2622 lines
105 KiB
C++
2622 lines
105 KiB
C++
/*
|
|
* Copyright 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
|
|
#include <android/hardware/graphics/common/1.0/types.h>
|
|
#include <grallocusage/GrallocUsageConversion.h>
|
|
#include <graphicsenv/GraphicsEnv.h>
|
|
#include <hardware/gralloc.h>
|
|
#include <hardware/gralloc1.h>
|
|
#include <log/log.h>
|
|
#include <sync/sync.h>
|
|
#include <system/window.h>
|
|
#include <ui/BufferQueueDefs.h>
|
|
#include <ui/DebugUtils.h>
|
|
#include <ui/PixelFormat.h>
|
|
#include <utils/StrongPointer.h>
|
|
#include <utils/Timers.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include <algorithm>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#ifdef MTK_GPUD_SUPPORT
|
|
#include <gpud/gpud_api.h>
|
|
#endif
|
|
|
|
#include "driver.h"
|
|
|
|
using android::hardware::graphics::common::V1_0::BufferUsage;
|
|
|
|
namespace vulkan {
|
|
namespace driver {
|
|
|
|
namespace {
|
|
|
|
static uint64_t convertGralloc1ToBufferUsage(uint64_t producerUsage,
|
|
uint64_t consumerUsage) {
|
|
static_assert(uint64_t(GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN) ==
|
|
uint64_t(GRALLOC1_PRODUCER_USAGE_CPU_READ_OFTEN),
|
|
"expected ConsumerUsage and ProducerUsage CPU_READ_OFTEN "
|
|
"bits to match");
|
|
uint64_t merged = producerUsage | consumerUsage;
|
|
if ((merged & (GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN)) ==
|
|
GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN) {
|
|
merged &= ~uint64_t(GRALLOC1_CONSUMER_USAGE_CPU_READ_OFTEN);
|
|
merged |= BufferUsage::CPU_READ_OFTEN;
|
|
}
|
|
if ((merged & (GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN)) ==
|
|
GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN) {
|
|
merged &= ~uint64_t(GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN);
|
|
merged |= BufferUsage::CPU_WRITE_OFTEN;
|
|
}
|
|
return merged;
|
|
}
|
|
|
|
const VkSurfaceTransformFlagsKHR kSupportedTransforms =
|
|
VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR |
|
|
VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR |
|
|
VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR |
|
|
VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR |
|
|
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR |
|
|
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR |
|
|
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR |
|
|
VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR |
|
|
VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
|
|
|
|
VkSurfaceTransformFlagBitsKHR TranslateNativeToVulkanTransform(int native) {
|
|
// Native and Vulkan transforms are isomorphic, but are represented
|
|
// differently. Vulkan transforms are built up of an optional horizontal
|
|
// mirror, followed by a clockwise 0/90/180/270-degree rotation. Native
|
|
// transforms are built up from a horizontal flip, vertical flip, and
|
|
// 90-degree rotation, all optional but always in that order.
|
|
|
|
switch (native) {
|
|
case 0:
|
|
return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
|
|
case NATIVE_WINDOW_TRANSFORM_FLIP_H:
|
|
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR;
|
|
case NATIVE_WINDOW_TRANSFORM_FLIP_V:
|
|
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR;
|
|
case NATIVE_WINDOW_TRANSFORM_ROT_180:
|
|
return VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR;
|
|
case NATIVE_WINDOW_TRANSFORM_ROT_90:
|
|
return VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR;
|
|
case NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90:
|
|
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR;
|
|
case NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90:
|
|
return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR;
|
|
case NATIVE_WINDOW_TRANSFORM_ROT_270:
|
|
return VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR;
|
|
case NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY:
|
|
default:
|
|
return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
|
|
}
|
|
}
|
|
|
|
int TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform) {
|
|
switch (transform) {
|
|
case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_ROT_90;
|
|
case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_ROT_180;
|
|
case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_ROT_270;
|
|
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_FLIP_H;
|
|
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_FLIP_H |
|
|
NATIVE_WINDOW_TRANSFORM_ROT_90;
|
|
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_FLIP_V;
|
|
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_FLIP_V |
|
|
NATIVE_WINDOW_TRANSFORM_ROT_90;
|
|
case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
|
|
case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform) {
|
|
switch (transform) {
|
|
case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_ROT_270;
|
|
case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_ROT_180;
|
|
case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_ROT_90;
|
|
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_FLIP_H;
|
|
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_FLIP_H |
|
|
NATIVE_WINDOW_TRANSFORM_ROT_90;
|
|
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_FLIP_V;
|
|
case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
|
|
return NATIVE_WINDOW_TRANSFORM_FLIP_V |
|
|
NATIVE_WINDOW_TRANSFORM_ROT_90;
|
|
case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
|
|
case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
class TimingInfo {
|
|
public:
|
|
TimingInfo(const VkPresentTimeGOOGLE* qp, uint64_t nativeFrameId)
|
|
: vals_{qp->presentID, qp->desiredPresentTime, 0, 0, 0},
|
|
native_frame_id_(nativeFrameId) {}
|
|
bool ready() const {
|
|
return (timestamp_desired_present_time_ !=
|
|
NATIVE_WINDOW_TIMESTAMP_PENDING &&
|
|
timestamp_actual_present_time_ !=
|
|
NATIVE_WINDOW_TIMESTAMP_PENDING &&
|
|
timestamp_render_complete_time_ !=
|
|
NATIVE_WINDOW_TIMESTAMP_PENDING &&
|
|
timestamp_composition_latch_time_ !=
|
|
NATIVE_WINDOW_TIMESTAMP_PENDING);
|
|
}
|
|
void calculate(int64_t rdur) {
|
|
bool anyTimestampInvalid =
|
|
(timestamp_actual_present_time_ ==
|
|
NATIVE_WINDOW_TIMESTAMP_INVALID) ||
|
|
(timestamp_render_complete_time_ ==
|
|
NATIVE_WINDOW_TIMESTAMP_INVALID) ||
|
|
(timestamp_composition_latch_time_ ==
|
|
NATIVE_WINDOW_TIMESTAMP_INVALID);
|
|
if (anyTimestampInvalid) {
|
|
ALOGE("Unexpectedly received invalid timestamp.");
|
|
vals_.actualPresentTime = 0;
|
|
vals_.earliestPresentTime = 0;
|
|
vals_.presentMargin = 0;
|
|
return;
|
|
}
|
|
|
|
vals_.actualPresentTime =
|
|
static_cast<uint64_t>(timestamp_actual_present_time_);
|
|
int64_t margin = (timestamp_composition_latch_time_ -
|
|
timestamp_render_complete_time_);
|
|
// Calculate vals_.earliestPresentTime, and potentially adjust
|
|
// vals_.presentMargin. The initial value of vals_.earliestPresentTime
|
|
// is vals_.actualPresentTime. If we can subtract rdur (the duration
|
|
// of a refresh cycle) from vals_.earliestPresentTime (and also from
|
|
// vals_.presentMargin) and still leave a positive margin, then we can
|
|
// report to the application that it could have presented earlier than
|
|
// it did (per the extension specification). If for some reason, we
|
|
// can do this subtraction repeatedly, we do, since
|
|
// vals_.earliestPresentTime really is supposed to be the "earliest".
|
|
int64_t early_time = timestamp_actual_present_time_;
|
|
while ((margin > rdur) &&
|
|
((early_time - rdur) > timestamp_composition_latch_time_)) {
|
|
early_time -= rdur;
|
|
margin -= rdur;
|
|
}
|
|
vals_.earliestPresentTime = static_cast<uint64_t>(early_time);
|
|
vals_.presentMargin = static_cast<uint64_t>(margin);
|
|
}
|
|
void get_values(VkPastPresentationTimingGOOGLE* values) const {
|
|
*values = vals_;
|
|
}
|
|
|
|
public:
|
|
VkPastPresentationTimingGOOGLE vals_ { 0, 0, 0, 0, 0 };
|
|
|
|
uint64_t native_frame_id_ { 0 };
|
|
int64_t timestamp_desired_present_time_{ NATIVE_WINDOW_TIMESTAMP_PENDING };
|
|
int64_t timestamp_actual_present_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
|
|
int64_t timestamp_render_complete_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING };
|
|
int64_t timestamp_composition_latch_time_
|
|
{ NATIVE_WINDOW_TIMESTAMP_PENDING };
|
|
};
|
|
|
|
struct Surface {
|
|
android::sp<ANativeWindow> window;
|
|
VkSwapchainKHR swapchain_handle;
|
|
uint64_t consumer_usage;
|
|
|
|
// Indicate whether this surface has been used by a swapchain, no matter the
|
|
// swapchain is still current or has been destroyed.
|
|
bool used_by_swapchain;
|
|
};
|
|
|
|
VkSurfaceKHR HandleFromSurface(Surface* surface) {
|
|
return VkSurfaceKHR(reinterpret_cast<uint64_t>(surface));
|
|
}
|
|
|
|
Surface* SurfaceFromHandle(VkSurfaceKHR handle) {
|
|
return reinterpret_cast<Surface*>(handle);
|
|
}
|
|
|
|
// Maximum number of TimingInfo structs to keep per swapchain:
|
|
enum { MAX_TIMING_INFOS = 10 };
|
|
// Minimum number of frames to look for in the past (so we don't cause
|
|
// syncronous requests to Surface Flinger):
|
|
enum { MIN_NUM_FRAMES_AGO = 5 };
|
|
|
|
bool IsSharedPresentMode(VkPresentModeKHR mode) {
|
|
return mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
|
|
mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR;
|
|
}
|
|
|
|
struct Swapchain {
|
|
Swapchain(Surface& surface_,
|
|
uint32_t num_images_,
|
|
VkPresentModeKHR present_mode,
|
|
int pre_transform_,
|
|
int64_t refresh_duration_)
|
|
: surface(surface_),
|
|
num_images(num_images_),
|
|
mailbox_mode(present_mode == VK_PRESENT_MODE_MAILBOX_KHR),
|
|
pre_transform(pre_transform_),
|
|
frame_timestamps_enabled(false),
|
|
refresh_duration(refresh_duration_),
|
|
acquire_next_image_timeout(-1),
|
|
shared(IsSharedPresentMode(present_mode)) {
|
|
}
|
|
|
|
VkResult get_refresh_duration(uint64_t& outRefreshDuration)
|
|
{
|
|
ANativeWindow* window = surface.window.get();
|
|
int err = native_window_get_refresh_cycle_duration(
|
|
window,
|
|
&refresh_duration);
|
|
if (err != android::OK) {
|
|
ALOGE("%s:native_window_get_refresh_cycle_duration failed: %s (%d)",
|
|
__func__, strerror(-err), err );
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
outRefreshDuration = refresh_duration;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
Surface& surface;
|
|
uint32_t num_images;
|
|
bool mailbox_mode;
|
|
int pre_transform;
|
|
bool frame_timestamps_enabled;
|
|
int64_t refresh_duration;
|
|
nsecs_t acquire_next_image_timeout;
|
|
bool shared;
|
|
|
|
struct Image {
|
|
Image()
|
|
: image(VK_NULL_HANDLE),
|
|
dequeue_fence(-1),
|
|
release_fence(-1),
|
|
dequeued(false) {}
|
|
VkImage image;
|
|
// If the image is bound to memory, an sp to the underlying gralloc buffer.
|
|
// Otherwise, nullptr; the image will be bound to memory as part of
|
|
// AcquireNextImage.
|
|
android::sp<ANativeWindowBuffer> buffer;
|
|
// The fence is only valid when the buffer is dequeued, and should be
|
|
// -1 any other time. When valid, we own the fd, and must ensure it is
|
|
// closed: either by closing it explicitly when queueing the buffer,
|
|
// or by passing ownership e.g. to ANativeWindow::cancelBuffer().
|
|
int dequeue_fence;
|
|
// This fence is a dup of the sync fd returned from the driver via
|
|
// vkQueueSignalReleaseImageANDROID upon vkQueuePresentKHR. We must
|
|
// ensure it is closed upon re-presenting or releasing the image.
|
|
int release_fence;
|
|
bool dequeued;
|
|
} images[android::BufferQueueDefs::NUM_BUFFER_SLOTS];
|
|
|
|
std::vector<TimingInfo> timing;
|
|
};
|
|
|
|
VkSwapchainKHR HandleFromSwapchain(Swapchain* swapchain) {
|
|
return VkSwapchainKHR(reinterpret_cast<uint64_t>(swapchain));
|
|
}
|
|
|
|
Swapchain* SwapchainFromHandle(VkSwapchainKHR handle) {
|
|
return reinterpret_cast<Swapchain*>(handle);
|
|
}
|
|
|
|
static bool IsFencePending(int fd) {
|
|
if (fd < 0)
|
|
return false;
|
|
|
|
errno = 0;
|
|
return sync_wait(fd, 0 /* timeout */) == -1 && errno == ETIME;
|
|
}
|
|
|
|
void ReleaseSwapchainImage(VkDevice device,
|
|
bool shared_present,
|
|
ANativeWindow* window,
|
|
int release_fence,
|
|
Swapchain::Image& image,
|
|
bool defer_if_pending) {
|
|
ATRACE_CALL();
|
|
|
|
ALOG_ASSERT(release_fence == -1 || image.dequeued,
|
|
"ReleaseSwapchainImage: can't provide a release fence for "
|
|
"non-dequeued images");
|
|
|
|
if (image.dequeued) {
|
|
if (release_fence >= 0) {
|
|
// We get here from vkQueuePresentKHR. The application is
|
|
// responsible for creating an execution dependency chain from
|
|
// vkAcquireNextImage (dequeue_fence) to vkQueuePresentKHR
|
|
// (release_fence), so we can drop the dequeue_fence here.
