplays.get(id);
if (!displayOpt) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return;
}
const Display& display = *displayOpt;
#ifdef MTK_SF_MSYNC_3
if (isShowCDDetailLog()) {
std::string result = base::StringPrintf("%s: refreshRate=%d", __func__, refreshRate ? refreshRate->getIntValue() : 0);
ALOGI("%s", result.c_str());
ATRACE_NAME(result.c_str());
}
#endif
if (display.schedulePtr->isHardwareVsyncAllowed(allowToEnable)) {
if (!refreshRate) {
refreshRate = display.selectorPtr->getActiveMode().modePtr->getFps();
}
#ifdef MTK_SF_MSYNC_3
// If resync happens right after refresh rate changes,
// getActiveMode would still be old config, it makes
// hw vsync change to the old one. To prevent that,
// we always use msync3 period to resync.
nsecs_t msync3Period = 0;
if (mMsync3_period.contains(id)) {
msync3Period = *mMsync3_period.get(id);
}
//nsecs_t msync3Period = msync3PeriodOpt ? *msync3PeriodOpt : static_cast<nsecs_t>(0);
if (msync3Period > 0) {
std::string _trace = "";
base::StringAppendF(&_trace, "%s: resync overrided=%" PRId64, __func__, msync3Period);
ATRACE_NAME(_trace.c_str());
Fps overrideFps = Fps::fromPeriodNsecs(msync3Period);
display.schedulePtr->startPeriodTransition(mSchedulerCallback, overrideFps.getPeriod(), false);
} else {
if (refreshRate->isValid()) {
display.schedulePtr->startPeriodTransition(mSchedulerCallback, refreshRate->getPeriod(),
false /* force */);
}
}
#else
if (refreshRate->isValid()) {
display.schedulePtr->startPeriodTransition(mSchedulerCallback, refreshRate->getPeriod(),
false /* force */);
}
#endif
}
}
void Scheduler::setRenderRate(PhysicalDisplayId id, Fps renderFrameRate) {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
const auto displayOpt = mDisplays.get(id);
if (!displayOpt) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return;
}
const Display& display = *displayOpt;
const auto mode = display.selectorPtr->getActiveMode();
using fps_approx_ops::operator!=;
LOG_ALWAYS_FATAL_IF(renderFrameRate != mode.fps,
"Mismatch in render frame rates. Selector: %s, Scheduler: %s, Display: "
"%" PRIu64,
to_string(mode.fps).c_str(), to_string(renderFrameRate).c_str(), id.value);
ALOGV("%s %s (%s)", __func__, to_string(mode.fps).c_str(),
to_string(mode.modePtr->getFps()).c_str());
display.schedulePtr->getTracker().setRenderRate(renderFrameRate);
}
void Scheduler::resync() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(750);
const nsecs_t now = systemTime();
const nsecs_t last = mLastResyncTime.exchange(now);
if (now - last > kIgnoreDelay) {
resyncAllToHardwareVsync(false /* allowToEnable */);
}
}
bool Scheduler::addResyncSample(PhysicalDisplayId id, nsecs_t timestamp,
std::optional<nsecs_t> hwcVsyncPeriodIn) {
const auto hwcVsyncPeriod = ftl::Optional(hwcVsyncPeriodIn).transform([](nsecs_t nanos) {
return Period::fromNs(nanos);
});
auto schedule = getVsyncSchedule(id);
if (!schedule) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return false;
}
return schedule->addResyncSample(mSchedulerCallback, TimePoint::fromNs(timestamp),
hwcVsyncPeriod);
}
void Scheduler::addPresentFence(PhysicalDisplayId id, std::shared_ptr<FenceTime> fence) {
auto schedule = getVsyncSchedule(id);
LOG_ALWAYS_FATAL_IF(!schedule);
const bool needMoreSignals = schedule->getController().addPresentFence(std::move(fence));
if (needMoreSignals) {
schedule->enableHardwareVsync(mSchedulerCallback);
} else {
schedule->disableHardwareVsync(mSchedulerCallback, false /* disallow */);
}
}
void Scheduler::registerLayer(Layer* layer) {
// If the content detection feature is off, we still keep the layer history,
// since we use it for other features (like Frame Rate API), so layers
// still need to be registered.
