1846 lines
73 KiB
C++
1846 lines
73 KiB
C++
//===- LinalgOps.cpp - Implementation of the linalg operations ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Linalg operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
/// Fully compose map with operands and canonicalize the result.
|
|
/// Return the `createOrFold`'ed AffineApply op.
|
|
static Value createFoldedComposedAffineApply(OpBuilder &b, Location loc,
|
|
AffineMap map,
|
|
ValueRange operandsRef) {
|
|
SmallVector<Value, 4> operands(operandsRef.begin(), operandsRef.end());
|
|
fullyComposeAffineMapAndOperands(&map, &operands);
|
|
canonicalizeMapAndOperands(&map, &operands);
|
|
return b.createOrFold<AffineApplyOp>(loc, map, operands);
|
|
}
|
|
|
|
SmallVector<Value, 4> mlir::linalg::applyMapToValues(OpBuilder &b, Location loc,
|
|
AffineMap map,
|
|
ValueRange values) {
|
|
SmallVector<Value, 4> res;
|
|
res.reserve(map.getNumResults());
|
|
unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols();
|
|
// For each `expr` in `map`, applies the `expr` to the values extracted from
|
|
// ranges. If the resulting application can be folded into a Value, the
|
|
// folding occurs eagerly.
|
|
for (auto expr : map.getResults()) {
|
|
AffineMap map = AffineMap::get(numDims, numSym, expr);
|
|
res.push_back(createFoldedComposedAffineApply(b, loc, map, values));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SmallVector<Value, 4> LinalgOp::createFlatListOfOperandDims(OpBuilder &b,
|
|
Location loc) {
|
|
SmallVector<Value, 4> res;
|
|
for (Value v : getShapedOperands()) {
|
|
ShapedType t = v.getType().template cast<ShapedType>();
|
|
for (unsigned i = 0, e = t.getRank(); i < e; ++i)
|
|
res.push_back(b.create<DimOp>(loc, v, i));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
|
|
AffineMap map = getLoopsToShapesMap();
|
|
unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
|
|
auto viewSizes = createFlatListOfOperandDims(b, loc);
|
|
SmallVector<Range, 4> res(numDims);
|
|
Value zeroVal = b.create<ConstantIndexOp>(loc, 0);
|
|
Value oneVal = b.create<ConstantIndexOp>(loc, 1);
|
|
for (unsigned idx = 0; idx < numRes; ++idx) {
|
|
auto result = map.getResult(idx);
|
|
if (auto d = result.dyn_cast<AffineDimExpr>()) {
|
|
if (res[d.getPosition()].offset)
|
|
continue;
|
|
res[d.getPosition()] = Range{zeroVal, viewSizes[idx], oneVal};
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Forward declarations.
|
|
template <typename NamedStructuredOpType>
|
|
static void buildNamedStructuredOpRegionAndAttributes(
|
|
OpBuilder &opBuilder, OperationState &result, TypeRange inputTypes,
|
|
TypeRange outputBufferTypes, TypeRange initTensorTypes,
|
|
TypeRange resultTypes);
|
|
|
|
static ParseResult
|
|
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
|
|
SmallVectorImpl<Type> &inputTypes,
|
|
SmallVectorImpl<Type> &outputBufferTypes,
|
|
SmallVectorImpl<Type> &initTensorTypes);
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static ParseResult
|
|
parseNamedStructuredOpRegion(OpAsmParser &parser, Region ®ion,
|
|
TypeRange inputTypes, TypeRange outputBufferTypes,
|
|
TypeRange initTensorTypes, TypeRange resultTypes);
|
|
static ParseResult
|
|
parseNamedStructuredOpResults(OpAsmParser &parser,
|
|
SmallVectorImpl<Type> &resultTypes);
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
|
|
OperationState &result);
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static void printCommonStructuredOpParts(OpAsmPrinter &p,
|
|
NamedStructuredOpType op);
|
|
|
|
static void printNamedStructuredOpResults(OpAsmPrinter &p,
|
|
TypeRange resultTypes);
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op);
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static LogicalResult verifyNamedStructuredOp(NamedStructuredOpType op);
|
|
|
|
/// This is a common class used for patterns of the form
|
|
/// ```
|
|
/// someop(memrefcast) -> someop
|
|
/// ```
|
|
/// It folds the source of the memref_cast into the root operation directly.
