860 lines
33 KiB
C++
860 lines
33 KiB
C++
/*
|
|
* Copyright (C) 2022 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "ExtCamUtils"
|
|
// #define LOG_NDEBUG 0
|
|
|
|
#include "ExternalCameraUtils.h"
|
|
|
|
#include <aidlcommonsupport/NativeHandle.h>
|
|
#include <jpeglib.h>
|
|
#include <linux/videodev2.h>
|
|
#include <log/log.h>
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
|
|
#define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs
|
|
#include <libyuv.h>
|
|
|
|
namespace android {
|
|
namespace hardware {
|
|
namespace camera {
|
|
|
|
namespace external {
|
|
namespace common {
|
|
|
|
namespace {
|
|
const int kDefaultCameraIdOffset = 100;
|
|
const int kDefaultJpegBufSize = 5 << 20; // 5MB
|
|
const int kDefaultNumVideoBuffer = 4;
|
|
const int kDefaultNumStillBuffer = 2;
|
|
const int kDefaultOrientation = 0; // suitable for natural landscape displays like tablet/TV
|
|
// For phone devices 270 is better
|
|
} // anonymous namespace
|
|
|
|
const char* ExternalCameraConfig::kDefaultCfgPath = "/vendor/etc/external_camera_config.xml";
|
|
|
|
ExternalCameraConfig ExternalCameraConfig::loadFromCfg(const char* cfgPath) {
|
|
using namespace tinyxml2;
|
|
ExternalCameraConfig ret;
|
|
|
|
XMLDocument configXml;
|
|
XMLError err = configXml.LoadFile(cfgPath);
|
|
if (err != XML_SUCCESS) {
|
|
ALOGE("%s: Unable to load external camera config file '%s'. Error: %s", __FUNCTION__,
|
|
cfgPath, XMLDocument::ErrorIDToName(err));
|
|
return ret;
|
|
} else {
|
|
ALOGI("%s: load external camera config succeeded!", __FUNCTION__);
|
|
}
|
|
|
|
XMLElement* extCam = configXml.FirstChildElement("ExternalCamera");
|
|
if (extCam == nullptr) {
|
|
ALOGI("%s: no external camera config specified", __FUNCTION__);
|
|
return ret;
|
|
}
|
|
|
|
XMLElement* providerCfg = extCam->FirstChildElement("Provider");
|
|
if (providerCfg == nullptr) {
|
|
ALOGI("%s: no external camera provider config specified", __FUNCTION__);
|
|
return ret;
|
|
}
|
|
|
|
XMLElement* cameraIdOffset = providerCfg->FirstChildElement("CameraIdOffset");
|
|
if (cameraIdOffset != nullptr) {
|
|
ret.cameraIdOffset = std::atoi(cameraIdOffset->GetText());
|
|
}
|
|
|
|
XMLElement* ignore = providerCfg->FirstChildElement("ignore");
|
|
if (ignore == nullptr) {
|
|
ALOGI("%s: no internal ignored device specified", __FUNCTION__);
|
|
return ret;
|
|
}
|
|
|
|
XMLElement* id = ignore->FirstChildElement("id");
|
|
while (id != nullptr) {
|
|
const char* text = id->GetText();
|
|
if (text != nullptr) {
|
|
ret.mInternalDevices.insert(text);
|
|
ALOGI("%s: device %s will be ignored by external camera provider", __FUNCTION__, text);
|
|
}
|
|
id = id->NextSiblingElement("id");
|
|
}
|
|
|
|
XMLElement* deviceCfg = extCam->FirstChildElement("Device");
|
|
if (deviceCfg == nullptr) {
|
|
ALOGI("%s: no external camera device config specified", __FUNCTION__);
|
|
return ret;
|
|
}
|
|
|
|
XMLElement* jpegBufSz = deviceCfg->FirstChildElement("MaxJpegBufferSize");
|
|
if (jpegBufSz == nullptr) {
|
|
ALOGI("%s: no max jpeg buffer size specified", __FUNCTION__);
|
|
} else {
|
|
ret.maxJpegBufSize = jpegBufSz->UnsignedAttribute("bytes", /*Default*/ kDefaultJpegBufSize);
|
|
}
|
|
|
|
XMLElement* numVideoBuf = deviceCfg->FirstChildElement("NumVideoBuffers");
|
|
if (numVideoBuf == nullptr) {
|
|
ALOGI("%s: no num video buffers specified", __FUNCTION__);
|
|
} else {
|
|
ret.numVideoBuffers =
|
|
numVideoBuf->UnsignedAttribute("count", /*Default*/ kDefaultNumVideoBuffer);