mLayerHistory.registerLayer(layer, mFeatures.test(Feature::kContentDetection));
}
void Scheduler::deregisterLayer(Layer* layer) {
mLayerHistory.deregisterLayer(layer);
}
void Scheduler::recordLayerHistory(int32_t id, const LayerProps& layerProps, nsecs_t presentTime,
LayerHistory::LayerUpdateType updateType) {
if (pacesetterSelectorPtr()->canSwitch()) {
mLayerHistory.record(id, layerProps, presentTime, systemTime(), updateType);
}
}
void Scheduler::setModeChangePending(bool pending) {
#ifdef MTK_SF_MSYNC_3
if (isShowCDDetailLog()) {
std::string result = base::StringPrintf("%s: pending=%d", __func__, pending);
ALOGI("%s", result.c_str());
ATRACE_NAME(result.c_str());
}
#endif
mLayerHistory.setModeChangePending(pending);
}
void Scheduler::setDefaultFrameRateCompatibility(Layer* layer) {
mLayerHistory.setDefaultFrameRateCompatibility(layer,
mFeatures.test(Feature::kContentDetection));
}
void Scheduler::chooseRefreshRateForContent() {
const auto selectorPtr = pacesetterSelectorPtr();
if (!selectorPtr->canSwitch()) return;
ATRACE_CALL();
LayerHistory::Summary summary = mLayerHistory.summarize(*selectorPtr, systemTime());
#ifdef MTK_SF_HINT_LOW_POWER
if (!applyLowPower(&LowPower::contentRequirements, summary)) {
applyPolicy(&Policy::contentRequirements, std::move(summary));
}
#else
applyPolicy(&Policy::contentRequirements, std::move(summary));
#endif
}
void Scheduler::resetIdleTimer() {
pacesetterSelectorPtr()->resetIdleTimer();
}
void Scheduler::onTouchHint() {
if (mTouchTimer) {
mTouchTimer->reset();
pacesetterSelectorPtr()->resetKernelIdleTimer();
}
}
void Scheduler::setDisplayPowerMode(PhysicalDisplayId id, hal::PowerMode powerMode) {
const bool isPacesetter = [this, id]() REQUIRES(kMainThreadContext) {
ftl::FakeGuard guard(mDisplayLock);
return id == mPacesetterDisplayId;
}();
if (isPacesetter) {
// TODO (b/255657128): This needs to be handled per display.
std::lock_guard<std::mutex> lock(mPolicyLock);
mPolicy.displayPowerMode = powerMode;
}
{
std::scoped_lock lock(mDisplayLock);
auto vsyncSchedule = getVsyncScheduleLocked(id);
LOG_ALWAYS_FATAL_IF(!vsyncSchedule);
vsyncSchedule->getController().setDisplayPowerMode(powerMode);
}
if (!isPacesetter) return;
if (mDisplayPowerTimer) {
mDisplayPowerTimer->reset();
}
// Display Power event will boost the refresh rate to performance.
// Clear Layer History to get fresh FPS detection
mLayerHistory.clear();
}
auto Scheduler::getVsyncSchedule(std::optional<PhysicalDisplayId> idOpt) const
-> ConstVsyncSchedulePtr {
std::scoped_lock lock(mDisplayLock);
return getVsyncScheduleLocked(idOpt);
}
auto Scheduler::getVsyncScheduleLocked(std::optional<PhysicalDisplayId> idOpt) const
-> ConstVsyncSchedulePtr {
ftl::FakeGuard guard(kMainThreadContext);
if (!idOpt) {
LOG_ALWAYS_FATAL_IF(!mPacesetterDisplayId, "Missing a pacesetter!");
idOpt = mPacesetterDisplayId;
}
const auto displayOpt = mDisplays.get(*idOpt);
if (!displayOpt) {
return nullptr;
}
return displayOpt->get().schedulePtr;
}
void Scheduler::kernelIdleTimerCallback(TimerState state) {
ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));
// TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
// magic number
const Fps refreshRate = pacesetterSelectorPtr()->getActiveMode().modePtr->getFps();
constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz;
using namespace fps_approx_ops;
if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) {
// If we're not in performance mode then the kernel timer shouldn't do
// anything, as the refresh rate during DPU power collapse will be the
// same.
resyncAllToHardwareVsync(true /* allowToEnable */);
} else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) {
// Disable HW VSYNC if the timer expired, as we don't need it enabled if
// we're not pushing frames, and if we're in PERFORMANCE mode then we'll
// need to update the VsyncController model anyway.