|
|
static LogicalResult foldMemRefCast(Operation *op) {
|
|
bool folded = false;
|
|
for (OpOperand &operand : op->getOpOperands()) {
|
|
auto castOp = operand.get().getDefiningOp<MemRefCastOp>();
|
|
if (castOp && canFoldIntoConsumerOp(castOp)) {
|
|
operand.set(castOp.getOperand());
|
|
folded = true;
|
|
}
|
|
}
|
|
return success(folded);
|
|
}
|
|
|
|
///////////////////// Operations defined with Tablegen /////////////////////////
|
|
// For such operations that do not correspond to library calls (i.e. defined in
|
|
// LinalgOps.td), we define an overloaded `print` function and a
|
|
// parse`className` function.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GenericOps
|
|
//===----------------------------------------------------------------------===//
|
|
void GenericOp::build(
|
|
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
|
|
ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
|
|
ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
|
|
StringRef doc, StringRef libraryCall,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
|
|
build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
|
|
builder.getAffineMapArrayAttr(indexingMaps),
|
|
builder.getStrArrayAttr(iteratorTypes),
|
|
doc.empty() ? StringAttr() : builder.getStringAttr(doc),
|
|
libraryCall.empty() ? StringAttr() : builder.getStringAttr(libraryCall),
|
|
ArrayAttr());
|
|
if (!bodyBuild)
|
|
return;
|
|
|
|
SmallVector<Type, 4> blockArgTypes;
|
|
for (ValueRange container : {inputs, outputBuffers, initTensors})
|
|
for (Value v : container)
|
|
blockArgTypes.push_back(v.getType().cast<ShapedType>().getElementType());
|
|
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
auto ®ion = *result.regions.front();
|
|
Block *bodyBlock = builder.createBlock(®ion, region.end(), blockArgTypes);
|
|
bodyBuild(builder, result.location, bodyBlock->getArguments());
|
|
}
|
|
|
|
void GenericOp::build(
|
|
OpBuilder &builder, OperationState &result, ValueRange inputs,
|
|
ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
|
|
ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
|
|
build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
|
|
indexingMaps, iteratorTypes, doc, libraryCall, bodyBuild);
|
|
}
|
|
|
|
void GenericOp::build(
|
|
OpBuilder &builder, OperationState &result, ValueRange inputs,
|
|
ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
|
|
ArrayRef<StringRef> iteratorTypes,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
|
|
build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
|
|
/*doc=*/"",
|
|
/*libraryCall=*/"", bodyBuild);
|
|
}
|
|
|
|
void GenericOp::build(
|
|
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
|
|
ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
|
|
ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
|
|
build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
|
|
indexingMaps, iteratorTypes,
|
|
/*doc=*/"",
|
|
/*libraryCall=*/"", bodyBuild);
|
|
}
|
|
void IndexedGenericOp::build(
|
|
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
|
|
ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
|
|
ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
|
|
StringRef doc, StringRef libraryCall,
|
|
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
|
|
bodyBuild) {
|
|
build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
|
|
builder.getAffineMapArrayAttr(indexingMaps),
|
|
builder.getStrArrayAttr(iteratorTypes),
|
|
doc.empty() ? StringAttr() : builder.getStringAttr(doc),
|
|
libraryCall.empty() ? StringAttr() : builder.getStringAttr(libraryCall),
|
|
ArrayAttr());
|
|
if (!bodyBuild)
|
|
return;
|
|
|
|
unsigned nLoops = iteratorTypes.size();
|
|
SmallVector<Type, 4> blockArgTypes(nLoops, builder.getIndexType());
|
|
for (ValueRange container : {inputs, outputBuffers, initTensors})
|
|
for (Value v : container)
|
|
blockArgTypes.push_back(v.getType().cast<ShapedType>().getElementType());
|
|
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
auto ®ion = *result.regions.front();
|
|
Block *bodyBlock = builder.createBlock(®ion, region.end(), blockArgTypes);
|
|
bodyBuild(builder, result.location,
|
|
bodyBlock->getArguments().take_front(nLoops),
|
|
bodyBlock->getArguments().drop_front(nLoops));
|
|
}
|
|
|
|
void IndexedGenericOp::build(
|
|
OpBuilder &builder, OperationState &result, ValueRange inputs,
|
|
ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
|
|
ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
|
|
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
|
|
bodyBuild) {
|
|
build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
|
|
indexingMaps, iteratorTypes, doc, libraryCall, bodyBuild);
|
|
}
|
|
|
|
void IndexedGenericOp::build(
|
|
OpBuilder &builder, OperationState &result, ValueRange inputs,
|
|
ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
|
|
ArrayRef<StringRef> iteratorTypes,
|
|
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
|
|
bodyBuild) {
|
|
build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
|
|
/*doc=*/"", /*libraryCall=*/"", bodyBuild);
|
|
}
|
|
|
|
void IndexedGenericOp::build(
|
|
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
|
|
ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
|
|
ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
|
|
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
|
|
bodyBuild) {
|
|
build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
|
|
indexingMaps, iteratorTypes,
|
|
/*doc=*/"",
|
|
/*libraryCall=*/"", bodyBuild);
|
|
}
|
|
|
|
template <typename GenericOpType>
|
|
static void printGenericOp(OpAsmPrinter &p, GenericOpType op) {
|
|
p << op.getOperationName() << " ";
|
|
|
|
// Print extra attributes.