|
|
if (image.dequeue_fence >= 0)
|
|
close(image.dequeue_fence);
|
|
} else {
|
|
// We get here during swapchain destruction, or various serious
|
|
// error cases e.g. when we can't create the release_fence during
|
|
// vkQueuePresentKHR. In non-error cases, the dequeue_fence should
|
|
// have already signalled, since the swapchain images are supposed
|
|
// to be idle before the swapchain is destroyed. In error cases,
|
|
// there may be rendering in flight to the image, but since we
|
|
// weren't able to create a release_fence, waiting for the
|
|
// dequeue_fence is about the best we can do.
|
|
release_fence = image.dequeue_fence;
|
|
}
|
|
image.dequeue_fence = -1;
|
|
|
|
// It's invalid to call cancelBuffer on a shared buffer
|
|
if (window && !shared_present) {
|
|
window->cancelBuffer(window, image.buffer.get(), release_fence);
|
|
} else {
|
|
if (release_fence >= 0) {
|
|
sync_wait(release_fence, -1 /* forever */);
|
|
close(release_fence);
|
|
}
|
|
}
|
|
release_fence = -1;
|
|
image.dequeued = false;
|
|
}
|
|
|
|
if (defer_if_pending && IsFencePending(image.release_fence))
|
|
return;
|
|
|
|
if (image.release_fence >= 0) {
|
|
close(image.release_fence);
|
|
image.release_fence = -1;
|
|
}
|
|
|
|
if (image.image) {
|
|
ATRACE_BEGIN("DestroyImage");
|
|
GetData(device).driver.DestroyImage(device, image.image, nullptr);
|
|
ATRACE_END();
|
|
image.image = VK_NULL_HANDLE;
|
|
}
|
|
|
|
image.buffer.clear();
|
|
}
|
|
|
|
void OrphanSwapchain(VkDevice device, Swapchain* swapchain) {
|
|
if (swapchain->surface.swapchain_handle != HandleFromSwapchain(swapchain))
|
|
return;
|
|
for (uint32_t i = 0; i < swapchain->num_images; i++) {
|
|
if (!swapchain->images[i].dequeued) {
|
|
ReleaseSwapchainImage(device, swapchain->shared, nullptr, -1,
|
|
swapchain->images[i], true);
|
|
}
|
|
}
|
|
swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
|
|
swapchain->timing.clear();
|
|
}
|
|
|
|
uint32_t get_num_ready_timings(Swapchain& swapchain) {
|
|
if (swapchain.timing.size() < MIN_NUM_FRAMES_AGO) {
|
|
return 0;
|
|
}
|
|
|
|
uint32_t num_ready = 0;
|
|
const size_t num_timings = swapchain.timing.size() - MIN_NUM_FRAMES_AGO + 1;
|
|
for (uint32_t i = 0; i < num_timings; i++) {
|
|
TimingInfo& ti = swapchain.timing[i];
|
|
if (ti.ready()) {
|
|
// This TimingInfo is ready to be reported to the user. Add it
|
|
// to the num_ready.
|
|
num_ready++;
|
|
continue;
|
|
}
|
|
// This TimingInfo is not yet ready to be reported to the user,
|
|
// and so we should look for any available timestamps that
|
|
// might make it ready.
|
|
int64_t desired_present_time = 0;
|
|
int64_t render_complete_time = 0;
|
|
int64_t composition_latch_time = 0;
|
|
int64_t actual_present_time = 0;
|
|
// Obtain timestamps:
|
|
int err = native_window_get_frame_timestamps(
|
|
swapchain.surface.window.get(), ti.native_frame_id_,
|
|
&desired_present_time, &render_complete_time,
|
|
&composition_latch_time,
|
|
nullptr, //&first_composition_start_time,
|
|
nullptr, //&last_composition_start_time,
|
|
nullptr, //&composition_finish_time,
|
|
&actual_present_time,
|
|
nullptr, //&dequeue_ready_time,
|
|
nullptr /*&reads_done_time*/);
|
|
|
|
if (err != android::OK) {
|
|
continue;
|
|
}
|
|
|
|
// Record the timestamp(s) we received, and then see if this TimingInfo
|
|
// is ready to be reported to the user:
|
|
ti.timestamp_desired_present_time_ = desired_present_time;
|
|
ti.timestamp_actual_present_time_ = actual_present_time;
|
|
ti.timestamp_render_complete_time_ = render_complete_time;
|
|
ti.timestamp_composition_latch_time_ = composition_latch_time;
|
|
|
|
if (ti.ready()) {
|
|
// The TimingInfo has received enough timestamps, and should now
|
|
// use those timestamps to calculate the info that should be
|
|
// reported to the user:
|
|
ti.calculate(swapchain.refresh_duration);
|
|
num_ready++;
|
|
}
|
|
}
|
|
return num_ready;
|
|
}
|
|
|
|
void copy_ready_timings(Swapchain& swapchain,
|
|
uint32_t* count,
|
|
VkPastPresentationTimingGOOGLE* timings) {
|
|
if (swapchain.timing.empty()) {
|
|
*count = 0;
|
|
return;
|
|
}
|
|
|
|
size_t last_ready = swapchain.timing.size() - 1;
|
|
while (!swapchain.timing[last_ready].ready()) {
|
|
if (last_ready == 0) {
|
|
*count = 0;
|
|
return;
|
|
}
|
|
last_ready--;
|
|
}
|
|
|
|
uint32_t num_copied = 0;
|
|
int32_t num_to_remove = 0;
|
|
for (uint32_t i = 0; i <= last_ready && num_copied < *count; i++) {
|
|
const TimingInfo& ti = swapchain.timing[i];
|
|
if (ti.ready()) {
|
|
ti.get_values(&timings[num_copied]);
|
|
num_copied++;
|
|
}
|
|
num_to_remove++;
|
|
}
|
|
|
|
// Discard old frames that aren't ready if newer frames are ready.
|
|
// We don't expect to get the timing info for those old frames.
|
|
swapchain.timing.erase(swapchain.timing.begin(),
|
|
swapchain.timing.begin() + num_to_remove);
|
|
|
|
*count = num_copied;
|
|
}
|
|
|
|
android::PixelFormat GetNativePixelFormat(VkFormat format) {
|
|
android::PixelFormat native_format = android::PIXEL_FORMAT_RGBA_8888;
|
|
switch (format) {
|
|
case VK_FORMAT_R8G8B8A8_UNORM:
|
|
case VK_FORMAT_R8G8B8A8_SRGB:
|
|
native_format = android::PIXEL_FORMAT_RGBA_8888;
|
|
break;
|
|
case VK_FORMAT_R5G6B5_UNORM_PACK16:
|
|
native_format = android::PIXEL_FORMAT_RGB_565;
|
|
break;
|
|
case VK_FORMAT_R16G16B16A16_SFLOAT:
|
|
native_format = android::PIXEL_FORMAT_RGBA_FP16;
|
|
break;
|
|
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
|
|
native_format = android::PIXEL_FORMAT_RGBA_1010102;
|
|
break;
|
|
case VK_FORMAT_R8_UNORM:
|
|
native_format = android::PIXEL_FORMAT_R_8;
|
|
break;
|
|
case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16:
|
|
native_format = android::PIXEL_FORMAT_RGBA_10101010;
|
|
break;
|
|
default:
|
|
ALOGV("unsupported swapchain format %d", format);
|
|
break;
|
|
}
|
|
return native_format;
|
|
}
|
|
|
|
android_dataspace GetNativeDataspace(VkColorSpaceKHR colorspace) {
|
|
switch (colorspace) {
|
|
case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR:
|
|
return HAL_DATASPACE_V0_SRGB;
|
|
case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT:
|
|
return HAL_DATASPACE_DISPLAY_P3;
|
|
case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT:
|
|
return HAL_DATASPACE_V0_SCRGB_LINEAR;
|
|
case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT:
|
|
return HAL_DATASPACE_V0_SCRGB;
|
|
case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT:
|
|
return HAL_DATASPACE_DCI_P3_LINEAR;
|
|
case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT:
|
|
return HAL_DATASPACE_DCI_P3;
|
|
case VK_COLOR_SPACE_BT709_LINEAR_EXT:
|
|
return HAL_DATASPACE_V0_SRGB_LINEAR;
|
|
case VK_COLOR_SPACE_BT709_NONLINEAR_EXT:
|
|
return HAL_DATASPACE_V0_SRGB;
|
|
case VK_COLOR_SPACE_BT2020_LINEAR_EXT:
|
|
return HAL_DATASPACE_BT2020_LINEAR;
|
|
case VK_COLOR_SPACE_HDR10_ST2084_EXT:
|
|
return static_cast<android_dataspace>(
|
|
HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
|
|
HAL_DATASPACE_RANGE_FULL);
|
|
case VK_COLOR_SPACE_DOLBYVISION_EXT:
|
|
return static_cast<android_dataspace>(
|
|
HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 |
|
|
HAL_DATASPACE_RANGE_FULL);
|
|
case VK_COLOR_SPACE_HDR10_HLG_EXT:
|
|
return static_cast<android_dataspace>(
|
|
HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_HLG |
|
|
HAL_DATASPACE_RANGE_FULL);
|
|
case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT:
|
|
return static_cast<android_dataspace>(
|
|
HAL_DATASPACE_STANDARD_ADOBE_RGB |
|
|
HAL_DATASPACE_TRANSFER_LINEAR | HAL_DATASPACE_RANGE_FULL);
|
|
case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT:
|
|
return HAL_DATASPACE_ADOBE_RGB;
|
|
|
|
// Pass through is intended to allow app to provide data that is passed
|
|
// to the display system without modification.
|
|
case VK_COLOR_SPACE_PASS_THROUGH_EXT:
|
|
return HAL_DATASPACE_ARBITRARY;
|
|
|
|
default:
|
|
// This indicates that we don't know about the
|
|
// dataspace specified and we should indicate that
|
|
// it's unsupported
|
|
return HAL_DATASPACE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
VKAPI_ATTR
|
|
VkResult CreateAndroidSurfaceKHR(
|
|
VkInstance instance,
|
|
const VkAndroidSurfaceCreateInfoKHR* pCreateInfo,
|
|
const VkAllocationCallbacks* allocator,
|
|
VkSurfaceKHR* out_surface) {
|
|
ATRACE_CALL();
|
|
|
|
if (!allocator)
|
|
allocator = &GetData(instance).allocator;
|
|
void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Surface),
|
|
alignof(Surface),
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (!mem)
|
|
return VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
Surface* surface = new (mem) Surface;
|
|
|
|
surface->window = pCreateInfo->window;
|
|
surface->swapchain_handle = VK_NULL_HANDLE;
|
|
surface->used_by_swapchain = false;
|
|
int err = native_window_get_consumer_usage(surface->window.get(),
|
|
&surface->consumer_usage);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_get_consumer_usage() failed: %s (%d)",
|
|
strerror(-err), err);
|
|
surface->~Surface();
|
|
allocator->pfnFree(allocator->pUserData, surface);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
err =
|
|
native_window_api_connect(surface->window.get(), NATIVE_WINDOW_API_EGL);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_api_connect() failed: %s (%d)", strerror(-err),
|
|
err);
|
|
surface->~Surface();
|
|
allocator->pfnFree(allocator->pUserData, surface);
|
|
return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
|
|
}
|
|
|
|
*out_surface = HandleFromSurface(surface);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
void DestroySurfaceKHR(VkInstance instance,
|
|
VkSurfaceKHR surface_handle,
|
|
const VkAllocationCallbacks* allocator) {
|
|
ATRACE_CALL();
|
|
|
|
Surface* surface = SurfaceFromHandle(surface_handle);
|
|
if (!surface)
|
|
return;
|
|
native_window_api_disconnect(surface->window.get(), NATIVE_WINDOW_API_EGL);
|
|
ALOGV_IF(surface->swapchain_handle != VK_NULL_HANDLE,
|
|
"destroyed VkSurfaceKHR 0x%" PRIx64
|
|
" has active VkSwapchainKHR 0x%" PRIx64,
|
|
reinterpret_cast<uint64_t>(surface_handle),
|
|
reinterpret_cast<uint64_t>(surface->swapchain_handle));
|
|
surface->~Surface();
|
|
if (!allocator)
|
|
allocator = &GetData(instance).allocator;
|
|
allocator->pfnFree(allocator->pUserData, surface);
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice /*pdev*/,
|
|
uint32_t /*queue_family*/,
|
|
VkSurfaceKHR /*surface_handle*/,
|
|
VkBool32* supported) {
|
|
*supported = VK_TRUE;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetPhysicalDeviceSurfaceCapabilitiesKHR(
|
|
VkPhysicalDevice pdev,
|
|
VkSurfaceKHR surface,
|
|
VkSurfaceCapabilitiesKHR* capabilities) {
|
|
ATRACE_CALL();
|
|
|
|
// Implement in terms of GetPhysicalDeviceSurfaceCapabilities2KHR
|
|
|
|
VkPhysicalDeviceSurfaceInfo2KHR info2 = {
|
|
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR,
|
|
nullptr,
|
|
surface
|
|
};
|
|
|
|
VkSurfaceCapabilities2KHR caps2 = {
|
|
VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR,
|
|
nullptr,
|
|
{},
|
|
};
|
|
|
|
VkResult result = GetPhysicalDeviceSurfaceCapabilities2KHR(pdev, &info2, &caps2);
|
|
*capabilities = caps2.surfaceCapabilities;
|
|
return result;
|
|
}
|
|
|
|
// Does the call-twice and VK_INCOMPLETE handling for querying lists
|
|
// of things, where we already have the full set built in a vector.