|
|
}
|
|
|
|
XMLElement* numStillBuf = deviceCfg->FirstChildElement("NumStillBuffers");
|
|
if (numStillBuf == nullptr) {
|
|
ALOGI("%s: no num still buffers specified", __FUNCTION__);
|
|
} else {
|
|
ret.numStillBuffers =
|
|
numStillBuf->UnsignedAttribute("count", /*Default*/ kDefaultNumStillBuffer);
|
|
}
|
|
|
|
XMLElement* fpsList = deviceCfg->FirstChildElement("FpsList");
|
|
if (fpsList == nullptr) {
|
|
ALOGI("%s: no fps list specified", __FUNCTION__);
|
|
} else {
|
|
if (!updateFpsList(fpsList, ret.fpsLimits)) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
XMLElement* depth = deviceCfg->FirstChildElement("Depth16Supported");
|
|
if (depth == nullptr) {
|
|
ret.depthEnabled = false;
|
|
ALOGI("%s: depth output is not enabled", __FUNCTION__);
|
|
} else {
|
|
ret.depthEnabled = depth->BoolAttribute("enabled", false);
|
|
}
|
|
|
|
if (ret.depthEnabled) {
|
|
XMLElement* depthFpsList = deviceCfg->FirstChildElement("DepthFpsList");
|
|
if (depthFpsList == nullptr) {
|
|
ALOGW("%s: no depth fps list specified", __FUNCTION__);
|
|
} else {
|
|
if (!updateFpsList(depthFpsList, ret.depthFpsLimits)) {
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
XMLElement* minStreamSize = deviceCfg->FirstChildElement("MinimumStreamSize");
|
|
if (minStreamSize == nullptr) {
|
|
ALOGI("%s: no minimum stream size specified", __FUNCTION__);
|
|
} else {
|
|
ret.minStreamSize = {
|
|
static_cast<int32_t>(minStreamSize->UnsignedAttribute("width", /*Default*/ 0)),
|
|
static_cast<int32_t>(minStreamSize->UnsignedAttribute("height", /*Default*/ 0))};
|
|
}
|
|
|
|
XMLElement* orientation = deviceCfg->FirstChildElement("Orientation");
|
|
if (orientation == nullptr) {
|
|
ALOGI("%s: no sensor orientation specified", __FUNCTION__);
|
|
} else {
|
|
ret.orientation = orientation->IntAttribute("degree", /*Default*/ kDefaultOrientation);
|
|
}
|
|
|
|
ALOGI("%s: external camera cfg loaded: maxJpgBufSize %d,"
|
|
" num video buffers %d, num still buffers %d, orientation %d",
|
|
__FUNCTION__, ret.maxJpegBufSize, ret.numVideoBuffers, ret.numStillBuffers,
|
|
ret.orientation);
|
|
for (const auto& limit : ret.fpsLimits) {
|
|
ALOGI("%s: fpsLimitList: %dx%d@%f", __FUNCTION__, limit.size.width, limit.size.height,
|
|
limit.fpsUpperBound);
|
|
}
|
|
for (const auto& limit : ret.depthFpsLimits) {
|
|
ALOGI("%s: depthFpsLimitList: %dx%d@%f", __FUNCTION__, limit.size.width, limit.size.height,
|
|
limit.fpsUpperBound);
|
|
}
|
|
ALOGI("%s: minStreamSize: %dx%d", __FUNCTION__, ret.minStreamSize.width,
|
|
ret.minStreamSize.height);
|
|
return ret;
|
|
}
|
|
|
|
bool ExternalCameraConfig::updateFpsList(tinyxml2::XMLElement* fpsList,
|
|
std::vector<FpsLimitation>& fpsLimits) {
|
|
using namespace tinyxml2;
|
|
std::vector<FpsLimitation> limits;
|
|
XMLElement* row = fpsList->FirstChildElement("Limit");
|
|
while (row != nullptr) {
|
|
FpsLimitation prevLimit{{0, 0}, 1000.0};
|
|
FpsLimitation limit = {
|
|
{/* width */ static_cast<int32_t>(row->UnsignedAttribute("width", /*Default*/ 0)),
|
|
/* height */ static_cast<int32_t>(
|
|
row->UnsignedAttribute("height", /*Default*/ 0))},
|
|
/* fpsUpperBound */ row->DoubleAttribute("fpsBound", /*Default*/ 1000.0)};
|
|
if (limit.size.width <= prevLimit.size.width ||
|
|
limit.size.height <= prevLimit.size.height ||
|
|
limit.fpsUpperBound >= prevLimit.fpsUpperBound) {
|
|
ALOGE("%s: FPS limit list must have increasing size and decreasing fps!"