|
|
auto genericAttrNames = op.linalgTraitAttrNames();
|
|
|
|
llvm::StringSet<> genericAttrNamesSet;
|
|
genericAttrNamesSet.insert(genericAttrNames.begin(), genericAttrNames.end());
|
|
SmallVector<NamedAttribute, 8> genericAttrs;
|
|
for (auto attr : op.getAttrs())
|
|
if (genericAttrNamesSet.count(attr.first.strref()) > 0)
|
|
genericAttrs.push_back(attr);
|
|
if (!genericAttrs.empty()) {
|
|
auto genericDictAttr = DictionaryAttr::get(genericAttrs, op.getContext());
|
|
p << genericDictAttr;
|
|
}
|
|
|
|
// Printing is shared with named ops, except for the region and attributes
|
|
printCommonStructuredOpParts(p, op);
|
|
|
|
genericAttrNames.push_back("operand_segment_sizes");
|
|
genericAttrNamesSet.insert(genericAttrNames.back());
|
|
|
|
bool hasExtraAttrs = false;
|
|
for (NamedAttribute n : op.getAttrs()) {
|
|
if ((hasExtraAttrs = !genericAttrNamesSet.contains(n.first.strref())))
|
|
break;
|
|
}
|
|
if (hasExtraAttrs) {
|
|
p << " attrs = ";
|
|
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/genericAttrNames);
|
|
}
|
|
|
|
// Print region.
|
|
if (!op.region().empty())
|
|
p.printRegion(op.region());
|
|
|
|
// Print results.
|
|
printNamedStructuredOpResults(p, op.result_tensors().getTypes());
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, GenericOp op) { printGenericOp(p, op); }
|
|
|
|
static void print(OpAsmPrinter &p, IndexedGenericOp op) {
|
|
printGenericOp(p, op);
|
|
}
|
|
|
|
static ParseResult parseGenericOp(OpAsmParser &parser, OperationState &result) {
|
|
DictionaryAttr dictAttr;
|
|
// Parse the core linalg traits that must check into a dictAttr.
|
|
// The name is unimportant as we will overwrite result.attributes.
|
|
// The core linalg traits must contain the information necessary to pass the
|
|
// verifier.
|
|
if (parser.parseAttribute(dictAttr, "_", result.attributes))
|
|
return failure();
|
|
result.attributes.assign(dictAttr.getValue().begin(),
|
|
dictAttr.getValue().end());
|
|
|
|
// Parsing is shared with named ops, except for the region.
|
|
SmallVector<Type, 1> inputTypes, outputBufferTypes, initTensorTypes;
|
|
if (parseCommonStructuredOpParts(parser, result, inputTypes,
|
|
outputBufferTypes, initTensorTypes))
|
|
return failure();
|
|
|
|
// Optional attributes may be added.
|
|
if (succeeded(parser.parseOptionalKeyword("attrs")))
|
|
if (failed(parser.parseEqual()) ||
|
|
failed(parser.parseOptionalAttrDict(result.attributes)))
|
|
return failure();
|
|
|
|
SmallVector<OpAsmParser::OperandType, 8> regionOperands;
|
|
std::unique_ptr<Region> region = std::make_unique<Region>();
|
|
SmallVector<Type, 8> operandTypes, regionTypes;
|
|
if (parser.parseRegion(*region, regionOperands, regionTypes))
|
|
return failure();
|
|
result.addRegion(std::move(region));
|
|
|
|
// Generic ops may specify that a subset of its outputs are tensors. Such
|
|
// outputs are specified in the result type.
|
|
// TODO: may need to move output parsing before region parsing.
|
|
// Need to wait for declarative assembly resolution to decide.
|
|
SmallVector<Type, 1> outputTensorsTypes;
|
|
if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
|
|
return failure();
|
|
result.addTypes(outputTensorsTypes);
|
|
|
|
return success();
|
|
}
|
|
|
|
static void getGenericEffectsImpl(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects,
|
|
ValueRange results, ValueRange inputBuffers, ValueRange outputBuffers) {
|
|
for (Value value : results) {
|
|
effects.emplace_back(MemoryEffects::Allocate::get(), value,
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
for (Value value : inputBuffers) {
|
|
effects.emplace_back(MemoryEffects::Read::get(), value,
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
for (Value value : outputBuffers) {
|
|
effects.emplace_back(MemoryEffects::Read::get(), value,
|
|
SideEffects::DefaultResource::get());
|
|
effects.emplace_back(MemoryEffects::Write::get(), value,
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
}
|
|
|
|
void GenericOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
getGenericEffectsImpl(effects, getOperation()->getResults(),
|
|
getInputBuffers(), getOutputBuffers());
|
|
}
|
|
|
|
void IndexedGenericOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
getGenericEffectsImpl(effects, getOperation()->getResults(),
|
|
getInputBuffers(), getOutputBuffers());
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <typename GenericOpType>
|
|
struct BlockArgsVerifier {
|
|
static LogicalResult verify(GenericOpType op, Block &block);
|
|
};
|
|
|
|
template <typename GenericOpType>
|
|
LogicalResult BlockArgsVerifier<GenericOpType>::verify(GenericOpType op,
|
|
Block &block) {
|
|
auto nOperands = op.getNumOperands();
|
|
if (block.getNumArguments() != nOperands)
|
|
return op.emitOpError("expected number of block arguments to match number "
|
|
"of operands");
|
|
|
|
// Note: the number and type of yield values are checked in the YieldOp.