|
|
template <typename T>
|
|
VkResult CopyWithIncomplete(std::vector<T> const& things,
|
|
T* callerPtr, uint32_t* callerCount) {
|
|
VkResult result = VK_SUCCESS;
|
|
if (callerPtr) {
|
|
if (things.size() > *callerCount)
|
|
result = VK_INCOMPLETE;
|
|
*callerCount = std::min(uint32_t(things.size()), *callerCount);
|
|
std::copy(things.begin(), things.begin() + *callerCount, callerPtr);
|
|
} else {
|
|
*callerCount = things.size();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev,
|
|
VkSurfaceKHR surface_handle,
|
|
uint32_t* count,
|
|
VkSurfaceFormatKHR* formats) {
|
|
ATRACE_CALL();
|
|
|
|
const InstanceData& instance_data = GetData(pdev);
|
|
|
|
uint64_t consumer_usage = 0;
|
|
bool colorspace_ext =
|
|
instance_data.hook_extensions.test(ProcHook::EXT_swapchain_colorspace);
|
|
if (surface_handle == VK_NULL_HANDLE) {
|
|
ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query;
|
|
bool surfaceless_enabled =
|
|
instance_data.hook_extensions.test(surfaceless);
|
|
if (!surfaceless_enabled) {
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
// Support for VK_GOOGLE_surfaceless_query.
|
|
|
|
// TODO(b/203826952): research proper value; temporarily use the
|
|
// values seen on Pixel
|
|
consumer_usage = AHARDWAREBUFFER_USAGE_COMPOSER_OVERLAY;
|
|
} else {
|
|
Surface& surface = *SurfaceFromHandle(surface_handle);
|
|
consumer_usage = surface.consumer_usage;
|
|
}
|
|
|
|
AHardwareBuffer_Desc desc = {};
|
|
desc.width = 1;
|
|
desc.height = 1;
|
|
desc.layers = 1;
|
|
desc.usage = consumer_usage | AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE |
|
|
AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER;
|
|
|
|
// We must support R8G8B8A8
|
|
std::vector<VkSurfaceFormatKHR> all_formats = {
|
|
{VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
|
|
{VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR},
|
|
};
|
|
|
|
if (colorspace_ext) {
|
|
all_formats.emplace_back(VkSurfaceFormatKHR{
|
|
VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_PASS_THROUGH_EXT});
|
|
all_formats.emplace_back(VkSurfaceFormatKHR{
|
|
VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_PASS_THROUGH_EXT});
|
|
all_formats.emplace_back(VkSurfaceFormatKHR{
|
|
VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_BT709_LINEAR_EXT});
|
|
all_formats.emplace_back(VkSurfaceFormatKHR{
|
|
VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
|
|
all_formats.emplace_back(VkSurfaceFormatKHR{
|
|
VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
|
|
}
|
|
|
|
// NOTE: Any new formats that are added must be coordinated across different
|
|
// Android users. This includes the ANGLE team (a layered implementation of
|
|
// OpenGL-ES).
|
|
|
|
desc.format = AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM;
|
|
if (AHardwareBuffer_isSupported(&desc)) {
|
|
all_formats.emplace_back(VkSurfaceFormatKHR{
|
|
VK_FORMAT_R5G6B5_UNORM_PACK16, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
|
|
if (colorspace_ext) {
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_R5G6B5_UNORM_PACK16,
|
|
VK_COLOR_SPACE_PASS_THROUGH_EXT});
|
|
}
|
|
}
|
|
|
|
desc.format = AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT;
|
|
if (AHardwareBuffer_isSupported(&desc)) {
|
|
all_formats.emplace_back(VkSurfaceFormatKHR{
|
|
VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
|
|
if (colorspace_ext) {
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
|
|
VK_COLOR_SPACE_PASS_THROUGH_EXT});
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
|
|
VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT});
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT,
|
|
VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT});
|
|
}
|
|
}
|
|
|
|
desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM;
|
|
if (AHardwareBuffer_isSupported(&desc)) {
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
|
|
VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
|
|
if (colorspace_ext) {
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
|
|
VK_COLOR_SPACE_PASS_THROUGH_EXT});
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32,
|
|
VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
|
|
}
|
|
}
|
|
|
|
desc.format = AHARDWAREBUFFER_FORMAT_R8_UNORM;
|
|
if (AHardwareBuffer_isSupported(&desc)) {
|
|
if (colorspace_ext) {
|
|
all_formats.emplace_back(VkSurfaceFormatKHR{
|
|
VK_FORMAT_R8_UNORM, VK_COLOR_SPACE_PASS_THROUGH_EXT});
|
|
}
|
|
}
|
|
|
|
bool rgba10x6_formats_ext = false;
|
|
uint32_t exts_count;
|
|
const auto& driver = GetData(pdev).driver;
|
|
driver.EnumerateDeviceExtensionProperties(pdev, nullptr, &exts_count,
|
|
nullptr);
|
|
std::vector<VkExtensionProperties> props(exts_count);
|
|
driver.EnumerateDeviceExtensionProperties(pdev, nullptr, &exts_count,
|
|
props.data());
|
|
for (uint32_t i = 0; i < exts_count; i++) {
|
|
VkExtensionProperties prop = props[i];
|
|
if (strcmp(prop.extensionName,
|
|
VK_EXT_RGBA10X6_FORMATS_EXTENSION_NAME) == 0) {
|
|
rgba10x6_formats_ext = true;
|
|
}
|
|
}
|
|
desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A10_UNORM;
|
|
if (AHardwareBuffer_isSupported(&desc) && rgba10x6_formats_ext) {
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16,
|
|
VK_COLOR_SPACE_SRGB_NONLINEAR_KHR});
|
|
if (colorspace_ext) {
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16,
|
|
VK_COLOR_SPACE_PASS_THROUGH_EXT});
|
|
all_formats.emplace_back(
|
|
VkSurfaceFormatKHR{VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16,
|
|
VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT});
|
|
}
|
|
}
|
|
|
|
// NOTE: Any new formats that are added must be coordinated across different
|
|
// Android users. This includes the ANGLE team (a layered implementation of
|
|
// OpenGL-ES).
|
|
|
|
return CopyWithIncomplete(all_formats, formats, count);
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetPhysicalDeviceSurfaceCapabilities2KHR(
|
|
VkPhysicalDevice physicalDevice,
|
|
const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
|
|
VkSurfaceCapabilities2KHR* pSurfaceCapabilities) {
|
|
ATRACE_CALL();
|
|
|
|
auto surface = pSurfaceInfo->surface;
|
|
auto capabilities = &pSurfaceCapabilities->surfaceCapabilities;
|
|
|
|
VkSurfacePresentModeEXT const *pPresentMode = nullptr;
|
|
for (auto pNext = reinterpret_cast<VkBaseInStructure const *>(pSurfaceInfo->pNext);
|
|
pNext; pNext = reinterpret_cast<VkBaseInStructure const *>(pNext->pNext)) {
|
|
switch (pNext->sType) {
|
|
case VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_EXT:
|
|
pPresentMode = reinterpret_cast<VkSurfacePresentModeEXT const *>(pNext);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
int err;
|
|
int width, height;
|
|
int transform_hint;
|
|
int max_buffer_count;
|
|
int min_undequeued_buffers;
|
|
if (surface == VK_NULL_HANDLE) {
|
|
const InstanceData& instance_data = GetData(physicalDevice);
|
|
ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query;
|
|
bool surfaceless_enabled =
|
|
instance_data.hook_extensions.test(surfaceless);
|
|
if (!surfaceless_enabled) {
|
|
// It is an error to pass a surface==VK_NULL_HANDLE unless the
|
|
// VK_GOOGLE_surfaceless_query extension is enabled
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
// Support for VK_GOOGLE_surfaceless_query. The primary purpose of this
|
|
// extension for this function is for
|
|
// VkSurfaceProtectedCapabilitiesKHR::supportsProtected. The following
|
|
// four values cannot be known without a surface. Default values will
|
|
// be supplied anyway, but cannot be relied upon.
|
|
width = 0xFFFFFFFF;
|
|
height = 0xFFFFFFFF;
|
|
transform_hint = VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
|
|
capabilities->minImageCount = 0xFFFFFFFF;
|
|
capabilities->maxImageCount = 0xFFFFFFFF;
|
|
} else {
|
|
ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
|
|
|
|
err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
|
|
if (err != android::OK) {
|
|
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
|
|
if (err != android::OK) {
|
|
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT,
|
|
&transform_hint);
|
|
if (err != android::OK) {
|
|
ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT,
|
|
&max_buffer_count);
|
|
if (err != android::OK) {
|
|
ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
|
|
&min_undequeued_buffers);
|
|
if (err != android::OK) {
|
|
ALOGE("NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
if (pPresentMode && IsSharedPresentMode(pPresentMode->presentMode)) {
|
|
capabilities->minImageCount = 1;
|
|
capabilities->maxImageCount = 1;
|
|
} else if (pPresentMode && pPresentMode->presentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
|
|
capabilities->minImageCount =
|
|
std::min(max_buffer_count, min_undequeued_buffers + 2);
|
|
capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count);
|
|
} else {
|
|
capabilities->minImageCount =
|
|
std::min(max_buffer_count, min_undequeued_buffers + 1);
|
|
capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count);
|
|
}
|
|
}
|
|
|
|
capabilities->currentExtent =
|
|
VkExtent2D{static_cast<uint32_t>(width), static_cast<uint32_t>(height)};
|
|
|
|
// TODO(http://b/134182502): Figure out what the max extent should be.
|
|
capabilities->minImageExtent = VkExtent2D{1, 1};
|
|
capabilities->maxImageExtent = VkExtent2D{4096, 4096};
|
|
|
|
if (capabilities->maxImageExtent.height <
|
|
capabilities->currentExtent.height) {
|
|
capabilities->maxImageExtent.height =
|
|
capabilities->currentExtent.height;
|
|
}
|
|
|
|
if (capabilities->maxImageExtent.width <
|
|
capabilities->currentExtent.width) {
|
|
capabilities->maxImageExtent.width = capabilities->currentExtent.width;
|
|
}
|
|
|
|
capabilities->maxImageArrayLayers = 1;
|
|
|
|
capabilities->supportedTransforms = kSupportedTransforms;
|
|
capabilities->currentTransform =
|
|
TranslateNativeToVulkanTransform(transform_hint);
|
|
|
|
// On Android, window composition is a WindowManager property, not something
|
|
// associated with the bufferqueue. It can't be changed from here.
|
|
capabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
|
|
|
|
capabilities->supportedUsageFlags =
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
|
VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT |
|
|
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
|
|
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
|
|
|
|
for (auto pNext = reinterpret_cast<VkBaseOutStructure*>(pSurfaceCapabilities->pNext);
|
|
pNext; pNext = reinterpret_cast<VkBaseOutStructure*>(pNext->pNext)) {
|
|
|
|
switch (pNext->sType) {
|
|
case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: {
|
|
VkSharedPresentSurfaceCapabilitiesKHR* shared_caps =
|
|
reinterpret_cast<VkSharedPresentSurfaceCapabilitiesKHR*>(pNext);
|
|
// Claim same set of usage flags are supported for
|
|
// shared present modes as for other modes.
|
|
shared_caps->sharedPresentSupportedUsageFlags =
|
|
pSurfaceCapabilities->surfaceCapabilities
|
|
.supportedUsageFlags;
|
|
} break;
|
|
|
|
case VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR: {
|
|
VkSurfaceProtectedCapabilitiesKHR* protected_caps =
|
|
reinterpret_cast<VkSurfaceProtectedCapabilitiesKHR*>(pNext);
|
|
protected_caps->supportsProtected = VK_TRUE;
|
|
} break;
|
|
|
|
case VK_STRUCTURE_TYPE_SURFACE_PRESENT_SCALING_CAPABILITIES_EXT: {
|
|
VkSurfacePresentScalingCapabilitiesEXT* scaling_caps =
|
|
reinterpret_cast<VkSurfacePresentScalingCapabilitiesEXT*>(pNext);
|
|
// By default, Android stretches the buffer to fit the window,
|
|
// without preserving aspect ratio. Other modes are technically possible
|
|
// but consult with CoGS team before exposing them here!