|
|
" Prev %dx%d@%f, Current %dx%d@%f",
|
|
__FUNCTION__, prevLimit.size.width, prevLimit.size.height,
|
|
prevLimit.fpsUpperBound, limit.size.width, limit.size.height,
|
|
limit.fpsUpperBound);
|
|
return false;
|
|
}
|
|
limits.push_back(limit);
|
|
row = row->NextSiblingElement("Limit");
|
|
}
|
|
fpsLimits = limits;
|
|
return true;
|
|
}
|
|
|
|
ExternalCameraConfig::ExternalCameraConfig()
|
|
: cameraIdOffset(kDefaultCameraIdOffset),
|
|
maxJpegBufSize(kDefaultJpegBufSize),
|
|
numVideoBuffers(kDefaultNumVideoBuffer),
|
|
numStillBuffers(kDefaultNumStillBuffer),
|
|
depthEnabled(false),
|
|
orientation(kDefaultOrientation) {
|
|
fpsLimits.push_back({/* size */ {/* width */ 640, /* height */ 480}, /* fpsUpperBound */ 30.0});
|
|
fpsLimits.push_back({/* size */ {/* width */ 1280, /* height */ 720}, /* fpsUpperBound */ 7.5});
|
|
fpsLimits.push_back(
|
|
{/* size */ {/* width */ 1920, /* height */ 1080}, /* fpsUpperBound */ 5.0});
|
|
minStreamSize = {0, 0};
|
|
}
|
|
|
|
} // namespace common
|
|
} // namespace external
|
|
|
|
namespace device {
|
|
namespace implementation {
|
|
|
|
double SupportedV4L2Format::FrameRate::getFramesPerSecond() const {
|
|
return static_cast<double>(durationDenominator) / durationNumerator;
|
|
}
|
|
|
|
Frame::Frame(uint32_t width, uint32_t height, uint32_t fourcc)
|
|
: mWidth(width), mHeight(height), mFourcc(fourcc) {}
|
|
Frame::~Frame() {}
|
|
|
|
V4L2Frame::V4L2Frame(uint32_t w, uint32_t h, uint32_t fourcc, int bufIdx, int fd, uint32_t dataSize,
|
|
uint64_t offset)
|
|
: Frame(w, h, fourcc), mBufferIndex(bufIdx), mFd(fd), mDataSize(dataSize), mOffset(offset) {}
|
|
|
|
V4L2Frame::~V4L2Frame() {
|
|
unmap();
|
|
}
|
|
|
|
int V4L2Frame::getData(uint8_t** outData, size_t* dataSize) {
|
|
return map(outData, dataSize);
|
|
}
|
|
|
|
int V4L2Frame::map(uint8_t** data, size_t* dataSize) {
|
|
if (data == nullptr || dataSize == nullptr) {
|
|
ALOGI("%s: V4L2 buffer map bad argument: data %p, dataSize %p", __FUNCTION__, data,
|
|
dataSize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
std::lock_guard<std::mutex> lk(mLock);
|
|
if (!mMapped) {
|
|
void* addr = mmap(nullptr, mDataSize, PROT_READ, MAP_SHARED, mFd, mOffset);
|
|
if (addr == MAP_FAILED) {
|
|
ALOGE("%s: V4L2 buffer map failed: %s", __FUNCTION__, strerror(errno));
|
|
return -EINVAL;
|
|
}
|
|
mData = static_cast<uint8_t*>(addr);
|
|
mMapped = true;
|
|
}
|
|
*data = mData;
|
|
*dataSize = mDataSize;
|
|
ALOGV("%s: V4L map FD %d, data %p size %zu", __FUNCTION__, mFd, mData, mDataSize);
|
|
return 0;
|
|
}
|
|
|
|
int V4L2Frame::unmap() {
|
|
std::lock_guard<std::mutex> lk(mLock);
|
|
if (mMapped) {
|
|
ALOGV("%s: V4L unmap data %p size %zu", __FUNCTION__, mData, mDataSize);
|
|
if (munmap(mData, mDataSize) != 0) {
|
|
ALOGE("%s: V4L2 buffer unmap failed: %s", __FUNCTION__, strerror(errno));
|
|
return -EINVAL;
|
|
}
|
|
mMapped = false;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
AllocatedFrame::AllocatedFrame(uint32_t w, uint32_t h) : Frame(w, h, V4L2_PIX_FMT_YUV420) {}
|
|
AllocatedFrame::~AllocatedFrame() {}
|
|
|
|
int AllocatedFrame::getData(uint8_t** outData, size_t* dataSize) {
|
|
YCbCrLayout layout;
|
|
int ret = allocate(&layout);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
*outData = mData.data();
|
|
*dataSize = mBufferSize;
|
|
return 0;
|
|
}
|
|
|
|
int AllocatedFrame::allocate(YCbCrLayout* out) {
|
|
std::lock_guard<std::mutex> lk(mLock);
|
|
if ((mWidth % 2) || (mHeight % 2)) {
|
|
ALOGE("%s: bad dimension %dx%d (not multiple of 2)", __FUNCTION__, mWidth, mHeight);
|
|
return -EINVAL;
|
|
}
|
|
|
|
// This frame might be sent to jpeglib to be encoded. Since AllocatedFrame only contains YUV420,
|
|
// jpeglib expects height and width of Y component to be an integral multiple of 2*DCTSIZE,
|
|
// and heights and widths of Cb and Cr components to be an integral multiple of DCTSIZE. If the
|
|
// image size does not meet this requirement, libjpeg expects its input to be padded to meet the
|
|
// constraints. This padding is removed from the final encoded image so the content in the
|
|
// padding doesn't matter. What matters is that the memory is accessible to jpeglib at the time
|
|
// of encoding.
|
|
// For example, if the image size is 1500x844 and DCTSIZE is 8, jpeglib expects a YUV 420
|
|
// frame with components of following sizes:
|
|
// Y: 1504x848 because 1504 and 848 are the next smallest multiples of 2*8
|
|
// Cb/Cr: 752x424 which are the next smallest multiples of 8
|
|
|
|
// jpeglib takes an array of row pointers which makes vertical padding trivial when setting up
|
|
// the pointers. Padding horizontally is a bit more complicated. AllocatedFrame holds the data
|
|
// in a flattened buffer, which means memory accesses past a row will flow into the next logical
|
|
// row. For any row of a component, we can consider the first few bytes of the next row as
|
|
// padding for the current one. This is true for Y and Cb components and all but last row of the
|
|
// Cr component. Reading past the last row of Cr component will lead to undefined behavior as
|
|
// libjpeg attempts to read memory past the allocated buffer. To prevent undefined behavior,
|
|
// the buffer allocated here is padded such that libjpeg never accesses unallocated memory when
|
|
// reading the last row. Effectively, we only need to ensure that the last row of Cr component
|
|
// has width that is an integral multiple of DCTSIZE.