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
for (const auto& [_, display] : mDisplays) {
constexpr bool kDisallow = false;
display.schedulePtr->disableHardwareVsync(mSchedulerCallback, kDisallow);
}
}
mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
}
void Scheduler::idleTimerCallback(TimerState state) {
#ifdef MTK_SF_MSYNC_3
if (isShowCDDetailLog()) {
ALOGI("%s: idleState=%s", __func__, state == TimerState::Reset ? "Reset" : "Expired");
}
#endif
#ifdef MTK_SF_HINT_LOW_POWER
if (!applyLowPower(&LowPower::idleTimer, state)) {
applyPolicy(&Policy::idleTimer, state);
}
#else
applyPolicy(&Policy::idleTimer, state);
#endif
ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
}
void Scheduler::touchTimerCallback(TimerState state) {
const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
// Touch event will boost the refresh rate to performance.
// Clear layer history to get fresh FPS detection.
// NOTE: Instead of checking all the layers, we should be checking the layer
// that is currently on top. b/142507166 will give us this capability.
#ifdef MTK_SF_MSYNC_3
if (isShowCDDetailLog()) {
std::string result = base::StringPrintf("%s: touchState=%s", __func__,
touch == TouchState::Active ? "Active" : "Inactive");
ALOGI("%s", result.c_str());
ATRACE_NAME(result.c_str());
}
#endif
#ifdef MTK_SF_HINT_LOW_POWER
if (!applyLowPower(&LowPower::touch, touch)) {
if (applyPolicy(&Policy::touch, touch).touch) {
mLayerHistory.clear();
}
} else if (touch == TouchState::Active) {
mLayerHistory.clear();
}
#else
if (applyPolicy(&Policy::touch, touch).touch) {
mLayerHistory.clear();
}
#endif
ATRACE_INT("TouchState", static_cast<int>(touch));
}
void Scheduler::displayPowerTimerCallback(TimerState state) {
applyPolicy(&Policy::displayPowerTimer, state);
ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
}
void Scheduler::dump(utils::Dumper& dumper) const {
using namespace std::string_view_literals;
{
utils::Dumper::Section section(dumper, "Features"sv);
for (Feature feature : ftl::enum_range<Feature>()) {
if (const auto flagOpt = ftl::flag_name(feature)) {
dumper.dump(flagOpt->substr(1), mFeatures.test(feature));
}
}
}
{
utils::Dumper::Section section(dumper, "Policy"sv);
{
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
dumper.dump("pacesetterDisplayId"sv, mPacesetterDisplayId);
}
dumper.dump("layerHistory"sv, mLayerHistory.dump());
dumper.dump("touchTimer"sv, mTouchTimer.transform(&OneShotTimer::interval));
dumper.dump("displayPowerTimer"sv, mDisplayPowerTimer.transform(&OneShotTimer::interval));
}
mFrameRateOverrideMappings.dump(dumper);
dumper.eol();
}
void Scheduler::dumpVsync(std::string& out) const {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
if (mPacesetterDisplayId) {
base::StringAppendF(&out, "VsyncSchedule for pacesetter %s:\n",
to_string(*mPacesetterDisplayId).c_str());
getVsyncScheduleLocked()->dump(out);
}
for (auto& [id, display] : mDisplays) {
if (id == mPacesetterDisplayId) {
continue;
}
base::StringAppendF(&out, "VsyncSchedule for follower %s:\n", to_string(id).c_str());
display.schedulePtr->dump(out);
}
}
bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) {
if (consideredSignals.idle) return false;
const auto frameRateOverrides =
pacesetterSelectorPtr()->getFrameRateOverrides(mPolicy.contentRequirements,
displayRefreshRate, consideredSignals);
#ifdef MTK_SF_MSYNC_3
if (isShowCDDetailLog()) {
using base::StringAppendF;
std::string result;
StringAppendF(&result, "new frameRateOverrides (setFrameRate): {");
for (const auto& [uid, frameRate] : frameRateOverrides) {
StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str());
}
StringAppendF(&result, "}\n");
ALOGI("%s", result.c_str());
ATRACE_NAME(result.c_str());
}
#endif
// Note that RefreshRateSelector::supportsFrameRateOverrideByContent is checked when querying
// the FrameRateOverrideMappings rather than here.