|
|
scaling_caps->supportedPresentScaling = VK_PRESENT_SCALING_STRETCH_BIT_EXT;
|
|
|
|
// Since we always scale, we don't support any gravity.
|
|
scaling_caps->supportedPresentGravityX = 0;
|
|
scaling_caps->supportedPresentGravityY = 0;
|
|
|
|
// Scaled image limits are just the basic image limits
|
|
scaling_caps->minScaledImageExtent = capabilities->minImageExtent;
|
|
scaling_caps->maxScaledImageExtent = capabilities->maxImageExtent;
|
|
} break;
|
|
|
|
case VK_STRUCTURE_TYPE_SURFACE_PRESENT_MODE_COMPATIBILITY_EXT: {
|
|
VkSurfacePresentModeCompatibilityEXT* mode_caps =
|
|
reinterpret_cast<VkSurfacePresentModeCompatibilityEXT*>(pNext);
|
|
|
|
ALOG_ASSERT(pPresentMode,
|
|
"querying VkSurfacePresentModeCompatibilityEXT "
|
|
"requires VkSurfacePresentModeEXT to be provided");
|
|
std::vector<VkPresentModeKHR> compatibleModes;
|
|
compatibleModes.push_back(pPresentMode->presentMode);
|
|
|
|
switch (pPresentMode->presentMode) {
|
|
// Shared modes are both compatible with each other.
|
|
case VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR:
|
|
compatibleModes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
|
|
break;
|
|
case VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR:
|
|
compatibleModes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR);
|
|
break;
|
|
default:
|
|
// Other modes are only compatible with themselves.
|
|
// TODO: consider whether switching between FIFO and MAILBOX is reasonable
|
|
break;
|
|
}
|
|
|
|
// Note: this does not generate VK_INCOMPLETE since we're nested inside
|
|
// a larger query and there would be no way to determine exactly where it came from.
|
|
CopyWithIncomplete(compatibleModes, mode_caps->pPresentModes,
|
|
&mode_caps->presentModeCount);
|
|
} break;
|
|
|
|
default:
|
|
// Ignore all other extension structs
|
|
break;
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetPhysicalDeviceSurfaceFormats2KHR(
|
|
VkPhysicalDevice physicalDevice,
|
|
const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
|
|
uint32_t* pSurfaceFormatCount,
|
|
VkSurfaceFormat2KHR* pSurfaceFormats) {
|
|
ATRACE_CALL();
|
|
|
|
if (!pSurfaceFormats) {
|
|
return GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice,
|
|
pSurfaceInfo->surface,
|
|
pSurfaceFormatCount, nullptr);
|
|
}
|
|
|
|
// temp vector for forwarding; we'll marshal it into the pSurfaceFormats
|
|
// after the call.
|
|
std::vector<VkSurfaceFormatKHR> surface_formats(*pSurfaceFormatCount);
|
|
VkResult result = GetPhysicalDeviceSurfaceFormatsKHR(
|
|
physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount,
|
|
surface_formats.data());
|
|
|
|
if (result != VK_SUCCESS && result != VK_INCOMPLETE) {
|
|
return result;
|
|
}
|
|
|
|
const auto& driver = GetData(physicalDevice).driver;
|
|
|
|
// marshal results individually due to stride difference.
|
|
uint32_t formats_to_marshal = *pSurfaceFormatCount;
|
|
for (uint32_t i = 0u; i < formats_to_marshal; i++) {
|
|
pSurfaceFormats[i].surfaceFormat = surface_formats[i];
|
|
|
|
// Query the compression properties for the surface format
|
|
VkSurfaceFormat2KHR* pSurfaceFormat = &pSurfaceFormats[i];
|
|
while (pSurfaceFormat->pNext) {
|
|
pSurfaceFormat =
|
|
reinterpret_cast<VkSurfaceFormat2KHR*>(pSurfaceFormat->pNext);
|
|
switch (pSurfaceFormat->sType) {
|
|
case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT: {
|
|
VkImageCompressionPropertiesEXT* surfaceCompressionProps =
|
|
reinterpret_cast<VkImageCompressionPropertiesEXT*>(
|
|
pSurfaceFormat);
|
|
|
|
if (surfaceCompressionProps &&
|
|
driver.GetPhysicalDeviceImageFormatProperties2KHR) {
|
|
VkPhysicalDeviceImageFormatInfo2 imageFormatInfo = {};
|
|
imageFormatInfo.sType =
|
|
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2;
|
|
imageFormatInfo.format =
|
|
pSurfaceFormats[i].surfaceFormat.format;
|
|
imageFormatInfo.pNext = nullptr;
|
|
|
|
VkImageCompressionControlEXT compressionControl = {};
|
|
compressionControl.sType =
|
|
VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT;
|
|
compressionControl.pNext = imageFormatInfo.pNext;
|
|
|
|
imageFormatInfo.pNext = &compressionControl;
|
|
|
|
VkImageCompressionPropertiesEXT compressionProps = {};
|
|
compressionProps.sType =
|
|
VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_PROPERTIES_EXT;
|
|
compressionProps.pNext = nullptr;
|
|
|
|
VkImageFormatProperties2KHR imageFormatProps = {};
|
|
imageFormatProps.sType =
|
|
VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR;
|
|
imageFormatProps.pNext = &compressionProps;
|
|
|
|
VkResult compressionRes =
|
|
driver.GetPhysicalDeviceImageFormatProperties2KHR(
|
|
physicalDevice, &imageFormatInfo,
|
|
&imageFormatProps);
|
|
if (compressionRes == VK_SUCCESS) {
|
|
surfaceCompressionProps->imageCompressionFlags =
|
|
compressionProps.imageCompressionFlags;
|
|
surfaceCompressionProps
|
|
->imageCompressionFixedRateFlags =
|
|
compressionProps.imageCompressionFixedRateFlags;
|
|
} else {
|
|
return compressionRes;
|
|
}
|
|
}
|
|
} break;
|
|
|
|
default:
|
|
// Ignore all other extension structs
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev,
|
|
VkSurfaceKHR surface,
|
|
uint32_t* count,
|
|
VkPresentModeKHR* modes) {
|
|
ATRACE_CALL();
|
|
|
|
int err;
|
|
int query_value;
|
|
std::vector<VkPresentModeKHR> present_modes;
|
|
if (surface == VK_NULL_HANDLE) {
|
|
const InstanceData& instance_data = GetData(pdev);
|
|
ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query;
|
|
bool surfaceless_enabled =
|
|
instance_data.hook_extensions.test(surfaceless);
|
|
if (!surfaceless_enabled) {
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
// Support for VK_GOOGLE_surfaceless_query. The primary purpose of this
|
|
// extension for this function is for
|
|
// VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR and
|
|
// VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR. We technically cannot
|
|
// know if VK_PRESENT_MODE_SHARED_MAILBOX_KHR is supported without a
|
|
// surface, and that cannot be relied upon. Therefore, don't return it.
|
|
present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR);
|
|
} else {
|
|
ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
|
|
|
|
err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
|
|
&query_value);
|
|
if (err != android::OK || query_value < 0) {
|
|
ALOGE(
|
|
"NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d) "
|
|
"value=%d",
|
|
strerror(-err), err, query_value);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
|
|
|
|
err =
|
|
window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &query_value);
|
|
if (err != android::OK || query_value < 0) {
|
|
ALOGE(
|
|
"NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d) value=%d",
|
|
strerror(-err), err, query_value);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
uint32_t max_buffer_count = static_cast<uint32_t>(query_value);
|
|
|
|
if (min_undequeued_buffers + 1 < max_buffer_count)
|
|
present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR);
|
|
present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR);
|
|
}
|
|
|
|
VkPhysicalDevicePresentationPropertiesANDROID present_properties;
|
|
QueryPresentationProperties(pdev, &present_properties);
|
|
if (present_properties.sharedImage) {
|
|
present_modes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR);
|
|
present_modes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
|
|
}
|
|
|
|
return CopyWithIncomplete(present_modes, modes, count);
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetDeviceGroupPresentCapabilitiesKHR(
|
|
VkDevice,
|
|
VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities) {
|
|
ATRACE_CALL();
|
|
|
|
ALOGV_IF(pDeviceGroupPresentCapabilities->sType !=
|
|
VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR,
|
|
"vkGetDeviceGroupPresentCapabilitiesKHR: invalid "
|
|
"VkDeviceGroupPresentCapabilitiesKHR structure type %d",
|
|
pDeviceGroupPresentCapabilities->sType);
|
|
|
|
memset(pDeviceGroupPresentCapabilities->presentMask, 0,
|
|
sizeof(pDeviceGroupPresentCapabilities->presentMask));
|
|
|
|
// assume device group of size 1
|
|
pDeviceGroupPresentCapabilities->presentMask[0] = 1 << 0;
|
|
pDeviceGroupPresentCapabilities->modes =
|
|
VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetDeviceGroupSurfacePresentModesKHR(
|
|
VkDevice,
|
|
VkSurfaceKHR,
|
|
VkDeviceGroupPresentModeFlagsKHR* pModes) {
|
|
ATRACE_CALL();
|
|
|
|
*pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice,
|
|
VkSurfaceKHR surface,
|
|
uint32_t* pRectCount,
|
|
VkRect2D* pRects) {
|
|
ATRACE_CALL();
|
|
|
|
if (!pRects) {
|
|
*pRectCount = 1;
|
|
} else {
|
|
uint32_t count = std::min(*pRectCount, 1u);
|
|
bool incomplete = *pRectCount < 1;
|
|
|
|
*pRectCount = count;
|
|
|
|
if (incomplete) {
|
|
return VK_INCOMPLETE;
|
|
}
|
|
|
|
int err;
|
|
ANativeWindow* window = SurfaceFromHandle(surface)->window.get();
|
|
|
|
int width = 0, height = 0;
|
|
err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width);
|
|
if (err != android::OK) {
|
|
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
}
|
|
err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height);
|
|
if (err != android::OK) {
|
|
ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
}
|
|
|
|
pRects[0].offset.x = 0;
|
|
pRects[0].offset.y = 0;
|
|
pRects[0].extent = VkExtent2D{static_cast<uint32_t>(width),
|
|
static_cast<uint32_t>(height)};
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static void DestroySwapchainInternal(VkDevice device,
|
|
VkSwapchainKHR swapchain_handle,
|
|
const VkAllocationCallbacks* allocator) {
|
|
ATRACE_CALL();
|
|
|
|
const auto& dispatch = GetData(device).driver;
|
|
Swapchain* swapchain = SwapchainFromHandle(swapchain_handle);
|
|
if (!swapchain) {
|
|
return;
|
|
}
|
|
|
|
bool active = swapchain->surface.swapchain_handle == swapchain_handle;
|
|
ANativeWindow* window = active ? swapchain->surface.window.get() : nullptr;
|
|
|
|
if (window && swapchain->frame_timestamps_enabled) {
|
|
native_window_enable_frame_timestamps(window, false);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < swapchain->num_images; i++) {
|
|
ReleaseSwapchainImage(device, swapchain->shared, window, -1,
|
|
swapchain->images[i], false);
|
|
}
|
|
|
|
if (active) {
|
|
swapchain->surface.swapchain_handle = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (!allocator) {
|
|
allocator = &GetData(device).allocator;
|
|
}
|
|
|
|
swapchain->~Swapchain();
|
|
allocator->pfnFree(allocator->pUserData, swapchain);
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult CreateSwapchainKHR(VkDevice device,
|
|
const VkSwapchainCreateInfoKHR* create_info,
|
|
const VkAllocationCallbacks* allocator,
|
|
VkSwapchainKHR* swapchain_handle) {
|
|
ATRACE_CALL();
|
|
|
|
int err;
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
ALOGV("vkCreateSwapchainKHR: surface=0x%" PRIx64
|
|
" minImageCount=%u imageFormat=%u imageColorSpace=%u"
|
|
" imageExtent=%ux%u imageUsage=%#x preTransform=%u presentMode=%u"
|
|
" oldSwapchain=0x%" PRIx64,
|
|
reinterpret_cast<uint64_t>(create_info->surface),
|
|
create_info->minImageCount, create_info->imageFormat,
|
|
create_info->imageColorSpace, create_info->imageExtent.width,
|
|
create_info->imageExtent.height, create_info->imageUsage,
|
|
create_info->preTransform, create_info->presentMode,
|
|
reinterpret_cast<uint64_t>(create_info->oldSwapchain));
|
|
|
|
if (!allocator)
|
|
allocator = &GetData(device).allocator;
|
|
|
|
android::PixelFormat native_pixel_format =
|
|
GetNativePixelFormat(create_info->imageFormat);
|
|
android_dataspace native_dataspace =
|
|
GetNativeDataspace(create_info->imageColorSpace);
|
|
if (native_dataspace == HAL_DATASPACE_UNKNOWN) {
|
|
ALOGE(
|
|
"CreateSwapchainKHR(VkSwapchainCreateInfoKHR.imageColorSpace = %d) "
|
|
"failed: Unsupported color space",
|
|
create_info->imageColorSpace);
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
ALOGV_IF(create_info->imageArrayLayers != 1,
|
|
"swapchain imageArrayLayers=%u not supported",
|
|
create_info->imageArrayLayers);
|
|
ALOGV_IF((create_info->preTransform & ~kSupportedTransforms) != 0,
|
|
"swapchain preTransform=%#x not supported",
|
|
create_info->preTransform);
|
|
ALOGV_IF(!(create_info->presentMode == VK_PRESENT_MODE_FIFO_KHR ||
|
|
create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ||
|
|
create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR ||
|
|
create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR),
|
|
"swapchain presentMode=%u not supported",
|
|
create_info->presentMode);
|
|
|
|
Surface& surface = *SurfaceFromHandle(create_info->surface);
|
|
|
|
if (surface.swapchain_handle != create_info->oldSwapchain) {
|
|
ALOGV("Can't create a swapchain for VkSurfaceKHR 0x%" PRIx64
|
|
" because it already has active swapchain 0x%" PRIx64
|
|
" but VkSwapchainCreateInfo::oldSwapchain=0x%" PRIx64,
|
|
reinterpret_cast<uint64_t>(create_info->surface),
|
|
reinterpret_cast<uint64_t>(surface.swapchain_handle),
|
|
reinterpret_cast<uint64_t>(create_info->oldSwapchain));
|
|
return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR;
|
|
}
|
|
if (create_info->oldSwapchain != VK_NULL_HANDLE)
|
|
OrphanSwapchain(device, SwapchainFromHandle(create_info->oldSwapchain));
|
|
|
|
// -- Reset the native window --
|
|
// The native window might have been used previously, and had its properties
|
|
// changed from defaults. That will affect the answer we get for queries
|
|
// like MIN_UNDEQUED_BUFFERS. Reset to a known/default state before we
|
|
// attempt such queries.