|
|
|
|
size_t dataSize = mWidth * mHeight * 3 / 2; // YUV420
|
|
|
|
size_t cbWidth = mWidth / 2;
|
|
size_t requiredCbWidth = DCTSIZE * ((cbWidth + DCTSIZE - 1) / DCTSIZE);
|
|
size_t padding = requiredCbWidth - cbWidth;
|
|
size_t finalSize = dataSize + padding;
|
|
|
|
if (mData.size() != finalSize) {
|
|
mData.resize(finalSize);
|
|
mBufferSize = dataSize;
|
|
}
|
|
|
|
if (out != nullptr) {
|
|
out->y = mData.data();
|
|
out->yStride = mWidth;
|
|
uint8_t* cbStart = mData.data() + mWidth * mHeight;
|
|
uint8_t* crStart = cbStart + mWidth * mHeight / 4;
|
|
out->cb = cbStart;
|
|
out->cr = crStart;
|
|
out->cStride = mWidth / 2;
|
|
out->chromaStep = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int AllocatedFrame::getLayout(YCbCrLayout* out) {
|
|
IMapper::Rect noCrop = {0, 0, static_cast<int32_t>(mWidth), static_cast<int32_t>(mHeight)};
|
|
return getCroppedLayout(noCrop, out);
|
|
}
|
|
|
|
int AllocatedFrame::getCroppedLayout(const IMapper::Rect& rect, YCbCrLayout* out) {
|
|
if (out == nullptr) {
|
|
ALOGE("%s: null out", __FUNCTION__);
|
|
return -1;
|
|
}
|
|
|
|
std::lock_guard<std::mutex> lk(mLock);
|
|
if ((rect.left + rect.width) > static_cast<int>(mWidth) ||
|
|
(rect.top + rect.height) > static_cast<int>(mHeight) || (rect.left % 2) || (rect.top % 2) ||
|
|
(rect.width % 2) || (rect.height % 2)) {
|
|
ALOGE("%s: bad rect left %d top %d w %d h %d", __FUNCTION__, rect.left, rect.top,
|
|
rect.width, rect.height);
|
|
return -1;
|
|
}
|
|
|
|
out->y = mData.data() + mWidth * rect.top + rect.left;
|
|
out->yStride = mWidth;
|
|
uint8_t* cbStart = mData.data() + mWidth * mHeight;
|
|
uint8_t* crStart = cbStart + mWidth * mHeight / 4;
|
|
out->cb = cbStart + mWidth * rect.top / 4 + rect.left / 2;
|
|
out->cr = crStart + mWidth * rect.top / 4 + rect.left / 2;
|
|
out->cStride = mWidth / 2;
|
|
out->chromaStep = 1;
|
|
return 0;
|
|
}
|
|
|
|
bool isAspectRatioClose(float ar1, float ar2) {
|
|
constexpr float kAspectRatioMatchThres = 0.025f; // This threshold is good enough to
|
|
// distinguish 4:3/16:9/20:9 1.33/1.78/2
|
|
return std::abs(ar1 - ar2) < kAspectRatioMatchThres;
|
|
}
|
|
|
|
aidl::android::hardware::camera::common::Status importBufferImpl(
|
|
/*inout*/ std::map<int, CirculatingBuffers>& circulatingBuffers,
|
|
/*inout*/ HandleImporter& handleImporter, int32_t streamId, uint64_t bufId,
|
|
buffer_handle_t buf,
|
|
/*out*/ buffer_handle_t** outBufPtr) {
|
|
using ::aidl::android::hardware::camera::common::Status;
|
|
if (buf == nullptr && bufId == BUFFER_ID_NO_BUFFER) {
|
|
ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId);
|
|
return Status::ILLEGAL_ARGUMENT;
|
|
}
|
|
|
|
CirculatingBuffers& cbs = circulatingBuffers[streamId];
|
|
if (cbs.count(bufId) == 0) {
|
|
if (buf == nullptr) {
|
|
ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId);
|
|
return Status::ILLEGAL_ARGUMENT;
|
|
}
|
|
// Register a newly seen buffer
|
|
buffer_handle_t importedBuf = buf;
|
|
handleImporter.importBuffer(importedBuf);
|
|
if (importedBuf == nullptr) {
|
|
ALOGE("%s: output buffer for stream %d is invalid!", __FUNCTION__, streamId);
|
|
return Status::INTERNAL_ERROR;
|
|
} else {
|
|
cbs[bufId] = importedBuf;
|
|
}
|
|
}
|
|
*outBufPtr = &cbs[bufId];
|
|
return Status::OK;
|
|
}
|
|
|
|
uint32_t getFourCcFromLayout(const YCbCrLayout& layout) {
|
|
intptr_t cb = reinterpret_cast<intptr_t>(layout.cb);
|
|
intptr_t cr = reinterpret_cast<intptr_t>(layout.cr);
|
|
if (std::abs(cb - cr) == 1 && layout.chromaStep == 2) {
|
|
// Interleaved format
|
|
if (layout.cb > layout.cr) {
|
|
return V4L2_PIX_FMT_NV21;
|
|
} else {
|
|
return V4L2_PIX_FMT_NV12;
|
|
}
|
|
} else if (layout.chromaStep == 1) {
|
|
// Planar format
|
|
if (layout.cb > layout.cr) {
|