return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides);
}
void Scheduler::promotePacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) {
std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule;
{
std::scoped_lock lock(mDisplayLock);
pacesetterVsyncSchedule = promotePacesetterDisplayLocked(pacesetterIdOpt);
}
applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule));
}
std::shared_ptr<VsyncSchedule> Scheduler::promotePacesetterDisplayLocked(
std::optional<PhysicalDisplayId> pacesetterIdOpt) {
// TODO(b/241286431): Choose the pacesetter display.
mPacesetterDisplayId = pacesetterIdOpt.value_or(mDisplays.begin()->first);
ALOGI("Display %s is the pacesetter", to_string(*mPacesetterDisplayId).c_str());
std::shared_ptr<VsyncSchedule> newVsyncSchedulePtr;
if (const auto pacesetterOpt = pacesetterDisplayLocked()) {
const Display& pacesetter = *pacesetterOpt;
pacesetter.selectorPtr->setIdleTimerCallbacks(
{.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); },
.onExpired = [this] { idleTimerCallback(TimerState::Expired); }},
.kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); },
.onExpired =
[this] { kernelIdleTimerCallback(TimerState::Expired); }}});
pacesetter.selectorPtr->startIdleTimer();
newVsyncSchedulePtr = pacesetter.schedulePtr;
const Fps refreshRate = pacesetter.selectorPtr->getActiveMode().modePtr->getFps();
newVsyncSchedulePtr->startPeriodTransition(mSchedulerCallback, refreshRate.getPeriod(),
true /* force */);
}
return newVsyncSchedulePtr;
}
void Scheduler::applyNewVsyncSchedule(std::shared_ptr<VsyncSchedule> vsyncSchedule) {
onNewVsyncSchedule(vsyncSchedule->getDispatch());
std::vector<android::EventThread*> threads;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
threads.reserve(mConnections.size());
for (auto& [_, connection] : mConnections) {
threads.push_back(connection.thread.get());
}
}
for (auto* thread : threads) {
thread->onNewVsyncSchedule(vsyncSchedule);
}
}
void Scheduler::demotePacesetterDisplay() {
// No need to lock for reads on kMainThreadContext.
if (const auto pacesetterPtr = FTL_FAKE_GUARD(mDisplayLock, pacesetterSelectorPtrLocked())) {
pacesetterPtr->stopIdleTimer();
pacesetterPtr->clearIdleTimerCallbacks();
}
// Clear state that depends on the pacesetter's RefreshRateSelector.
std::scoped_lock lock(mPolicyLock);
mPolicy = {};
}
template <typename S, typename T>
auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals {
ATRACE_CALL();
std::vector<display::DisplayModeRequest> modeRequests;
GlobalSignals consideredSignals;
bool refreshRateChanged = false;
bool frameRateOverridesChanged;
{
std::scoped_lock lock(mPolicyLock);
auto& currentState = mPolicy.*statePtr;
if (currentState == newState) return {};
currentState = std::forward<T>(newState);
DisplayModeChoiceMap modeChoices;
ftl::Optional<FrameRateMode> modeOpt;
{
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
modeChoices = chooseDisplayModes();
// TODO(b/240743786): The pacesetter display's mode must change for any
// DisplayModeRequest to go through. Fix this by tracking per-display Scheduler::Policy
// and timers.