|
|
auto nInputViews = op.getNumInputs();
|
|
for (unsigned i = 0; i < nOperands; ++i) {
|
|
auto viewType = op.getShapedType(i);
|
|
if (viewType.getElementType() != block.getArgument(i).getType())
|
|
return op.emitOpError("expected block argument ")
|
|
<< (i + 1) << " of the same type as elemental type of "
|
|
<< ((i < nInputViews) ? "input " : "output ")
|
|
<< "operand: " << viewType;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
template <>
|
|
LogicalResult BlockArgsVerifier<IndexedGenericOp>::verify(IndexedGenericOp op,
|
|
Block &block) {
|
|
auto nInputViews = op.getNumInputs();
|
|
auto nLoops = op.getNumLoops();
|
|
auto nOperands = op.getNumOperands();
|
|
if (block.getNumArguments() != nOperands + nLoops)
|
|
return op.emitOpError(
|
|
"expected number of block arguments to match number of operands + "
|
|
"number of loops");
|
|
|
|
// Note: the number and type of yield values are checked in the YieldOp.
|
|
for (unsigned i = 0; i < nLoops; ++i)
|
|
if (!block.getArgument(i).getType().isIndex())
|
|
return op.emitOpError("expected block argument ")
|
|
<< (i + 1) << " to be an index";
|
|
|
|
for (unsigned i = 0; i < nOperands; ++i) {
|
|
unsigned memrefArgIndex = i + nLoops;
|
|
auto viewType = op.getShapedType(i);
|
|
if (viewType.getElementType() !=
|
|
block.getArgument(memrefArgIndex).getType())
|
|
return op.emitOpError("expected block argument ")
|
|
<< (memrefArgIndex + 1)
|
|
<< " of the same type as elemental type of "
|
|
<< ((i < nInputViews) ? "input " : "output ")
|
|
<< "operand: " << viewType;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
template <typename GenericOpType>
|
|
struct AnnotationsVerifier {
|
|
static LogicalResult verify(GenericOpType op) { return success(); }
|
|
};
|
|
|
|
template <>
|
|
LogicalResult AnnotationsVerifier<GenericOp>::verify(GenericOp op) {
|
|
ArrayAttr sparseAttr = op.sparseAttr();
|
|
if (!sparseAttr)
|
|
return success();
|
|
// Verify consistency of sparse annotations.
|
|
if (!op.hasTensorSemantics())
|
|
return op.emitOpError("expected sparse annotations on tensors only");
|
|
if (op.getNumOutputs() != 1)
|
|
return op.emitOpError("expected single output tensor");
|
|
unsigned numTensors = op.getNumInputsAndOutputs();
|
|
if (sparseAttr.size() != numTensors)
|
|
return op.emitOpError("expected one sparse annotation for each tensor");
|
|
for (unsigned t = 0; t < numTensors; t++) {
|
|
auto dimAttr = sparseAttr[t].dyn_cast_or_null<ArrayAttr>();
|
|
if (!dimAttr)
|
|
return op.emitOpError("expected sparse annotation array for tensor ")
|
|
<< t;
|
|
unsigned rank = op.getShapedType(t).getRank();
|
|
if (dimAttr.size() != rank)
|
|
return op.emitOpError("expected sparse annotation with rank ")
|
|
<< rank << " for tensor " << t;
|
|
// Per-dimension annotations for each tensor consist of only "D" or "S".