|
return V4L2_PIX_FMT_YVU420; // YV12
|
|
} else {
|
|
return V4L2_PIX_FMT_YUV420; // YU12
|
|
}
|
|
} else {
|
|
return FLEX_YUV_GENERIC;
|
|
}
|
|
}
|
|
|
|
int getCropRect(CroppingType ct, const Size& inSize, const Size& outSize, IMapper::Rect* out) {
|
|
if (out == nullptr) {
|
|
ALOGE("%s: out is null", __FUNCTION__);
|
|
return -1;
|
|
}
|
|
|
|
uint32_t inW = inSize.width;
|
|
uint32_t inH = inSize.height;
|
|
uint32_t outW = outSize.width;
|
|
uint32_t outH = outSize.height;
|
|
|
|
// Handle special case where aspect ratio is close to input but scaled
|
|
// dimension is slightly larger than input
|
|
float arIn = ASPECT_RATIO(inSize);
|
|
float arOut = ASPECT_RATIO(outSize);
|
|
if (isAspectRatioClose(arIn, arOut)) {
|
|
out->left = 0;
|
|
out->top = 0;
|
|
out->width = static_cast<int32_t>(inW);
|
|
out->height = static_cast<int32_t>(inH);
|
|
return 0;
|
|
}
|
|
|
|
if (ct == VERTICAL) {
|
|
uint64_t scaledOutH = static_cast<uint64_t>(outH) * inW / outW;
|
|
if (scaledOutH > inH) {
|
|
ALOGE("%s: Output size %dx%d cannot be vertically cropped from input size %dx%d",
|
|
__FUNCTION__, outW, outH, inW, inH);
|
|
return -1;
|
|
}
|
|
scaledOutH = scaledOutH & ~0x1; // make it multiple of 2
|
|
|
|
out->left = 0;
|
|
out->top = static_cast<int32_t>((inH - scaledOutH) / 2) & ~0x1;
|
|
out->width = static_cast<int32_t>(inW);
|
|
out->height = static_cast<int32_t>(scaledOutH);
|
|
ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledH %d", __FUNCTION__, inW, inH, outW, outH,
|
|
out->top, static_cast<int32_t>(scaledOutH));
|
|
} else {
|
|
uint64_t scaledOutW = static_cast<uint64_t>(outW) * inH / outH;
|
|
if (scaledOutW > inW) {
|
|
ALOGE("%s: Output size %dx%d cannot be horizontally cropped from input size %dx%d",
|
|
__FUNCTION__, outW, outH, inW, inH);
|
|
return -1;
|
|
}
|
|
scaledOutW = scaledOutW & ~0x1; // make it multiple of 2
|
|
|
|
out->left = static_cast<int32_t>((inW - scaledOutW) / 2) & ~0x1;
|
|
out->top = 0;
|
|
out->width = static_cast<int32_t>(scaledOutW);
|
|
out->height = static_cast<int32_t>(inH);
|
|
ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledW %d", __FUNCTION__, inW, inH, outW, outH,
|
|
out->top, static_cast<int32_t>(scaledOutW));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int formatConvert(const YCbCrLayout& in, const YCbCrLayout& out, Size sz, uint32_t format) {
|
|
int ret = 0;
|
|
switch (format) {
|
|
case V4L2_PIX_FMT_NV21:
|
|
ret = libyuv::I420ToNV21(
|
|
static_cast<uint8_t*>(in.y), static_cast<int32_t>(in.yStride),
|
|
static_cast<uint8_t*>(in.cb), static_cast<int32_t>(in.cStride),
|
|
static_cast<uint8_t*>(in.cr), static_cast<int32_t>(in.cStride),
|
|
static_cast<uint8_t*>(out.y), static_cast<int32_t>(out.yStride),
|
|
static_cast<uint8_t*>(out.cr), static_cast<int32_t>(out.cStride),
|
|
static_cast<int32_t>(sz.width), static_cast<int32_t>(sz.height));
|
|
if (ret != 0) {
|
|
ALOGE("%s: convert to NV21 buffer failed! ret %d", __FUNCTION__, ret);
|
|
return ret;
|
|
}
|
|
break;
|
|
case V4L2_PIX_FMT_NV12:
|
|
ret = libyuv::I420ToNV12(
|
|
static_cast<uint8_t*>(in.y), static_cast<int32_t>(in.yStride),
|
|
static_cast<uint8_t*>(in.cb), static_cast<int32_t>(in.cStride),
|
|
static_cast<uint8_t*>(in.cr), static_cast<int32_t>(in.cStride),
|
|
static_cast<uint8_t*>(out.y), static_cast<int32_t>(out.yStride),
|
|
static_cast<uint8_t*>(out.cb), static_cast<int32_t>(out.cStride),
|
|
static_cast<int32_t>(sz.width), static_cast<int32_t>(sz.height));
|
|
if (ret != 0) {
|
|
ALOGE("%s: convert to NV12 buffer failed! ret %d", __FUNCTION__, ret);
|
|
return ret;
|
|
}
|
|
break;
|
|
case V4L2_PIX_FMT_YVU420: // YV12
|
|
case V4L2_PIX_FMT_YUV420: // YU12
|
|
// TODO: maybe we can speed up here by somehow save this copy?