|
|
|
|
// The native window only allows dequeueing all buffers before any have
|
|
// been queued, since after that point at least one is assumed to be in
|
|
// non-FREE state at any given time. Disconnecting and re-connecting
|
|
// orphans the previous buffers, getting us back to the state where we can
|
|
// dequeue all buffers.
|
|
//
|
|
// This is not necessary if the surface was never used previously.
|
|
//
|
|
// TODO(http://b/134186185) recycle swapchain images more efficiently
|
|
ANativeWindow* window = surface.window.get();
|
|
if (surface.used_by_swapchain) {
|
|
err = native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
|
|
ALOGW_IF(err != android::OK,
|
|
"native_window_api_disconnect failed: %s (%d)", strerror(-err),
|
|
err);
|
|
err = native_window_api_connect(window, NATIVE_WINDOW_API_EGL);
|
|
ALOGW_IF(err != android::OK,
|
|
"native_window_api_connect failed: %s (%d)", strerror(-err),
|
|
err);
|
|
}
|
|
|
|
err =
|
|
window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, nsecs_t{-1});
|
|
if (err != android::OK) {
|
|
ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
int swap_interval =
|
|
create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ? 0 : 1;
|
|
err = window->setSwapInterval(window, swap_interval);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window->setSwapInterval(1) failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
err = native_window_set_shared_buffer_mode(window, false);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_shared_buffer_mode(false) failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
err = native_window_set_auto_refresh(window, false);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_auto_refresh(false) failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
// -- Configure the native window --
|
|
|
|
const auto& dispatch = GetData(device).driver;
|
|
|
|
err = native_window_set_buffers_format(window, native_pixel_format);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_buffers_format(%s) failed: %s (%d)",
|
|
decodePixelFormat(native_pixel_format).c_str(), strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
/* Respect consumer default dataspace upon HAL_DATASPACE_ARBITRARY. */
|
|
if (native_dataspace != HAL_DATASPACE_ARBITRARY) {
|
|
err = native_window_set_buffers_data_space(window, native_dataspace);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_buffers_data_space(%d) failed: %s (%d)",
|
|
native_dataspace, strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
}
|
|
|
|
err = native_window_set_buffers_dimensions(
|
|
window, static_cast<int>(create_info->imageExtent.width),
|
|
static_cast<int>(create_info->imageExtent.height));
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_buffers_dimensions(%d,%d) failed: %s (%d)",
|
|
create_info->imageExtent.width, create_info->imageExtent.height,
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
// VkSwapchainCreateInfo::preTransform indicates the transformation the app
|
|
// applied during rendering. native_window_set_transform() expects the
|
|
// inverse: the transform the app is requesting that the compositor perform
|
|
// during composition. With native windows, pre-transform works by rendering
|
|
// with the same transform the compositor is applying (as in Vulkan), but
|
|
// then requesting the inverse transform, so that when the compositor does
|
|
// it's job the two transforms cancel each other out and the compositor ends
|
|
// up applying an identity transform to the app's buffer.
|
|
err = native_window_set_buffers_transform(
|
|
window, InvertTransformToNative(create_info->preTransform));
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_buffers_transform(%d) failed: %s (%d)",
|
|
InvertTransformToNative(create_info->preTransform),
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
err = native_window_set_scaling_mode(
|
|
window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_scaling_mode(SCALE_TO_WINDOW) failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
VkSwapchainImageUsageFlagsANDROID swapchain_image_usage = 0;
|
|
if (IsSharedPresentMode(create_info->presentMode)) {
|
|
swapchain_image_usage |= VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID;
|
|
err = native_window_set_shared_buffer_mode(window, true);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_shared_buffer_mode failed: %s (%d)", strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
}
|
|
|
|
if (create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) {
|
|
err = native_window_set_auto_refresh(window, true);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_auto_refresh failed: %s (%d)", strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
}
|
|
|
|
int query_value;
|
|
err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
|
|
&query_value);
|
|
if (err != android::OK || query_value < 0) {
|
|
ALOGE("window->query failed: %s (%d) value=%d", strerror(-err), err,
|
|
query_value);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value);
|
|
const auto mailbox_num_images = std::max(3u, create_info->minImageCount);
|
|
const auto requested_images =
|
|
swap_interval ? create_info->minImageCount : mailbox_num_images;
|
|
uint32_t num_images = requested_images - 1 + min_undequeued_buffers;
|
|
|
|
// Lower layer insists that we have at least min_undequeued_buffers + 1
|
|
// buffers. This is wasteful and we'd like to relax it in the shared case,
|
|
// but not all the pieces are in place for that to work yet. Note we only
|
|
// lie to the lower layer--we don't want to give the app back a swapchain
|
|
// with extra images (which they can't actually use!).
|
|
uint32_t min_buffer_count = min_undequeued_buffers + 1;
|
|
err = native_window_set_buffer_count(
|
|
window, std::max(min_buffer_count, num_images));
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_buffer_count(%d) failed: %s (%d)", num_images,
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
// In shared mode the num_images must be one regardless of how many
|
|
// buffers were allocated for the buffer queue.
|
|
if (swapchain_image_usage & VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID) {
|
|
num_images = 1;
|
|
}
|
|
|
|
void* usage_info_pNext = nullptr;
|
|
VkImageCompressionControlEXT image_compression = {};
|
|
uint64_t native_usage = 0;
|
|
if (dispatch.GetSwapchainGrallocUsage4ANDROID) {
|
|
ATRACE_BEGIN("GetSwapchainGrallocUsage4ANDROID");
|
|
VkGrallocUsageInfo2ANDROID gralloc_usage_info = {};
|
|
gralloc_usage_info.sType =
|
|
VK_STRUCTURE_TYPE_GRALLOC_USAGE_INFO_2_ANDROID;
|
|
gralloc_usage_info.format = create_info->imageFormat;
|
|
gralloc_usage_info.imageUsage = create_info->imageUsage;
|
|
gralloc_usage_info.swapchainImageUsage = swapchain_image_usage;
|
|
|
|
// Look through the pNext chain for an image compression control struct
|
|
// if one is found AND the appropriate extensions are enabled,
|
|
// append it to be the gralloc usage pNext chain
|
|
const VkSwapchainCreateInfoKHR* create_infos = create_info;
|
|
while (create_infos->pNext) {
|
|
create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(
|
|
create_infos->pNext);
|
|
switch (create_infos->sType) {
|
|
case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: {
|
|
const VkImageCompressionControlEXT* compression_infos =
|
|
reinterpret_cast<const VkImageCompressionControlEXT*>(
|
|
create_infos);
|
|
image_compression = *compression_infos;
|
|
image_compression.pNext = nullptr;
|
|
usage_info_pNext = &image_compression;
|
|
} break;
|
|
|
|
default:
|
|
// Ignore all other info structs
|
|
break;
|
|
}
|
|
}
|
|
gralloc_usage_info.pNext = usage_info_pNext;
|
|
|
|
result = dispatch.GetSwapchainGrallocUsage4ANDROID(
|
|
device, &gralloc_usage_info, &native_usage);
|
|
ATRACE_END();
|
|
if (result != VK_SUCCESS) {
|
|
ALOGE("vkGetSwapchainGrallocUsage4ANDROID failed: %d", result);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
} else if (dispatch.GetSwapchainGrallocUsage3ANDROID) {
|
|
ATRACE_BEGIN("GetSwapchainGrallocUsage3ANDROID");
|
|
VkGrallocUsageInfoANDROID gralloc_usage_info = {};
|
|
gralloc_usage_info.sType = VK_STRUCTURE_TYPE_GRALLOC_USAGE_INFO_ANDROID;
|
|
gralloc_usage_info.format = create_info->imageFormat;
|
|
gralloc_usage_info.imageUsage = create_info->imageUsage;
|
|
|
|
// Look through the pNext chain for an image compression control struct
|
|
// if one is found AND the appropriate extensions are enabled,
|
|
// append it to be the gralloc usage pNext chain
|
|
const VkSwapchainCreateInfoKHR* create_infos = create_info;
|
|
while (create_infos->pNext) {
|
|
create_infos = reinterpret_cast<const VkSwapchainCreateInfoKHR*>(
|
|
create_infos->pNext);
|
|
switch (create_infos->sType) {
|
|
case VK_STRUCTURE_TYPE_IMAGE_COMPRESSION_CONTROL_EXT: {
|
|
const VkImageCompressionControlEXT* compression_infos =
|
|
reinterpret_cast<const VkImageCompressionControlEXT*>(
|
|
create_infos);
|
|
image_compression = *compression_infos;
|
|
image_compression.pNext = nullptr;
|
|
usage_info_pNext = &image_compression;
|
|
} break;
|
|
|
|
default:
|
|
// Ignore all other info structs
|
|
break;
|
|
}
|
|
}
|
|
gralloc_usage_info.pNext = usage_info_pNext;
|
|
|
|
result = dispatch.GetSwapchainGrallocUsage3ANDROID(
|
|
device, &gralloc_usage_info, &native_usage);
|
|
ATRACE_END();
|
|
if (result != VK_SUCCESS) {
|
|
ALOGE("vkGetSwapchainGrallocUsage3ANDROID failed: %d", result);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
} else if (dispatch.GetSwapchainGrallocUsage2ANDROID) {
|
|
uint64_t consumer_usage, producer_usage;
|
|
ATRACE_BEGIN("GetSwapchainGrallocUsage2ANDROID");
|
|
result = dispatch.GetSwapchainGrallocUsage2ANDROID(
|
|
device, create_info->imageFormat, create_info->imageUsage,
|
|
swapchain_image_usage, &consumer_usage, &producer_usage);
|
|
ATRACE_END();
|
|
if (result != VK_SUCCESS) {
|
|
ALOGE("vkGetSwapchainGrallocUsage2ANDROID failed: %d", result);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
native_usage =
|
|
convertGralloc1ToBufferUsage(producer_usage, consumer_usage);
|
|
} else if (dispatch.GetSwapchainGrallocUsageANDROID) {
|
|
ATRACE_BEGIN("GetSwapchainGrallocUsageANDROID");
|
|
int32_t legacy_usage = 0;
|
|
result = dispatch.GetSwapchainGrallocUsageANDROID(
|
|
device, create_info->imageFormat, create_info->imageUsage,
|
|
&legacy_usage);
|
|
ATRACE_END();
|
|
if (result != VK_SUCCESS) {
|
|
ALOGE("vkGetSwapchainGrallocUsageANDROID failed: %d", result);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
native_usage = static_cast<uint64_t>(legacy_usage);
|
|
}
|
|
native_usage |= surface.consumer_usage;
|
|
|
|
bool createProtectedSwapchain = false;
|
|
if (create_info->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) {
|
|
createProtectedSwapchain = true;
|
|
native_usage |= BufferUsage::PROTECTED;
|
|
}
|
|
err = native_window_set_usage(window, native_usage);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_usage failed: %s (%d)", strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
int transform_hint;
|
|
err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint);
|
|
if (err != android::OK) {
|
|
ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
int64_t refresh_duration;
|
|
err = native_window_get_refresh_cycle_duration(window, &refresh_duration);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_get_refresh_cycle_duration query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
// -- Allocate our Swapchain object --
|
|
// After this point, we must deallocate the swapchain on error.