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
if (isDenseDim(dimAttr[d])) {
|
|
continue;
|
|
} else if (isSparseDim(dimAttr[d])) {
|
|
if (t == numTensors - 1)
|
|
return op.emitOpError("sparse output tensors not supported (yet)");
|
|
continue;
|
|
}
|
|
return op.emitOpError("expected sparse annotation at position ")
|
|
<< d << " for tensor " << t;
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template <typename GenericOpType>
|
|
static LogicalResult verifyGenericOp(GenericOpType op) {
|
|
auto nLoops = op.getNumLoops();
|
|
|
|
if (op.inputs().size() + op.output_buffers().size() +
|
|
op.init_tensors().size() + op.getNumResults() ==
|
|
0)
|
|
return op.emitOpError("expected at least 1 Shaped operand or return");
|
|
|
|
auto ®ion = op.region();
|
|
if (!llvm::hasSingleElement(region))
|
|
return op.emitOpError("expected region with 1 block");
|
|
if (failed(BlockArgsVerifier<GenericOpType>::verify(op, region.front())))
|
|
return failure();
|
|
|
|
if (op.indexing_maps().size() != op.getNumInputsAndOutputs())
|
|
return op.emitOpError("expected the number of indexing_map (")
|
|
<< op.indexing_maps().size()
|
|
<< ") to be equal to the number of inputs and outputs ("
|
|
<< op.getNumInputsAndOutputs() << ")";
|
|
|
|
SmallVector<AffineMap, 4> indexingMaps;
|
|
indexingMaps.reserve(op.indexing_maps().size());
|
|
for (auto en : llvm::enumerate(op.indexing_maps())) {
|
|
auto idx = en.index();
|
|
auto m = en.value().template cast<AffineMapAttr>().getValue();
|
|
indexingMaps.push_back(m); // Save reference to map for further checks.
|
|
auto view = op.getShapedType(idx);
|
|
|
|
if (m.getNumSymbols() != 0)
|
|
return op.emitOpError("unexpected symbols in indexing_map #") << idx;
|
|
|
|
if (m.getNumDims() != nLoops)
|
|
return op.emitOpError("expected indexing_map #")
|
|
<< idx << " to have " << nLoops
|
|
<< " dim(s) to match the number of loops";
|
|
|
|
if (m.getNumResults() != view.getRank())
|
|
return op.emitOpError("expected indexing_map #")
|
|
<< idx << " results to match view rank: " << view;
|
|
}
|
|
|
|
if (!op.getShapesToLoopsMap())
|
|
return op.emitOpError("expected the shape-to-loops map to be non-null");
|
|
|
|
if (failed(AnnotationsVerifier<GenericOpType>::verify(op)))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verify(GenericOp op) { return verifyGenericOp(op); }
|
|
|
|
static LogicalResult verify(IndexedGenericOp op) { return verifyGenericOp(op); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReshapeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Collapse reassociation maps that are used in pair of reshape ops where one
|
|
/// is a producer and other is the consumer. Only valid to use this method when
|
|
/// both the producer and consumer are collapsing dimensions or both are
|
|
/// expanding dimensions.
|
|
///
|
|
/// For example,
|
|
/// mapsProducer = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1)>,
|
|
/// affine_map<(d0, d1, d2, d3, d4) -> (d2)>,
|
|
/// affine_map<(d0, d1, d2, d3, d4) -> (d3, d4)>]
|
|
/// mapsConsumer = [affine_map<(d0, d1, d2) -> (d0, d1)>,
|
|
/// affine_map<(d0, d1, d2) -> (d2)>]
|
|
///
|
|
/// is folded into
|
|
///
|
|
/// result = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>,
|
|
/// affine_map<(d0, d1, d2, d3, d4) -> (d3, d4)>]
|
|
static ArrayAttr collapseReassociationMaps(ArrayRef<AffineMap> mapsProducer,
|
|
ArrayRef<AffineMap> mapsConsumer,
|
|
MLIRContext *context) {
|
|
// Handle the corner case of the result being a rank 0 shaped type. Return an
|
|
// emtpy ArrayAttr.
|
|
if (mapsConsumer.empty() && !mapsProducer.empty())
|
|
return ArrayAttr::get(ArrayRef<Attribute>(), context);
|
|
if (mapsProducer.empty() || mapsConsumer.empty() ||
|
|
mapsProducer[0].getNumDims() < mapsConsumer[0].getNumDims() ||
|
|
mapsProducer.size() != mapsConsumer[0].getNumDims())
|
|
return nullptr;
|
|
unsigned numLhsDims = mapsProducer[0].getNumDims();
|
|
unsigned currDim = 0;
|
|
SmallVector<AffineExpr, 4> reassociations;
|
|
SmallVector<Attribute, 4> reassociationMaps;
|
|
for (AffineMap rhs : mapsConsumer) {
|
|
for (AffineExpr rhsExpr : rhs.getResults()) {
|
|
AffineDimExpr dimExpr = rhsExpr.cast<AffineDimExpr>();
|
|
for (int i = 0, e = mapsProducer[dimExpr.getPosition()].getNumResults();
|
|
i < e; ++i) {
|
|
reassociations.push_back(getAffineDimExpr(currDim++, context));
|
|
}
|
|
}
|
|
reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
|
|
numLhsDims, /*numSymbols =*/0, reassociations, context)));
|
|
reassociations.clear();
|
|
}
|
|
return ArrayAttr::get(reassociationMaps, context);
|
|
}
|
|
|
|
namespace {
|
|
/// Pattern to collapse producer/consumer reshape ops that are both collapsing
|
|
/// dimensions or are both expanding dimensions.