|
|
ret = libyuv::I420Copy(static_cast<uint8_t*>(in.y), static_cast<int32_t>(in.yStride),
|
|
static_cast<uint8_t*>(in.cb), static_cast<int32_t>(in.cStride),
|
|
static_cast<uint8_t*>(in.cr), static_cast<int32_t>(in.cStride),
|
|
static_cast<uint8_t*>(out.y), static_cast<int32_t>(out.yStride),
|
|
static_cast<uint8_t*>(out.cb), static_cast<int32_t>(out.cStride),
|
|
static_cast<uint8_t*>(out.cr), static_cast<int32_t>(out.cStride),
|
|
static_cast<int32_t>(sz.width), static_cast<int32_t>(sz.height));
|
|
if (ret != 0) {
|
|
ALOGE("%s: copy to YV12 or YU12 buffer failed! ret %d", __FUNCTION__, ret);
|
|
return ret;
|
|
}
|
|
break;
|
|
case FLEX_YUV_GENERIC:
|
|
// TODO: b/72261744 write to arbitrary flexible YUV layout. Slow.
|
|
ALOGE("%s: unsupported flexible yuv layout"
|
|
" y %p cb %p cr %p y_str %d c_str %d c_step %d",
|
|
__FUNCTION__, out.y, out.cb, out.cr, out.yStride, out.cStride, out.chromaStep);
|
|
return -1;
|
|
default:
|
|
ALOGE("%s: unknown YUV format 0x%x!", __FUNCTION__, format);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int encodeJpegYU12(const Size& inSz, const YCbCrLayout& inLayout, int jpegQuality,
|
|
const void* app1Buffer, size_t app1Size, void* out, size_t maxOutSize,
|
|
size_t& actualCodeSize) {
|
|
/* libjpeg is a C library so we use C-style "inheritance" by
|
|
* putting libjpeg's jpeg_destination_mgr first in our custom
|
|
* struct. This allows us to cast jpeg_destination_mgr* to
|
|
* CustomJpegDestMgr* when we get it passed to us in a callback */
|
|
struct CustomJpegDestMgr {
|
|
struct jpeg_destination_mgr mgr;
|
|
JOCTET* mBuffer;
|
|
size_t mBufferSize;
|
|
size_t mEncodedSize;
|
|
bool mSuccess;
|
|
} dmgr;
|
|
|
|
jpeg_compress_struct cinfo = {};
|
|
jpeg_error_mgr jerr;
|
|
|
|
/* Initialize error handling with standard callbacks, but
|
|
* then override output_message (to print to ALOG) and
|
|
* error_exit to set a flag and print a message instead
|
|
* of killing the whole process */
|
|
cinfo.err = jpeg_std_error(&jerr);
|
|
|
|
cinfo.err->output_message = [](j_common_ptr cinfo) {
|
|
char buffer[JMSG_LENGTH_MAX];
|
|
|
|
/* Create the message */
|
|
(*cinfo->err->format_message)(cinfo, buffer);
|
|
ALOGE("libjpeg error: %s", buffer);
|
|
};
|
|
cinfo.err->error_exit = [](j_common_ptr cinfo) {
|
|
(*cinfo->err->output_message)(cinfo);
|
|
if (cinfo->client_data) {
|
|
auto& dmgr = *reinterpret_cast<CustomJpegDestMgr*>(cinfo->client_data);
|
|
dmgr.mSuccess = false;
|
|
}
|
|
};
|
|
|
|
/* Now that we initialized some callbacks, let's create our compressor */
|
|
jpeg_create_compress(&cinfo);
|
|
|
|
/* Initialize our destination manager */
|
|
dmgr.mBuffer = static_cast<JOCTET*>(out);
|
|
dmgr.mBufferSize = maxOutSize;
|
|
dmgr.mEncodedSize = 0;
|
|
dmgr.mSuccess = true;
|
|
cinfo.client_data = static_cast<void*>(&dmgr);
|
|
|
|
/* These lambdas become C-style function pointers and as per C++11 spec
|
|
* may not capture anything */
|
|
dmgr.mgr.init_destination = [](j_compress_ptr cinfo) {
|
|
auto& dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest);
|
|
dmgr.mgr.next_output_byte = dmgr.mBuffer;
|
|
dmgr.mgr.free_in_buffer = dmgr.mBufferSize;
|
|
ALOGV("%s:%d jpeg start: %p [%zu]", __FUNCTION__, __LINE__, dmgr.mBuffer, dmgr.mBufferSize);
|
|
};
|
|
|
|
dmgr.mgr.empty_output_buffer = [](j_compress_ptr cinfo __unused) {
|
|
ALOGV("%s:%d Out of buffer", __FUNCTION__, __LINE__);
|
|
return 0;
|
|
};
|
|
|
|
dmgr.mgr.term_destination = [](j_compress_ptr cinfo) {
|
|
auto& dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest);
|
|
dmgr.mEncodedSize = dmgr.mBufferSize - dmgr.mgr.free_in_buffer;
|
|
ALOGV("%s:%d Done with jpeg: %zu", __FUNCTION__, __LINE__, dmgr.mEncodedSize);
|
|
};
|
|
cinfo.dest = reinterpret_cast<struct jpeg_destination_mgr*>(&dmgr);
|
|
|
|
/* We are going to be using JPEG in raw data mode, so we are passing
|
|
* straight subsampled planar YCbCr and it will not touch our pixel
|
|
* data or do any scaling or anything */
|
|
cinfo.image_width = inSz.width;
|
|