std::tie(modeOpt, consideredSignals) =
modeChoices.get(*mPacesetterDisplayId)
.transform([](const DisplayModeChoice& choice) {
return std::make_pair(choice.mode, choice.consideredSignals);
})
.value();
}
modeRequests.reserve(modeChoices.size());
for (auto& [id, choice] : modeChoices) {
modeRequests.emplace_back(
display::DisplayModeRequest{.mode = std::move(choice.mode),
.emitEvent = !choice.consideredSignals.idle});
}
frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, modeOpt->fps);
#ifdef MTK_SF_MSYNC_3
if (isShowCDDetailLog()) {
std::string result = base::StringPrintf("%s: frameRateOverridesChanged=%d", __func__, frameRateOverridesChanged);
ALOGI("%s", result.c_str());
ATRACE_NAME(result.c_str());
}
#endif
if (mPolicy.modeOpt != modeOpt) {
#ifdef MTK_SF_MSYNC_3
if (mPolicy.modeOpt && modeOpt) {
if (isShowCDDetailLog()) {
std::string result = base::StringPrintf("%s: refreshRateChanged, oldMode=%d(%s(%s)), newMode=%d(%s(%s))", __func__,
mPolicy.modeOpt->modePtr->getId().value(), to_string(mPolicy.modeOpt->fps).c_str(),
to_string(mPolicy.modeOpt->modePtr->getFps()).c_str(),
modeOpt->modePtr->getId().value(), to_string(modeOpt->fps).c_str(),
to_string(modeOpt->modePtr->getFps()).c_str());
ALOGI("%s", result.c_str());
ATRACE_NAME(result.c_str());
}
/*if (mPolicy.modeOpt->modePtr->getFps().getIntValue() > modeOpt->modePtr->getFps().getIntValue()) {
mSchedulerCallback.changeToForeground();
}*/
}
#endif
mPolicy.modeOpt = modeOpt;
refreshRateChanged = true;
} else {
// We don't need to change the display mode, but we might need to send an event
// about a mode change, since it was suppressed if previously considered idle.
if (!consideredSignals.idle) {
dispatchCachedReportedMode();
}
}
}
if (refreshRateChanged) {
mSchedulerCallback.requestDisplayModes(std::move(modeRequests));
}
if (frameRateOverridesChanged) {
mSchedulerCallback.triggerOnFrameRateOverridesChanged();
}
return consideredSignals;
}
auto Scheduler::chooseDisplayModes() const -> DisplayModeChoiceMap {
ATRACE_CALL();
using RankedRefreshRates = RefreshRateSelector::RankedFrameRates;
display::PhysicalDisplayVector<RankedRefreshRates> perDisplayRanking;
const auto globalSignals = makeGlobalSignals();
Fps pacesetterFps;
for (const auto& [id, display] : mDisplays) {
auto rankedFrameRates =
display.selectorPtr->getRankedFrameRates(mPolicy.contentRequirements,
globalSignals);
if (id == *mPacesetterDisplayId) {
pacesetterFps = rankedFrameRates.ranking.front().frameRateMode.fps;
}
perDisplayRanking.push_back(std::move(rankedFrameRates));
}
DisplayModeChoiceMap modeChoices;
using fps_approx_ops::operator==;
for (auto& [rankings, signals] : perDisplayRanking) {
const auto chosenFrameRateMode =
ftl::find_if(rankings,
[&](const auto& ranking) {
return ranking.frameRateMode.fps == pacesetterFps;
})
.transform([](const auto& scoredFrameRate) {
return scoredFrameRate.get().frameRateMode;
})
.value_or(rankings.front().frameRateMode);
modeChoices.try_emplace(chosenFrameRateMode.modePtr->getPhysicalDisplayId(),
DisplayModeChoice{chosenFrameRateMode, signals});
}
return modeChoices;
}
GlobalSignals Scheduler::makeGlobalSignals() const {
const bool powerOnImminent = mDisplayPowerTimer &&
(mPolicy.displayPowerMode != hal::PowerMode::ON ||
mPolicy.displayPowerTimer == TimerState::Reset);
return {.touch = mTouchTimer && mPolicy.touch == TouchState::Active,
.idle = mPolicy.idleTimer == TimerState::Expired,
.powerOnImminent = powerOnImminent};
}
FrameRateMode Scheduler::getPreferredDisplayMode() {
std::lock_guard<std::mutex> lock(mPolicyLock);
const auto frameRateMode =
pacesetterSelectorPtr()
->getRankedFrameRates(mPolicy.contentRequirements, makeGlobalSignals())
.ranking.front()
.frameRateMode;
#ifdef MTK_SF_MSYNC_3
if (isShowCDDetailLog()) {
ALOGI("%s: %s", __func__, to_string(frameRateMode).c_str());
}
#endif
// Make sure the stored mode is up to date.
mPolicy.modeOpt = frameRateMode;
return frameRateMode;
}
void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);
const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
}
}
bool Scheduler::onPostComposition(nsecs_t presentTime) {
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) {
// We need to composite again as refreshTimeNanos is still in the future.