|
|
template <typename ReshapeOpTy>
|
|
struct CollapseReshapeOps : public OpRewritePattern<ReshapeOpTy> {
|
|
using OpRewritePattern<ReshapeOpTy>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(ReshapeOpTy reshapeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto srcReshapeOp = reshapeOp.src().template getDefiningOp<ReshapeOpTy>();
|
|
if (!srcReshapeOp)
|
|
return failure();
|
|
|
|
auto areReshapeOpsFoldable = [](ShapedType largerType,
|
|
ShapedType intermediateType,
|
|
ShapedType smallerType) -> bool {
|
|
return largerType.getRank() > intermediateType.getRank() &&
|
|
intermediateType.getRank() > smallerType.getRank();
|
|
};
|
|
// Check if producer and consumer are both expanding dims.
|
|
if (areReshapeOpsFoldable(reshapeOp.getResultType(), reshapeOp.getSrcType(),
|
|
srcReshapeOp.getSrcType())) {
|
|
rewriter.replaceOpWithNewOp<ReshapeOpTy>(
|
|
reshapeOp, reshapeOp.getResultType(), srcReshapeOp.src(),
|
|
collapseReassociationMaps(reshapeOp.getReassociationMaps(),
|
|
srcReshapeOp.getReassociationMaps(),
|
|
rewriter.getContext()));
|
|
return success();
|
|
}
|
|
// Check if producer and consumer are both collapsing dims.
|
|
if (areReshapeOpsFoldable(srcReshapeOp.getSrcType(), reshapeOp.getSrcType(),
|
|
reshapeOp.getResultType())) {
|
|
rewriter.replaceOpWithNewOp<ReshapeOpTy>(
|
|
reshapeOp, reshapeOp.getResultType(), srcReshapeOp.src(),
|
|
collapseReassociationMaps(srcReshapeOp.getReassociationMaps(),
|
|
reshapeOp.getReassociationMaps(),
|
|
rewriter.getContext()));
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
template <typename ReshapeOpTy>
|
|
static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp,
|
|
ArrayRef<Attribute> operands) {
|
|
// Fold producer-consumer reshape ops that where the operand type of the
|
|
// producer is same as the return type of the consumer. This can only be
|
|
// verified if the shapes in question are static.
|
|
ReshapeOpTy reshapeSrcOp =
|
|
reshapeOp.src().template getDefiningOp<ReshapeOpTy>();
|
|
if (reshapeSrcOp && reshapeSrcOp.getSrcType().hasStaticShape() &&
|
|
reshapeOp.getResultType().hasStaticShape() &&
|
|
reshapeSrcOp.getSrcType() == reshapeOp.getResultType())
|
|
return reshapeSrcOp.src();
|
|
// Reshape of a constant can be replaced with a new constant.
|
|
if (auto elements = operands.front().dyn_cast_or_null<DenseElementsAttr>()) {
|
|
return elements.reshape(
|
|
reshapeOp.getResult().getType().template cast<ShapedType>());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return true if the reassociation specification is valid, false otherwise.
|
|
/// When false, the `invalidIndex` integer pointer is optionally filled with the
|
|
/// index of the offending reassociation map.
|
|
static bool isReassociationValid(ArrayRef<AffineMap> reassociation,
|
|
int *invalidIndex = nullptr) {
|
|
if (reassociation.empty())
|
|
return true;
|
|
unsigned nDims = reassociation[0].getNumDims();
|
|
unsigned nextExpectedDim = 0;
|
|
for (auto it : llvm::enumerate(reassociation)) {
|
|
auto m = it.value();
|
|
if (m.getNumDims() != nDims || m.getNumSymbols() != 0) {
|
|
if (invalidIndex)
|
|
*invalidIndex = it.index();
|
|
return false;
|
|
}
|
|
for (auto e : m.getResults()) {
|
|
auto d = e.dyn_cast<AffineDimExpr>();
|
|
if (!d || d.getPosition() != nextExpectedDim++) {
|
|
if (invalidIndex)
|
|
*invalidIndex = it.index();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (nextExpectedDim != nDims) {
|
|
if (invalidIndex)
|
|
*invalidIndex = reassociation.size() - 1;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Detect whether memref dims [dim, dim + extent) can be reshaped without
|
|
/// copies.
|
|
static bool isReshapableDimBand(unsigned dim, unsigned extent,
|
|
ArrayRef<int64_t> sizes,
|
|
ArrayRef<AffineExpr> strides) {
|
|
assert(sizes.size() == strides.size() && "mismatched ranks");
|
|
// off by 1 indexing to avoid out of bounds
|
|
// V
|
|
for (auto idx = dim, e = dim + extent; idx + 1 < e; ++idx) {
|
|
// Only bands of static shapes are reshapable. This is due to the fact that
|
|
// there is no relation between dynamic sizes and dynamic strides: we do not
|
|
// have enough information to know whether a "-1" size corresponds to the
|
|
// proper symbol in the AffineExpr of a stride.