cinfo.image_height = inSz.height;
|
|
cinfo.input_components = 3;
|
|
cinfo.in_color_space = JCS_YCbCr;
|
|
|
|
/* Initialize defaults and then override what we want */
|
|
jpeg_set_defaults(&cinfo);
|
|
|
|
jpeg_set_quality(&cinfo, jpegQuality, 1);
|
|
jpeg_set_colorspace(&cinfo, JCS_YCbCr);
|
|
cinfo.raw_data_in = 1;
|
|
cinfo.dct_method = JDCT_IFAST;
|
|
|
|
/* Configure sampling factors. The sampling factor is JPEG subsampling 420
|
|
* because the source format is YUV420. Note that libjpeg sampling factors
|
|
* are... a little weird. Sampling of Y=2,U=1,V=1 means there is 1 U and
|
|
* 1 V value for each 2 Y values */
|
|
cinfo.comp_info[0].h_samp_factor = 2;
|
|
cinfo.comp_info[0].v_samp_factor = 2;
|
|
cinfo.comp_info[1].h_samp_factor = 1;
|
|
cinfo.comp_info[1].v_samp_factor = 1;
|
|
cinfo.comp_info[2].h_samp_factor = 1;
|
|
cinfo.comp_info[2].v_samp_factor = 1;
|
|
|
|
/* Start the compressor */
|
|
jpeg_start_compress(&cinfo, TRUE);
|
|
|
|
/* Let's not hardcode YUV420 in 6 places... 5 was enough */
|
|
int maxVSampFactor = cinfo.max_v_samp_factor;
|
|
int cVSubSampling = cinfo.comp_info[0].v_samp_factor / cinfo.comp_info[1].v_samp_factor;
|
|
|
|
/* Compute our macroblock height, so we can pad our input to be vertically
|
|
* macroblock aligned. No need to for horizontal alignment since AllocatedFrame already
|
|
* pads horizontally */
|
|
|
|
size_t mcuV = DCTSIZE * maxVSampFactor;
|
|
size_t paddedHeight = mcuV * ((inSz.height + mcuV - 1) / mcuV);
|
|
|
|
/* libjpeg uses arrays of row pointers, which makes it really easy to pad
|
|
* data vertically (unfortunately doesn't help horizontally) */
|
|
std::vector<JSAMPROW> yLines(paddedHeight);
|
|
std::vector<JSAMPROW> cbLines(paddedHeight / cVSubSampling);
|
|
std::vector<JSAMPROW> crLines(paddedHeight / cVSubSampling);
|
|
|
|
uint8_t* py = static_cast<uint8_t*>(inLayout.y);
|
|
uint8_t* pcb = static_cast<uint8_t*>(inLayout.cb);
|
|
uint8_t* pcr = static_cast<uint8_t*>(inLayout.cr);
|
|
|
|
for (int32_t i = 0; i < paddedHeight; i++) {
|
|
/* Once we are in the padding territory we still point to the last line
|
|
* effectively replicating it several times ~ CLAMP_TO_EDGE */
|
|
int li = std::min(i, inSz.height - 1);
|
|
yLines[i] = static_cast<JSAMPROW>(py + li * inLayout.yStride);
|
|
if (i < paddedHeight / cVSubSampling) {
|
|
li = std::min(i, (inSz.height - 1) / cVSubSampling);
|
|
cbLines[i] = static_cast<JSAMPROW>(pcb + li * inLayout.cStride);
|
|
crLines[i] = static_cast<JSAMPROW>(pcr + li * inLayout.cStride);
|
|
}
|
|
}
|
|
|
|
/* If APP1 data was passed in, use it */
|
|
if (app1Buffer && app1Size) {
|
|
jpeg_write_marker(&cinfo, JPEG_APP0 + 1, static_cast<const JOCTET*>(app1Buffer), app1Size);
|
|
}
|
|
|
|
/* While we still have padded height left to go, keep giving it one
|
|
* macroblock at a time. */
|
|
while (cinfo.next_scanline < cinfo.image_height) {
|
|
const uint32_t batchSize = DCTSIZE * maxVSampFactor;
|
|
const uint32_t nl = cinfo.next_scanline;
|
|
JSAMPARRAY planes[3]{&yLines[nl], &cbLines[nl / cVSubSampling],
|
|
&crLines[nl / cVSubSampling]};
|
|
|
|
uint32_t done = jpeg_write_raw_data(&cinfo, planes, batchSize);
|
|
|
|
if (done != batchSize) {
|
|
ALOGE("%s: compressed %u lines, expected %u (total %u/%u)", __FUNCTION__, done,
|
|
batchSize, cinfo.next_scanline, cinfo.image_height);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* This will flush everything */
|
|
jpeg_finish_compress(&cinfo);
|
|
|
|
/* Grab the actual code size and set it */
|
|
actualCodeSize = dmgr.mEncodedSize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
Size getMaxThumbnailResolution(const common::V1_0::helper::CameraMetadata& chars) {
|
|
Size thumbSize{0, 0};
|
|
camera_metadata_ro_entry entry = chars.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
|
|
for (uint32_t i = 0; i < entry.count; i += 2) {
|
|
Size sz{.width = entry.data.i32[i], .height = entry.data.i32[i + 1]};
|
|
if (sz.width * sz.height > thumbSize.width * thumbSize.height) {
|
|
thumbSize = sz;
|
|
}
|
|
}
|
|
|
|