return true;
}
mLastVsyncPeriodChangeTimeline->refreshRequired = false;
}
return false;
}
void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) {
mLayerHistory.setDisplayArea(displayArea);
}
void Scheduler::setGameModeRefreshRateForUid(FrameRateOverride frameRateOverride) {
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
return;
}
mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride);
}
void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) {
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
return;
}
mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride);
}
#ifdef MTK_SF_MSYNC_3
void Scheduler::setMsync3Period(PhysicalDisplayId id, const nsecs_t period) {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
const auto displayOpt = mDisplays.get(id);
LOG_ALWAYS_FATAL_IF(!displayOpt);
const Display& display = *displayOpt;
display.schedulePtr->getTracker().setPeriod(period);
if (isShowCDDetailLog()) {
ATRACE_NAME(android::base::StringPrintf("%s: period=%" PRId64, __func__, period).c_str());
}
mMsync3_period.emplace_or_replace(id, period);
}
void Scheduler::resetMsync3Period(PhysicalDisplayId id) {
if (isShowCDDetailLog()) {
ATRACE_NAME(android::base::StringPrintf("%s" PRId64, __func__).c_str());
}
mMsync3_period.emplace_or_replace(id, static_cast<nsecs_t>(0));
}
bool Scheduler::isModeChangePending(PhysicalDisplayId id) {
if (mMsync3_period.contains(id)) {
const nsecs_t msync3Period = *mMsync3_period.get(id);
return msync3Period > 0;
}
return false;
}
void Scheduler::setNextPredictedTargetVsync(PhysicalDisplayId id, const nsecs_t time) {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
const auto displayOpt = mDisplays.get(id);
LOG_ALWAYS_FATAL_IF(!displayOpt);
const Display& display = *displayOpt;
if (isShowCDDetailLog()) {
ATRACE_NAME(android::base::StringPrintf("%s: vsyncTime=%" PRId64, __func__, time).c_str());
}
display.schedulePtr->getTracker().setNextPredictedTargetVsync(time);
}
void Scheduler::setTargetVsyncVector(std::vector<std::vector<uint32_t>>& vecTargetVsync) {
ALOGI("%s: vecTargetVsync.size()=%zu", __func__, vecTargetVsync.size());
mVecTargetVsync = vecTargetVsync;
for (size_t i = 0; i < mVecTargetVsync.size(); i++) {
for (size_t j = 0; j < mVecTargetVsync[i].size(); j++) {
ALOGI("%s: (%zu,%zu)=%u", __func__, i, j, mVecTargetVsync[i][j]);
}
}
}
bool Scheduler::isTargetNext2Vsync(size_t high, size_t low) {
if (high < mVecTargetVsync.size() && low < mVecTargetVsync[high].size()) {
return mVecTargetVsync[high][low] >= 2 ? true : false;
}
return false;
}
bool Scheduler::isShowCDDetailLog() {
static bool enable = false;
static bool read = false;
if (!read) {
enable = android::base::GetBoolProperty("debug.sf.show_content_detection_detail_log", false);
read = true;
}
return enable;
}
void Scheduler::cancelAppVsync() {
const ConnectionHandle handle = mAppConnectionHandle;
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->cancelVsync();
}
void Scheduler::scheduleAppVsync() {
const ConnectionHandle handle = mAppConnectionHandle;
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->scheduleVsync();
}
#endif
#ifdef MTK_SF_MSYNC
void Scheduler::setMSyncOn(PhysicalDisplayId id, bool on) {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
const auto displayOpt = mDisplays.get(id);
LOG_ALWAYS_FATAL_IF(!displayOpt);
const Display& display = *displayOpt;
display.schedulePtr->getTracker().setMSyncOn(on);
}
void Scheduler::setQ2QFull(PhysicalDisplayId id, bool bQ2QFull) {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
const auto displayOpt = mDisplays.get(id);
LOG_ALWAYS_FATAL_IF(!displayOpt);
const Display& display = *displayOpt;
display.schedulePtr->getTracker().setQ2QFull(bQ2QFull);