|
|
if (ShapedType::isDynamic(sizes[dim + 1]))
|
|
return false;
|
|
// TODO: Refine this by passing the proper nDims and nSymbols so we can
|
|
// simplify on the fly and catch more reshapable cases.
|
|
if (strides[idx] != strides[idx + 1] * sizes[idx + 1])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Compute the MemRefType obtained by applying the `reassociation` (which is
|
|
/// expected to be valid) to `type`.
|
|
/// If `type` is Contiguous MemRefType, this always produce a contiguous
|
|
/// MemRefType.
|
|
static MemRefType
|
|
computeReshapeCollapsedType(MemRefType type,
|
|
ArrayRef<AffineMap> reassociation) {
|
|
auto sizes = type.getShape();
|
|
AffineExpr offset;
|
|
SmallVector<AffineExpr, 4> strides;
|
|
auto status = getStridesAndOffset(type, strides, offset);
|
|
(void)status;
|
|
assert(succeeded(status) && "expected strided memref");
|
|
|
|
SmallVector<int64_t, 4> newSizes;
|
|
newSizes.reserve(reassociation.size());
|
|
SmallVector<AffineExpr, 4> newStrides;
|
|
newStrides.reserve(reassociation.size());
|
|
|
|
// Use the fact that reassociation is valid to simplify the logic: only use
|
|
// each map's rank.
|
|
assert(isReassociationValid(reassociation) && "invalid reassociation");
|
|
unsigned currentDim = 0;
|
|
for (AffineMap m : reassociation) {
|
|
unsigned dim = m.getNumResults();
|
|
int64_t size = 1;
|
|
AffineExpr stride = strides[currentDim + dim - 1];
|
|
if (!isReshapableDimBand(currentDim, dim, sizes, strides)) {
|
|
size = ShapedType::kDynamicSize;
|
|
stride = AffineExpr();
|
|
} else {
|
|
for (unsigned d = 0; d < dim; ++d)
|
|
size *= sizes[currentDim + d];
|
|
}
|
|
newSizes.push_back(size);
|
|
newStrides.push_back(stride);
|
|
currentDim += dim;
|
|
}
|
|
|
|
// Early-exit: if `type` is contiguous, the result must be contiguous.
|
|
if (canonicalizeStridedLayout(type).getAffineMaps().empty())
|
|
return MemRefType::Builder(type).setShape(newSizes).setAffineMaps({});
|
|
|
|
// Convert back to int64_t because we don't have enough information to create
|
|
// new strided layouts from AffineExpr only. This corresponds to a case where
|
|
// copies may be necessary.
|
|
int64_t intOffset = ShapedType::kDynamicStrideOrOffset;
|
|
if (auto o = offset.dyn_cast<AffineConstantExpr>())
|
|
intOffset = o.getValue();
|
|
SmallVector<int64_t, 4> intStrides;
|
|
intStrides.reserve(strides.size());
|
|
for (auto stride : newStrides) {
|
|
if (auto cst = stride.dyn_cast_or_null<AffineConstantExpr>())
|
|
intStrides.push_back(cst.getValue());
|
|
else
|
|
intStrides.push_back(ShapedType::kDynamicStrideOrOffset);
|
|
}
|
|
auto layout =
|
|
makeStridedLinearLayoutMap(intStrides, intOffset, type.getContext());
|
|
return canonicalizeStridedLayout(
|
|
MemRefType::Builder(type).setShape(newSizes).setAffineMaps({layout}));
|
|
}
|
|
|
|
/// Helper functions assert Attribute of the proper type in attr and returns the
|
|
/// corresponding vector.
|
|
/// TODO: this should be evolved into a generic
|
|
/// `getRangeOfType<AffineMap>(ArrayAttr attrs)` that does not copy.