|
|
|
|
void* mem = allocator->pfnAllocation(allocator->pUserData,
|
|
sizeof(Swapchain), alignof(Swapchain),
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (!mem)
|
|
return VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
Swapchain* swapchain = new (mem)
|
|
Swapchain(surface, num_images, create_info->presentMode,
|
|
TranslateVulkanToNativeTransform(create_info->preTransform),
|
|
refresh_duration);
|
|
VkSwapchainImageCreateInfoANDROID swapchain_image_create = {
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wold-style-cast"
|
|
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID,
|
|
#pragma clang diagnostic pop
|
|
.pNext = usage_info_pNext,
|
|
.usage = swapchain_image_usage,
|
|
};
|
|
VkNativeBufferANDROID image_native_buffer = {
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wold-style-cast"
|
|
.sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
|
|
#pragma clang diagnostic pop
|
|
.pNext = &swapchain_image_create,
|
|
};
|
|
|
|
VkImageCreateInfo image_create = {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
|
|
.pNext = nullptr,
|
|
.flags = createProtectedSwapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u,
|
|
.imageType = VK_IMAGE_TYPE_2D,
|
|
.format = create_info->imageFormat,
|
|
.extent = {
|
|
create_info->imageExtent.width,
|
|
create_info->imageExtent.height,
|
|
1
|
|
},
|
|
.mipLevels = 1,
|
|
.arrayLayers = 1,
|
|
.samples = VK_SAMPLE_COUNT_1_BIT,
|
|
.tiling = VK_IMAGE_TILING_OPTIMAL,
|
|
.usage = create_info->imageUsage,
|
|
.sharingMode = create_info->imageSharingMode,
|
|
.queueFamilyIndexCount = create_info->queueFamilyIndexCount,
|
|
.pQueueFamilyIndices = create_info->pQueueFamilyIndices,
|
|
};
|
|
|
|
// Note: don't do deferred allocation for shared present modes. There's only one buffer
|
|
// involved so very little benefit.
|
|
if ((create_info->flags & VK_SWAPCHAIN_CREATE_DEFERRED_MEMORY_ALLOCATION_BIT_EXT) &&
|
|
!IsSharedPresentMode(create_info->presentMode)) {
|
|
// Don't want to touch the underlying gralloc buffers yet;
|
|
// instead just create unbound VkImages which will later be bound to memory inside
|
|
// AcquireNextImage.
|
|
VkImageSwapchainCreateInfoKHR image_swapchain_create = {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR,
|
|
.pNext = nullptr,
|
|
.swapchain = HandleFromSwapchain(swapchain),
|
|
};
|
|
image_create.pNext = &image_swapchain_create;
|
|
|
|
for (uint32_t i = 0; i < num_images; i++) {
|
|
Swapchain::Image& img = swapchain->images[i];
|
|
img.buffer = nullptr;
|
|
img.dequeued = false;
|
|
|
|
result = dispatch.CreateImage(device, &image_create, nullptr, &img.image);
|
|
if (result != VK_SUCCESS) {
|
|
ALOGD("vkCreateImage w/ for deferred swapchain image failed: %u", result);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// -- Dequeue all buffers and create a VkImage for each --
|
|
// Any failures during or after this must cancel the dequeued buffers.
|
|
|
|
for (uint32_t i = 0; i < num_images; i++) {
|
|
Swapchain::Image& img = swapchain->images[i];
|
|
|
|
ANativeWindowBuffer* buffer;
|
|
err = window->dequeueBuffer(window, &buffer, &img.dequeue_fence);
|
|
if (err != android::OK) {
|
|
ALOGE("dequeueBuffer[%u] failed: %s (%d)", i, strerror(-err), err);
|
|
switch (-err) {
|
|
case ENOMEM:
|
|
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
break;
|
|
default:
|
|
result = VK_ERROR_SURFACE_LOST_KHR;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
img.buffer = buffer;
|
|
img.dequeued = true;
|
|
|
|
image_native_buffer.handle = img.buffer->handle;
|
|
image_native_buffer.stride = img.buffer->stride;
|
|
image_native_buffer.format = img.buffer->format;
|
|
image_native_buffer.usage = int(img.buffer->usage);
|
|
android_convertGralloc0To1Usage(int(img.buffer->usage),
|
|
&image_native_buffer.usage2.producer,
|
|
&image_native_buffer.usage2.consumer);
|
|
image_native_buffer.usage3 = img.buffer->usage;
|
|
image_create.pNext = &image_native_buffer;
|
|
|
|
ATRACE_BEGIN("CreateImage");
|
|
result =
|
|
dispatch.CreateImage(device, &image_create, nullptr, &img.image);
|
|
ATRACE_END();
|
|
if (result != VK_SUCCESS) {
|
|
ALOGD("vkCreateImage w/ native buffer failed: %u", result);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// -- Cancel all buffers, returning them to the queue --
|
|
// If an error occurred before, also destroy the VkImage and release the
|
|
// buffer reference. Otherwise, we retain a strong reference to the buffer.
|
|
for (uint32_t i = 0; i < num_images; i++) {
|
|
Swapchain::Image& img = swapchain->images[i];
|
|
if (img.dequeued) {
|
|
if (!swapchain->shared) {
|
|
window->cancelBuffer(window, img.buffer.get(),
|
|
img.dequeue_fence);
|
|
img.dequeue_fence = -1;
|
|
img.dequeued = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (result != VK_SUCCESS) {
|
|
DestroySwapchainInternal(device, HandleFromSwapchain(swapchain),
|
|
allocator);
|
|
return result;
|
|
}
|
|
|
|
if (transform_hint != swapchain->pre_transform) {
|
|
// Log that the app is not doing pre-rotation.
|
|
android::GraphicsEnv::getInstance().setTargetStats(
|
|
android::GpuStatsInfo::Stats::FALSE_PREROTATION);
|
|
}
|
|
|
|
// Set stats for creating a Vulkan swapchain
|
|
android::GraphicsEnv::getInstance().setTargetStats(
|
|
android::GpuStatsInfo::Stats::CREATED_VULKAN_SWAPCHAIN);
|
|
|
|
surface.used_by_swapchain = true;
|
|
surface.swapchain_handle = HandleFromSwapchain(swapchain);
|
|
*swapchain_handle = surface.swapchain_handle;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
void DestroySwapchainKHR(VkDevice device,
|
|
VkSwapchainKHR swapchain_handle,
|
|
const VkAllocationCallbacks* allocator) {
|
|
ATRACE_CALL();
|
|
|
|
DestroySwapchainInternal(device, swapchain_handle, allocator);
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetSwapchainImagesKHR(VkDevice,
|
|
VkSwapchainKHR swapchain_handle,
|
|
uint32_t* count,
|
|
VkImage* images) {
|
|
ATRACE_CALL();
|
|
|
|
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
|
|
ALOGW_IF(swapchain.surface.swapchain_handle != swapchain_handle,
|
|
"getting images for non-active swapchain 0x%" PRIx64
|
|
"; only dequeued image handles are valid",
|
|
reinterpret_cast<uint64_t>(swapchain_handle));
|
|
VkResult result = VK_SUCCESS;
|
|
if (images) {
|
|
uint32_t n = swapchain.num_images;
|
|
if (*count < swapchain.num_images) {
|
|
n = *count;
|
|
result = VK_INCOMPLETE;
|
|
}
|
|
for (uint32_t i = 0; i < n; i++)
|
|
images[i] = swapchain.images[i].image;
|
|
*count = n;
|
|
} else {
|
|
*count = swapchain.num_images;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult AcquireNextImageKHR(VkDevice device,
|
|
VkSwapchainKHR swapchain_handle,
|
|
uint64_t timeout,
|
|
VkSemaphore semaphore,
|
|
VkFence vk_fence,
|
|
uint32_t* image_index) {
|
|
ATRACE_CALL();
|
|
|
|
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
|
|
ANativeWindow* window = swapchain.surface.window.get();
|
|
VkResult result;
|
|
int err;
|
|
|
|
if (swapchain.surface.swapchain_handle != swapchain_handle)
|
|
return VK_ERROR_OUT_OF_DATE_KHR;
|
|
|
|
if (swapchain.shared) {
|
|
// In shared mode, we keep the buffer dequeued all the time, so we don't
|
|
// want to dequeue a buffer here. Instead, just ask the driver to ensure
|
|
// the semaphore and fence passed to us will be signalled.
|
|
*image_index = 0;
|
|
result = GetData(device).driver.AcquireImageANDROID(
|
|
device, swapchain.images[*image_index].image, -1, semaphore, vk_fence);
|
|
return result;
|
|
}
|
|
|
|
const nsecs_t acquire_next_image_timeout =
|
|
timeout > (uint64_t)std::numeric_limits<nsecs_t>::max() ? -1 : timeout;
|
|
if (acquire_next_image_timeout != swapchain.acquire_next_image_timeout) {
|
|
// Cache the timeout to avoid the duplicate binder cost.
|
|
err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT,
|
|
acquire_next_image_timeout);
|
|
if (err != android::OK) {
|
|
ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
swapchain.acquire_next_image_timeout = acquire_next_image_timeout;
|
|
}
|
|
|
|
ANativeWindowBuffer* buffer;
|
|
int fence_fd;
|
|
err = window->dequeueBuffer(window, &buffer, &fence_fd);
|
|
if (err == android::TIMED_OUT || err == android::INVALID_OPERATION) {
|
|
ALOGW("dequeueBuffer timed out: %s (%d)", strerror(-err), err);
|
|
return timeout ? VK_TIMEOUT : VK_NOT_READY;
|
|
} else if (err != android::OK) {
|
|
ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
|
|
return VK_ERROR_SURFACE_LOST_KHR;
|
|
}
|
|
|
|
uint32_t idx;
|
|
for (idx = 0; idx < swapchain.num_images; idx++) {
|
|
if (swapchain.images[idx].buffer.get() == buffer) {
|
|
swapchain.images[idx].dequeued = true;
|
|
swapchain.images[idx].dequeue_fence = fence_fd;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If this is a deferred alloc swapchain, this may be the first time we've
|
|
// seen a particular buffer. If so, there should be an empty slot. Find it,
|
|
// and bind the gralloc buffer to the VkImage for that slot. If there is no
|
|
// empty slot, then we dequeued an unexpected buffer. Non-deferred swapchains
|
|
// will also take this path, but will never have an empty slot since we
|
|
// populated them all upfront.
|
|
if (idx == swapchain.num_images) {
|
|
for (idx = 0; idx < swapchain.num_images; idx++) {
|
|
if (!swapchain.images[idx].buffer) {
|
|
// Note: this structure is technically required for
|
|
// Vulkan correctness, even though the driver is probably going
|
|
// to use everything from the VkNativeBufferANDROID below.
|
|
// This is kindof silly, but it's how we did the ANB
|
|
// side of VK_KHR_swapchain v69, so we're stuck with it unless
|
|
// we want to go tinkering with the ANB spec some more.
|
|
VkBindImageMemorySwapchainInfoKHR bimsi = {
|
|
.sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR,
|
|
.pNext = nullptr,
|
|
.swapchain = swapchain_handle,
|
|
.imageIndex = idx,
|
|
};
|
|
VkNativeBufferANDROID nb = {
|
|
.sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
|
|
.pNext = &bimsi,
|
|
.handle = buffer->handle,
|
|
.stride = buffer->stride,
|
|
.format = buffer->format,
|
|
.usage = int(buffer->usage),
|
|
};
|
|
VkBindImageMemoryInfo bimi = {
|
|
.sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO,
|
|
.pNext = &nb,
|
|
.image = swapchain.images[idx].image,
|
|
.memory = VK_NULL_HANDLE,
|
|
.memoryOffset = 0,
|
|
};
|
|
result = GetData(device).driver.BindImageMemory2(device, 1, &bimi);
|
|
if (result != VK_SUCCESS) {
|
|
// This shouldn't really happen. If it does, something is probably
|
|
// unrecoverably wrong with the swapchain and its images. Cancel
|
|
// the buffer and declare the swapchain broken.
|
|
ALOGE("failed to do deferred gralloc buffer bind");
|
|
window->cancelBuffer(window, buffer, fence_fd);
|
|
return VK_ERROR_OUT_OF_DATE_KHR;
|
|
}
|
|
|
|
swapchain.images[idx].dequeued = true;
|
|
swapchain.images[idx].dequeue_fence = fence_fd;
|
|
swapchain.images[idx].buffer = buffer;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The buffer doesn't match any slot. This shouldn't normally happen, but is
|
|
// possible if the bufferqueue is reconfigured behind libvulkan's back. If this
|
|
// happens, just declare the swapchain to be broken and the app will recreate it.