}
#endif
#ifdef MTK_SF_HINT_LOW_POWER
template <typename S, typename T>
bool Scheduler::applyLowPower(S LowPower::*statePtr, T&& newState) {
std::lock_guard<std::mutex> lock(mLowPowerLock);
if (!mFeatures.test(Feature::kSFHintLowPower) && !mIsPELT32Enabled) {
return false;
}
auto& currentState = mLowPower.*statePtr;
if (currentState == newState) return true;
currentState = std::forward<T>(newState);
bool bHintLowPower = false;
int nLowPowerCount = 0;
if (mLowPower.touch == TouchState::Active) {
ALOGI("%s: touch active", __func__);
bHintLowPower = false;
} else if (mLowPower.idleTimer == TimerState::Expired) {
ALOGI("%s: idle", __func__);
bHintLowPower = true;
} else if (!mLowPower.contentRequirements.empty()) {
ALOGI("%s: %zu layer(s)", __func__, mLowPower.contentRequirements.size());
for (const auto& layer : mLowPower.contentRequirements) {
ALOGI("%s: vote=%s, fps=%.2f, weight=%.2f, focused=%d, name=%s",
__func__, ftl::enum_string(layer.vote).c_str(), layer.desiredRefreshRate.getValue(),
layer.weight, layer.focused, layer.name.c_str());
if (layer.vote == scheduler::LayerHistory::LayerVoteType::Max) {
ALOGI("%s: Layer with Max vote type, not hint low power", __func__);
bHintLowPower = false;
break;
} else if (layer.vote == scheduler::LayerHistory::LayerVoteType::Min) {
ALOGI("%s: Layer with Min vote type, hint low power", __func__);
nLowPowerCount++;
} else {
if (layer.desiredRefreshRate.getIntValue() <= 30) {
ALOGI("%s: Layer's fps is less than or equal to 30, hint low power", __func__);
nLowPowerCount++;
} else {
ALOGI("%s: Layer's fps is greater than 30, not hint low power", __func__);
bHintLowPower = false;
break;
}
}
}
if (nLowPowerCount == 1) {
bHintLowPower = true;
}
} else {
ALOGI("%s: no layers update, skip hint low power", __func__);
return true;
}
if (mLowPower.bHintLowPower != bHintLowPower) {
ALOGI("%s: hint low power as %d", __func__, bHintLowPower);
mSchedulerCallback.hintLowPower(bHintLowPower);
mLowPower.bHintLowPower = bHintLowPower;
}
return true;
}
bool Scheduler::setPELT32(bool enabled) {
std::lock_guard<std::mutex> lock(mLowPowerLock);
if (mIsPELT32Enabled == enabled) {
return true;
}
mIsPELT32Enabled = enabled;
ALOGI("%s: mIsPELT32Enabled=%d", __func__, mIsPELT32Enabled);
if (mIsPELT32Enabled) {
// restart idle and touch timer if no content detection
if (!mFeatures.test(Feature::kContentDetection)) {
mLayerHistory.setPELT32(true);
if (const auto pacesetterPtr = FTL_FAKE_GUARD(mDisplayLock, pacesetterSelectorPtrLocked())) {
pacesetterPtr->stopIdleTimer();
pacesetterPtr->clearIdleTimerCallbacks();
pacesetterPtr->replaceIdleTimer(1000);
pacesetterPtr->setIdleTimerCallbacks(
{.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); },
.onExpired = [this] { idleTimerCallback(TimerState::Expired); }},
.kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); },
.onExpired =
[this] { kernelIdleTimerCallback(TimerState::Expired); }}});
pacesetterPtr->startIdleTimer();
}
if (mTouchTimer) {
//mTouchTimer->stop();
mTouchTimer.reset();
}
mTouchTimer.emplace(
"TouchTimer", std::chrono::milliseconds(1000),
[this] { touchTimerCallback(TimerState::Reset); },
[this] { touchTimerCallback(TimerState::Expired); });
mTouchTimer->start();
}
} else {
mLowPower.bHintLowPower = false;
// stop idle and touch timer if no content detection
if (!mFeatures.test(Feature::kContentDetection)) {
mLayerHistory.setPELT32(false);
mLayerHistory.clear();
if (const auto pacesetterPtr = FTL_FAKE_GUARD(mDisplayLock, pacesetterSelectorPtrLocked())) {
pacesetterPtr->stopIdleTimer();
pacesetterPtr->clearIdleTimerCallbacks();
}
if (mTouchTimer) {
//mTouchTimer->stop();
mTouchTimer.reset();
}
}
}
return true;
}
#endif
} // namespace android::scheduler