if (thumbSize.width * thumbSize.height == 0) {
|
|
ALOGW("%s: non-zero thumbnail size not available", __FUNCTION__);
|
|
}
|
|
|
|
return thumbSize;
|
|
}
|
|
|
|
void freeReleaseFences(std::vector<CaptureResult>& results) {
|
|
for (auto& result : results) {
|
|
native_handle_t* inputReleaseFence =
|
|
::android::makeFromAidl(result.inputBuffer.releaseFence);
|
|
if (inputReleaseFence != nullptr) {
|
|
native_handle_close(inputReleaseFence);
|
|
native_handle_delete(inputReleaseFence);
|
|
}
|
|
for (auto& buf : result.outputBuffers) {
|
|
native_handle_t* outReleaseFence = ::android::makeFromAidl(buf.releaseFence);
|
|
if (outReleaseFence != nullptr) {
|
|
native_handle_close(outReleaseFence);
|
|
native_handle_delete(outReleaseFence);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
|
|
#define UPDATE(md, tag, data, size) \
|
|
do { \
|
|
if ((md).update((tag), (data), (size))) { \
|
|
ALOGE("Update " #tag " failed!"); \
|
|
return BAD_VALUE; \
|
|
} \
|
|
} while (0)
|
|
|
|
status_t fillCaptureResultCommon(CameraMetadata& md, nsecs_t timestamp,
|
|
camera_metadata_ro_entry& activeArraySize) {
|
|
if (activeArraySize.count < 4) {
|
|
ALOGE("%s: cannot find active array size!", __FUNCTION__);
|
|
return -EINVAL;
|
|
}
|
|
// android.control
|
|
// For USB camera, we don't know the AE state. Set the state to converged to
|
|
// indicate the frame should be good to use. Then apps don't have to wait the
|
|
// AE state.
|
|
const uint8_t aeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
|
|
UPDATE(md, ANDROID_CONTROL_AE_STATE, &aeState, 1);
|
|
|
|
const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
|
|
UPDATE(md, ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
|
|
|
|
// Set AWB state to converged to indicate the frame should be good to use.
|
|
const uint8_t awbState = ANDROID_CONTROL_AWB_STATE_CONVERGED;
|
|
UPDATE(md, ANDROID_CONTROL_AWB_STATE, &awbState, 1);
|
|
|
|
const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
|
|
UPDATE(md, ANDROID_CONTROL_AWB_LOCK, &awbLock, 1);
|
|
|
|
const uint8_t flashState = ANDROID_FLASH_STATE_UNAVAILABLE;
|
|
UPDATE(md, ANDROID_FLASH_STATE, &flashState, 1);
|
|
|
|
// This means pipeline latency of X frame intervals. The maximum number is 4.
|
|
const uint8_t requestPipelineMaxDepth = 4;
|
|
UPDATE(md, ANDROID_REQUEST_PIPELINE_DEPTH, &requestPipelineMaxDepth, 1);
|
|
|
|
// android.scaler
|
|
const int32_t crop_region[] = {
|
|
activeArraySize.data.i32[0],
|
|
activeArraySize.data.i32[1],
|
|
activeArraySize.data.i32[2],
|
|
activeArraySize.data.i32[3],
|
|
};
|
|
UPDATE(md, ANDROID_SCALER_CROP_REGION, crop_region, ARRAY_SIZE(crop_region));
|
|
|
|
// android.sensor
|
|
UPDATE(md, ANDROID_SENSOR_TIMESTAMP, ×tamp, 1);
|
|
|
|
// android.statistics
|
|
const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
|
|
UPDATE(md, ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1);
|
|
|
|
const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
|
|
UPDATE(md, ANDROID_STATISTICS_SCENE_FLICKER, &sceneFlicker, 1);
|
|
|
|
return OK;
|
|
}
|
|
|
|
#undef ARRAY_SIZE
|
|
#undef UPDATE
|
|
|
|
AllocatedV4L2Frame::AllocatedV4L2Frame(std::shared_ptr<V4L2Frame> frameIn)
|
|
: Frame(frameIn->mWidth, frameIn->mHeight, frameIn->mFourcc) {
|
|
uint8_t* dataIn;
|
|
size_t dataSize;
|
|
if (frameIn->getData(&dataIn, &dataSize) != 0) {
|
|
ALOGE("%s: map input V4L2 frame failed!", __FUNCTION__);
|
|
return;
|
|
}
|
|
|
|
mData.resize(dataSize);
|
|
std::memcpy(mData.data(), dataIn, dataSize);
|
|
}
|
|
|
|
AllocatedV4L2Frame::~AllocatedV4L2Frame() {}
|
|
|
|
int AllocatedV4L2Frame::getData(uint8_t** outData, size_t* dataSize) {
|
|
if (outData == nullptr || dataSize == nullptr) {
|
|
ALOGE("%s: outData(%p)/dataSize(%p) must not be null", __FUNCTION__, outData, dataSize);
|
|
return -1;
|
|
}
|
|
|
|
*outData = mData.data();
|
|
*dataSize = mData.size();
|
|
return 0;
|
|
}
|
|
|
|
} // namespace implementation
|
|
} // namespace device
|
|
} // namespace camera
|
|
} // namespace hardware
|
|
} // namespace android
|