|
|
if (idx == swapchain.num_images) {
|
|
ALOGE("dequeueBuffer returned unrecognized buffer");
|
|
window->cancelBuffer(window, buffer, fence_fd);
|
|
return VK_ERROR_OUT_OF_DATE_KHR;
|
|
}
|
|
|
|
int fence_clone = -1;
|
|
if (fence_fd != -1) {
|
|
fence_clone = dup(fence_fd);
|
|
if (fence_clone == -1) {
|
|
ALOGE("dup(fence) failed, stalling until signalled: %s (%d)",
|
|
strerror(errno), errno);
|
|
sync_wait(fence_fd, -1 /* forever */);
|
|
}
|
|
}
|
|
|
|
result = GetData(device).driver.AcquireImageANDROID(
|
|
device, swapchain.images[idx].image, fence_clone, semaphore, vk_fence);
|
|
if (result != VK_SUCCESS) {
|
|
// NOTE: we're relying on AcquireImageANDROID to close fence_clone,
|
|
// even if the call fails. We could close it ourselves on failure, but
|
|
// that would create a race condition if the driver closes it on a
|
|
// failure path: some other thread might create an fd with the same
|
|
// number between the time the driver closes it and the time we close
|
|
// it. We must assume one of: the driver *always* closes it even on
|
|
// failure, or *never* closes it on failure.
|
|
window->cancelBuffer(window, buffer, fence_fd);
|
|
swapchain.images[idx].dequeued = false;
|
|
swapchain.images[idx].dequeue_fence = -1;
|
|
return result;
|
|
}
|
|
|
|
*image_index = idx;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult AcquireNextImage2KHR(VkDevice device,
|
|
const VkAcquireNextImageInfoKHR* pAcquireInfo,
|
|
uint32_t* pImageIndex) {
|
|
ATRACE_CALL();
|
|
|
|
return AcquireNextImageKHR(device, pAcquireInfo->swapchain,
|
|
pAcquireInfo->timeout, pAcquireInfo->semaphore,
|
|
pAcquireInfo->fence, pImageIndex);
|
|
}
|
|
|
|
static VkResult WorstPresentResult(VkResult a, VkResult b) {
|
|
// See the error ranking for vkQueuePresentKHR at the end of section 29.6
|
|
// (in spec version 1.0.14).
|
|
static const VkResult kWorstToBest[] = {
|
|
VK_ERROR_DEVICE_LOST,
|
|
VK_ERROR_SURFACE_LOST_KHR,
|
|
VK_ERROR_OUT_OF_DATE_KHR,
|
|
VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
VK_ERROR_OUT_OF_HOST_MEMORY,
|
|
VK_SUBOPTIMAL_KHR,
|
|
};
|
|
for (auto result : kWorstToBest) {
|
|
if (a == result || b == result)
|
|
return result;
|
|
}
|
|
ALOG_ASSERT(a == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", a);
|
|
ALOG_ASSERT(b == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", b);
|
|
return a != VK_SUCCESS ? a : b;
|
|
}
|
|
|
|
// KHR_incremental_present aspect of QueuePresentKHR
|
|
static void SetSwapchainSurfaceDamage(ANativeWindow *window, const VkPresentRegionKHR *pRegion) {
|
|
std::vector<android_native_rect_t> rects(pRegion->rectangleCount);
|
|
for (auto i = 0u; i < pRegion->rectangleCount; i++) {
|
|
auto const& rect = pRegion->pRectangles[i];
|
|
if (rect.layer > 0) {
|
|
ALOGV("vkQueuePresentKHR ignoring invalid layer (%u); using layer 0 instead",
|
|
rect.layer);
|
|
}
|
|
|
|
rects[i].left = rect.offset.x;
|
|
rects[i].bottom = rect.offset.y;
|
|
rects[i].right = rect.offset.x + rect.extent.width;
|
|
rects[i].top = rect.offset.y + rect.extent.height;
|
|
}
|
|
native_window_set_surface_damage(window, rects.data(), rects.size());
|
|
}
|
|
|
|
// GOOGLE_display_timing aspect of QueuePresentKHR
|
|
static void SetSwapchainFrameTimestamp(Swapchain &swapchain, const VkPresentTimeGOOGLE *pTime) {
|
|
ANativeWindow *window = swapchain.surface.window.get();
|
|
|
|
// We don't know whether the app will actually use GOOGLE_display_timing
|
|
// with a particular swapchain until QueuePresent; enable it on the BQ
|
|
// now if needed
|
|
if (!swapchain.frame_timestamps_enabled) {
|
|
ALOGV("Calling native_window_enable_frame_timestamps(true)");
|
|
native_window_enable_frame_timestamps(window, true);
|
|
swapchain.frame_timestamps_enabled = true;
|
|
}
|
|
|
|
// Record the nativeFrameId so it can be later correlated to
|
|
// this present.
|
|
uint64_t nativeFrameId = 0;
|
|
int err = native_window_get_next_frame_id(
|
|
window, &nativeFrameId);
|
|
if (err != android::OK) {
|
|
ALOGE("Failed to get next native frame ID.");
|
|
}
|
|
|
|
// Add a new timing record with the user's presentID and
|
|
// the nativeFrameId.
|
|
swapchain.timing.emplace_back(pTime, nativeFrameId);
|
|
if (swapchain.timing.size() > MAX_TIMING_INFOS) {
|
|
swapchain.timing.erase(
|
|
swapchain.timing.begin(),
|
|
swapchain.timing.begin() + swapchain.timing.size() - MAX_TIMING_INFOS);
|
|
}
|
|
if (pTime->desiredPresentTime) {
|
|
ALOGV(
|
|
"Calling native_window_set_buffers_timestamp(%" PRId64 ")",
|
|
pTime->desiredPresentTime);
|
|
native_window_set_buffers_timestamp(
|
|
window,
|
|
static_cast<int64_t>(pTime->desiredPresentTime));
|
|
}
|
|
}
|
|
|
|
// EXT_swapchain_maintenance1 present mode change
|
|
static bool SetSwapchainPresentMode(ANativeWindow *window, VkPresentModeKHR mode) {
|
|
// There is no dynamic switching between non-shared present modes.
|
|
// All we support is switching between demand and continuous refresh.
|
|
if (!IsSharedPresentMode(mode))
|
|
return true;
|
|
|
|
int err = native_window_set_auto_refresh(window,
|
|
mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR);
|
|
if (err != android::OK) {
|
|
ALOGE("native_window_set_auto_refresh() failed: %s (%d)",
|
|
strerror(-err), err);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static VkResult PresentOneSwapchain(
|
|
VkQueue queue,
|
|
Swapchain& swapchain,
|
|
uint32_t imageIndex,
|
|
const VkPresentRegionKHR *pRegion,
|
|
const VkPresentTimeGOOGLE *pTime,
|
|
VkFence presentFence,
|
|
const VkPresentModeKHR *pPresentMode,
|
|
uint32_t waitSemaphoreCount,
|
|
const VkSemaphore *pWaitSemaphores) {
|
|
|
|
VkDevice device = GetData(queue).driver_device;
|
|
const auto& dispatch = GetData(queue).driver;
|
|
|
|
Swapchain::Image& img = swapchain.images[imageIndex];
|
|
VkResult swapchain_result = VK_SUCCESS;
|
|
VkResult result;
|
|
int err;
|
|
|
|
// XXX: long standing issue: QueueSignalReleaseImageANDROID consumes the
|
|
// wait semaphores, so this doesn't actually work for the multiple swapchain
|
|
// case.
|
|
int fence = -1;
|
|
result = dispatch.QueueSignalReleaseImageANDROID(
|
|
queue, waitSemaphoreCount,
|
|
pWaitSemaphores, img.image, &fence);
|
|
if (result != VK_SUCCESS) {
|
|
ALOGE("QueueSignalReleaseImageANDROID failed: %d", result);
|
|
swapchain_result = result;
|
|
}
|
|
if (img.release_fence >= 0)
|
|
close(img.release_fence);
|
|
img.release_fence = fence < 0 ? -1 : dup(fence);
|
|
|
|
if (swapchain.surface.swapchain_handle == HandleFromSwapchain(&swapchain)) {
|
|
ANativeWindow* window = swapchain.surface.window.get();
|
|
if (swapchain_result == VK_SUCCESS) {
|
|
|
|
if (presentFence != VK_NULL_HANDLE) {
|
|
int fence_copy = fence < 0 ? -1 : dup(fence);
|
|
VkImportFenceFdInfoKHR iffi = {
|
|
VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR,
|
|
nullptr,
|
|
presentFence,
|
|
VK_FENCE_IMPORT_TEMPORARY_BIT,
|
|
VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT,
|
|
fence_copy,
|
|
};
|
|
if (VK_SUCCESS != dispatch.ImportFenceFdKHR(device, &iffi) && fence_copy >= 0) {
|
|
// ImportFenceFdKHR takes ownership only if it succeeds
|
|
close(fence_copy);
|
|
}
|
|
}
|
|
|
|
if (pRegion) {
|
|
SetSwapchainSurfaceDamage(window, pRegion);
|
|
}
|
|
if (pTime) {
|
|
SetSwapchainFrameTimestamp(swapchain, pTime);
|
|
}
|
|
if (pPresentMode) {
|
|
if (!SetSwapchainPresentMode(window, *pPresentMode))
|
|
swapchain_result = WorstPresentResult(swapchain_result,
|
|
VK_ERROR_SURFACE_LOST_KHR);
|
|
}
|
|
|
|
#ifdef MTK_GPUD_SUPPORT
|
|
GPUD_API_ENTRY(VkDumpPresentFrame, window, img.buffer.get(), fence);
|
|
#endif
|
|
err = window->queueBuffer(window, img.buffer.get(), fence);
|
|
// queueBuffer always closes fence, even on error
|
|
if (err != android::OK) {
|
|
ALOGE("queueBuffer failed: %s (%d)", strerror(-err), err);
|
|
swapchain_result = WorstPresentResult(
|
|
swapchain_result, VK_ERROR_SURFACE_LOST_KHR);
|
|
} else {
|
|
if (img.dequeue_fence >= 0) {
|
|
close(img.dequeue_fence);
|
|
img.dequeue_fence = -1;
|
|
}
|
|
img.dequeued = false;
|
|
}
|
|
|
|
// If the swapchain is in shared mode, immediately dequeue the
|
|
// buffer so it can be presented again without an intervening
|
|
// call to AcquireNextImageKHR. We expect to get the same buffer
|
|
// back from every call to dequeueBuffer in this mode.
|
|
if (swapchain.shared && swapchain_result == VK_SUCCESS) {
|
|
ANativeWindowBuffer* buffer;
|
|
int fence_fd;
|
|
err = window->dequeueBuffer(window, &buffer, &fence_fd);
|
|
if (err != android::OK) {
|
|
ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err);
|
|
swapchain_result = WorstPresentResult(swapchain_result,
|
|
VK_ERROR_SURFACE_LOST_KHR);
|
|
} else if (img.buffer != buffer) {
|
|
ALOGE("got wrong image back for shared swapchain");
|
|
swapchain_result = WorstPresentResult(swapchain_result,
|
|
VK_ERROR_SURFACE_LOST_KHR);
|
|
} else {
|
|
img.dequeue_fence = fence_fd;
|
|
img.dequeued = true;
|
|
}
|
|
}
|
|
}
|
|
if (swapchain_result != VK_SUCCESS) {
|
|
OrphanSwapchain(device, &swapchain);
|
|
}
|
|
// Android will only return VK_SUBOPTIMAL_KHR for vkQueuePresentKHR,
|
|
// and only when the window's transform/rotation changes. Extent
|
|
// changes will not cause VK_SUBOPTIMAL_KHR because of the
|
|
// application issues that were caused when the following transform
|
|
// change was added.
|
|
int window_transform_hint;
|
|
err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT,
|
|
&window_transform_hint);
|
|
if (err != android::OK) {
|
|
ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)",
|
|
strerror(-err), err);
|
|
swapchain_result = WorstPresentResult(
|
|
swapchain_result, VK_ERROR_SURFACE_LOST_KHR);
|
|
}
|
|
if (swapchain.pre_transform != window_transform_hint) {
|
|
swapchain_result =
|
|
WorstPresentResult(swapchain_result, VK_SUBOPTIMAL_KHR);
|
|
}
|
|
} else {
|
|
ReleaseSwapchainImage(device, swapchain.shared, nullptr, fence,
|
|
img, true);
|
|
swapchain_result = VK_ERROR_OUT_OF_DATE_KHR;
|
|
}
|
|
|
|
return swapchain_result;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* present_info) {
|
|
ATRACE_CALL();
|
|
|
|
ALOGV_IF(present_info->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
|
|
"vkQueuePresentKHR: invalid VkPresentInfoKHR structure type %d",
|
|
present_info->sType);
|
|
|
|
VkResult final_result = VK_SUCCESS;
|
|
|
|
// Look at the pNext chain for supported extension structs:
|
|
const VkPresentRegionsKHR* present_regions = nullptr;
|
|
const VkPresentTimesInfoGOOGLE* present_times = nullptr;
|
|
const VkSwapchainPresentFenceInfoEXT* present_fences = nullptr;
|
|
const VkSwapchainPresentModeInfoEXT* present_modes = nullptr;
|
|
|
|
const VkPresentRegionsKHR* next =
|
|
reinterpret_cast<const VkPresentRegionsKHR*>(present_info->pNext);
|
|
while (next) {
|
|
switch (next->sType) {
|
|
case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR:
|
|
present_regions = next;
|
|
break;
|
|
case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE:
|
|
present_times =
|
|
reinterpret_cast<const VkPresentTimesInfoGOOGLE*>(next);
|
|
break;
|
|
case VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_FENCE_INFO_EXT:
|
|
present_fences =
|
|
reinterpret_cast<const VkSwapchainPresentFenceInfoEXT*>(next);
|
|
break;
|
|
case VK_STRUCTURE_TYPE_SWAPCHAIN_PRESENT_MODE_INFO_EXT:
|
|
present_modes =
|
|
reinterpret_cast<const VkSwapchainPresentModeInfoEXT*>(next);
|
|
break;
|
|
default:
|
|
ALOGV("QueuePresentKHR ignoring unrecognized pNext->sType = %x",
|
|
next->sType);
|
|
break;
|
|
}
|
|
next = reinterpret_cast<const VkPresentRegionsKHR*>(next->pNext);
|
|
}
|
|
ALOGV_IF(
|
|
present_regions &&
|
|
present_regions->swapchainCount != present_info->swapchainCount,
|
|
"VkPresentRegions::swapchainCount != VkPresentInfo::swapchainCount");
|
|
ALOGV_IF(present_times &&
|
|
present_times->swapchainCount != present_info->swapchainCount,
|
|
"VkPresentTimesInfoGOOGLE::swapchainCount != "
|
|
"VkPresentInfo::swapchainCount");
|
|
ALOGV_IF(present_fences &&
|
|
present_fences->swapchainCount != present_info->swapchainCount,
|
|
"VkSwapchainPresentFenceInfoEXT::swapchainCount != "
|
|
"VkPresentInfo::swapchainCount");
|
|
ALOGV_IF(present_modes &&
|
|
present_modes->swapchainCount != present_info->swapchainCount,
|
|
"VkSwapchainPresentModeInfoEXT::swapchainCount != "
|
|
"VkPresentInfo::swapchainCount");
|
|
|
|
const VkPresentRegionKHR* regions =
|
|
(present_regions) ? present_regions->pRegions : nullptr;
|
|
const VkPresentTimeGOOGLE* times =
|
|
(present_times) ? present_times->pTimes : nullptr;
|
|
|
|
for (uint32_t sc = 0; sc < present_info->swapchainCount; sc++) {
|
|
Swapchain& swapchain =
|
|
*SwapchainFromHandle(present_info->pSwapchains[sc]);
|
|
|
|
VkResult swapchain_result = PresentOneSwapchain(
|
|
queue,
|
|
swapchain,
|
|
present_info->pImageIndices[sc],
|
|
(regions && !swapchain.mailbox_mode) ? ®ions[sc] : nullptr,
|
|
times ? ×[sc] : nullptr,
|
|
present_fences ? present_fences->pFences[sc] : VK_NULL_HANDLE,
|
|
present_modes ? &present_modes->pPresentModes[sc] : nullptr,
|
|
present_info->waitSemaphoreCount,
|
|
present_info->pWaitSemaphores);
|
|
|
|
if (present_info->pResults)
|
|
present_info->pResults[sc] = swapchain_result;
|
|
|
|
if (swapchain_result != final_result)
|
|
final_result = WorstPresentResult(final_result, swapchain_result);
|
|
}
|
|
|
|
return final_result;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetRefreshCycleDurationGOOGLE(
|
|
VkDevice,
|
|
VkSwapchainKHR swapchain_handle,
|
|
VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties) {
|
|
ATRACE_CALL();
|
|
|
|
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
|
|
VkResult result = swapchain.get_refresh_duration(pDisplayTimingProperties->refreshDuration);
|
|
|
|
return result;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetPastPresentationTimingGOOGLE(
|
|
VkDevice,
|
|
VkSwapchainKHR swapchain_handle,
|
|
uint32_t* count,
|
|
VkPastPresentationTimingGOOGLE* timings) {
|
|
ATRACE_CALL();
|
|
|
|
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
|
|
if (swapchain.surface.swapchain_handle != swapchain_handle) {
|
|
return VK_ERROR_OUT_OF_DATE_KHR;
|
|
}
|
|
|
|
ANativeWindow* window = swapchain.surface.window.get();
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
if (!swapchain.frame_timestamps_enabled) {
|
|
ALOGV("Calling native_window_enable_frame_timestamps(true)");
|
|
native_window_enable_frame_timestamps(window, true);
|
|
swapchain.frame_timestamps_enabled = true;
|
|
}
|
|
|
|
if (timings) {
|
|
// Get the latest ready timing count before copying, since the copied
|
|
// timing info will be erased in copy_ready_timings function.
|
|
uint32_t n = get_num_ready_timings(swapchain);
|
|
copy_ready_timings(swapchain, count, timings);
|
|
// Check the *count here against the recorded ready timing count, since
|
|
// *count can be overwritten per spec describes.
|
|
if (*count < n) {
|
|
result = VK_INCOMPLETE;
|
|
}
|
|
} else {
|
|
*count = get_num_ready_timings(swapchain);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult GetSwapchainStatusKHR(
|
|
VkDevice,
|
|
VkSwapchainKHR swapchain_handle) {
|
|
ATRACE_CALL();
|
|
|
|
Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle);
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
if (swapchain.surface.swapchain_handle != swapchain_handle) {
|
|
return VK_ERROR_OUT_OF_DATE_KHR;
|
|
}
|
|
|
|
// TODO(b/143296009): Implement this function properly
|
|
|
|
return result;
|
|
}
|
|
|
|
VKAPI_ATTR void SetHdrMetadataEXT(
|
|
VkDevice,
|
|
uint32_t swapchainCount,
|
|
const VkSwapchainKHR* pSwapchains,
|
|
const VkHdrMetadataEXT* pHdrMetadataEXTs) {
|
|
ATRACE_CALL();
|
|
|
|
for (uint32_t idx = 0; idx < swapchainCount; idx++) {
|
|
Swapchain* swapchain = SwapchainFromHandle(pSwapchains[idx]);
|
|
if (!swapchain)
|
|
continue;
|
|
|
|
if (swapchain->surface.swapchain_handle != pSwapchains[idx]) continue;
|
|
|
|
ANativeWindow* window = swapchain->surface.window.get();
|
|
|
|
VkHdrMetadataEXT vulkanMetadata = pHdrMetadataEXTs[idx];
|
|
const android_smpte2086_metadata smpteMetdata = {
|
|
{vulkanMetadata.displayPrimaryRed.x,
|
|
vulkanMetadata.displayPrimaryRed.y},
|
|
{vulkanMetadata.displayPrimaryGreen.x,
|
|
vulkanMetadata.displayPrimaryGreen.y},
|
|
{vulkanMetadata.displayPrimaryBlue.x,
|
|
vulkanMetadata.displayPrimaryBlue.y},
|
|
{vulkanMetadata.whitePoint.x, vulkanMetadata.whitePoint.y},
|
|
vulkanMetadata.maxLuminance,
|
|
vulkanMetadata.minLuminance};
|
|
native_window_set_buffers_smpte2086_metadata(window, &smpteMetdata);
|
|
|
|
const android_cta861_3_metadata cta8613Metadata = {
|
|
vulkanMetadata.maxContentLightLevel,
|
|
vulkanMetadata.maxFrameAverageLightLevel};
|
|
native_window_set_buffers_cta861_3_metadata(window, &cta8613Metadata);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void InterceptBindImageMemory2(
|
|
uint32_t bind_info_count,
|
|
const VkBindImageMemoryInfo* bind_infos,
|
|
std::vector<VkNativeBufferANDROID>* out_native_buffers,
|
|
std::vector<VkBindImageMemoryInfo>* out_bind_infos) {
|
|
out_native_buffers->clear();
|
|
out_bind_infos->clear();
|
|
|
|
if (!bind_info_count)
|
|
return;
|
|
|
|
std::unordered_set<uint32_t> intercepted_indexes;
|
|
|
|
for (uint32_t idx = 0; idx < bind_info_count; idx++) {
|
|
auto info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
|
|
bind_infos[idx].pNext);
|
|
while (info &&
|
|
info->sType !=
|
|
VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR) {
|
|
info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>(
|
|
info->pNext);
|
|
}
|
|
|
|
if (!info)
|
|
continue;
|
|
|
|
ALOG_ASSERT(info->swapchain != VK_NULL_HANDLE,
|
|
"swapchain handle must not be NULL");
|
|
const Swapchain* swapchain = SwapchainFromHandle(info->swapchain);
|
|
ALOG_ASSERT(
|
|
info->imageIndex < swapchain->num_images,
|
|
"imageIndex must be less than the number of images in swapchain");
|
|
|
|
ANativeWindowBuffer* buffer =
|
|
swapchain->images[info->imageIndex].buffer.get();
|
|
VkNativeBufferANDROID native_buffer = {
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wold-style-cast"
|
|
.sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID,
|
|
#pragma clang diagnostic pop
|
|
.pNext = bind_infos[idx].pNext,
|
|
.handle = buffer->handle,
|
|
.stride = buffer->stride,
|
|
.format = buffer->format,
|
|
.usage = int(buffer->usage),
|
|
};
|
|
// Reserve enough space to avoid letting re-allocation invalidate the
|
|
// addresses of the elements inside.
|
|
out_native_buffers->reserve(bind_info_count);
|
|
out_native_buffers->emplace_back(native_buffer);
|
|
|
|
// Reserve the space now since we know how much is needed now.
|
|
out_bind_infos->reserve(bind_info_count);
|
|
out_bind_infos->emplace_back(bind_infos[idx]);
|
|
out_bind_infos->back().pNext = &out_native_buffers->back();
|
|
|
|
intercepted_indexes.insert(idx);
|
|
}
|
|
|
|
if (intercepted_indexes.empty())
|
|
return;
|
|
|
|
for (uint32_t idx = 0; idx < bind_info_count; idx++) {
|
|
if (intercepted_indexes.count(idx))
|
|
continue;
|
|
out_bind_infos->emplace_back(bind_infos[idx]);
|
|
}
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult BindImageMemory2(VkDevice device,
|
|
uint32_t bindInfoCount,
|
|
const VkBindImageMemoryInfo* pBindInfos) {
|
|
ATRACE_CALL();
|
|
|
|
// out_native_buffers is for maintaining the lifecycle of the constructed
|
|
// VkNativeBufferANDROID objects inside InterceptBindImageMemory2.
|
|
std::vector<VkNativeBufferANDROID> out_native_buffers;
|
|
std::vector<VkBindImageMemoryInfo> out_bind_infos;
|
|
InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
|
|
&out_bind_infos);
|
|
return GetData(device).driver.BindImageMemory2(
|
|
device, bindInfoCount,
|
|
out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult BindImageMemory2KHR(VkDevice device,
|
|
uint32_t bindInfoCount,
|
|
const VkBindImageMemoryInfo* pBindInfos) {
|
|
ATRACE_CALL();
|
|
|
|
std::vector<VkNativeBufferANDROID> out_native_buffers;
|
|
std::vector<VkBindImageMemoryInfo> out_bind_infos;
|
|
InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers,
|
|
&out_bind_infos);
|
|
return GetData(device).driver.BindImageMemory2KHR(
|
|
device, bindInfoCount,
|
|
out_bind_infos.empty() ? pBindInfos : out_bind_infos.data());
|
|
}
|
|
|
|
VKAPI_ATTR
|
|
VkResult ReleaseSwapchainImagesEXT(VkDevice /*device*/,
|
|
const VkReleaseSwapchainImagesInfoEXT* pReleaseInfo) {
|
|
ATRACE_CALL();
|
|
|
|
Swapchain& swapchain = *SwapchainFromHandle(pReleaseInfo->swapchain);
|
|
ANativeWindow* window = swapchain.surface.window.get();
|
|
|
|
// If in shared present mode, don't actually release the image back to the BQ.
|
|
// Both sides share it forever.
|
|
if (swapchain.shared)
|
|
return VK_SUCCESS;
|
|
|
|
for (uint32_t i = 0; i < pReleaseInfo->imageIndexCount; i++) {
|
|
Swapchain::Image& img = swapchain.images[pReleaseInfo->pImageIndices[i]];
|
|
window->cancelBuffer(window, img.buffer.get(), img.dequeue_fence);
|
|
|
|
// cancelBuffer has taken ownership of the dequeue fence
|
|
img.dequeue_fence = -1;
|
|
// if we're still holding a release fence, get rid of it now
|
|
if (img.release_fence >= 0) {
|
|
close(img.release_fence);
|
|
img.release_fence = -1;
|
|
}
|
|
img.dequeued = false;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
} // namespace driver
|
|
} // namespace vulkan
|