|
|
static SmallVector<AffineMap, 4> getAffineMaps(ArrayAttr attrs) {
|
|
return llvm::to_vector<8>(llvm::map_range(
|
|
attrs, [](Attribute a) { return a.cast<AffineMapAttr>().getValue(); }));
|
|
}
|
|
|
|
template <typename AffineExprTy>
|
|
unsigned getMaxPosOfType(ArrayRef<ReassociationExprs> exprArrays) {
|
|
unsigned pos = 0;
|
|
for (const auto &exprs : exprArrays) {
|
|
for (auto expr : exprs) {
|
|
expr.walk([&pos](AffineExpr e) {
|
|
if (auto d = e.dyn_cast<AffineExprTy>())
|
|
pos = std::max(pos, d.getPosition());
|
|
});
|
|
}
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
static SmallVector<AffineMap, 4>
|
|
getSymbolLessAffineMaps(ArrayRef<ReassociationExprs> reassociation) {
|
|
unsigned maxDim = getMaxPosOfType<AffineDimExpr>(reassociation);
|
|
assert(getMaxPosOfType<AffineSymbolExpr>(reassociation) == 0 &&
|
|
"Expected symbol-less expressions");
|
|
SmallVector<AffineMap, 4> maps;
|
|
maps.reserve(reassociation.size());
|
|
for (const auto &exprs : reassociation) {
|
|
assert(!exprs.empty());
|
|
maps.push_back(AffineMap::get(maxDim + 1, 0, exprs, exprs[0].getContext()));
|
|
}
|
|
return maps;
|
|
}
|
|
|
|
static SmallVector<SmallVector<AffineExpr, 2>, 2>
|
|
convertReassociationIndicesToMaps(
|
|
OpBuilder &b, ArrayRef<ReassociationIndices> reassociationIndices) {
|
|
SmallVector<SmallVector<AffineExpr, 2>, 2> reassociationMaps;
|
|
for (const auto &indices : reassociationIndices) {
|
|
SmallVector<AffineExpr, 2> reassociationMap;
|
|
reassociationMap.reserve(indices.size());
|
|
for (int64_t index : indices)
|
|
reassociationMap.push_back(b.getAffineDimExpr(index));
|
|
reassociationMaps.push_back(std::move(reassociationMap));
|
|
}
|
|
return reassociationMaps;
|
|
}
|
|
|
|
void mlir::linalg::ReshapeOp::build(OpBuilder &b, OperationState &result,
|
|
Value src,
|
|
ArrayRef<ReassociationExprs> reassociation,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
auto maps = getSymbolLessAffineMaps(reassociation);
|
|
auto memRefType = src.getType().cast<MemRefType>();
|
|
auto resultType = computeReshapeCollapsedType(memRefType, maps);
|
|
build(b, result, resultType, src, attrs);
|
|
result.addAttribute(ReshapeOp::getReassociationAttrName(),
|
|
b.getAffineMapArrayAttr(maps));
|
|
}
|
|
|
|
void mlir::linalg::ReshapeOp::build(OpBuilder &b, OperationState &result,
|
|
Type resultType, Value src,
|
|
ArrayRef<ReassociationExprs> reassociation,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
auto maps = getSymbolLessAffineMaps(reassociation);
|
|
build(b, result, resultType, src, attrs);
|
|
result.addAttribute(ReshapeOp::getReassociationAttrName(),
|
|
b.getAffineMapArrayAttr(maps));
|
|
}
|
|
|
|
Value mlir::linalg::ReshapeOp::getViewSource() { return src(); }
|
|
|
|
// Common verifier for reshape-like types. Fills `expandedType` and
|
|
// `collapsedType` with the proper `src` or `result` type.
|
|
template <typename Op, typename T>
|
|
static LogicalResult verifyReshapeLikeTypes(Op op, T &expandedType,
|
|
T &collapsedType) {
|
|
expandedType = op.getSrcType();
|
|
collapsedType = op.getResultType();
|
|
unsigned expandedRank = expandedType.getRank();
|
|
unsigned collapsedRank = collapsedType.getRank();
|
|
bool isCollapse = expandedRank > collapsedRank;
|
|
if (!isCollapse) {
|
|
std::swap(expandedRank, collapsedRank);
|
|
std::swap(expandedType, collapsedType);
|
|
}
|
|
if (expandedRank == 0)
|
|
return op.emitOpError("expected non-zero memref ranks");
|
|
if (expandedRank == collapsedRank)
|
|
return op.emitOpError("expected to collapse or expand dims");
|
|
|
|
if (collapsedRank == 0) {
|
|
// If collapsed rank is 0, then expanded type must be static shaped and of
|
|
// sizes 1.
|
|
if (llvm::any_of(expandedType.getShape(),
|
|
[](int64_t dim) -> bool { return dim != 1; }))
|
|
return op.emitOpError(
|
|
"invalid to reshape tensor/memref with non-unit extent dimensions to "
|
|
"zero-rank tensor/memref");
|
|
return success();
|
|
}
|
|
if (collapsedRank != op.reassociation().size())
|
|
return op.emitOpError("expected rank of the collapsed type(")
|
|
<< collapsedRank << ") to be the number of reassociation maps("
|
|
<< op.reassociation().size() << ")";
|
|
auto maps = getAffineMaps(op.reassociation());
|
|
for (auto it : llvm::enumerate(maps))
|
|
if (it.value().getNumDims() != expandedRank)
|
|
return op.emitOpError("expected reassociation map #")
|
|
<< it.index() << " of same rank as expanded memref("
|
|
<< expandedRank << "), but got " << it.value().getNumDims();
|
|
int invalidIdx = 0;
|
|
if (!isReassociationValid(maps, &invalidIdx))
|
|
return op.emitOpError("expected reassociation map #")
|
|
<< invalidIdx << " to be valid and contiguous";
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verify(ReshapeOp op) {
|
|
MemRefType expandedType, collapsedType;
|
|
if (failed(verifyReshapeLikeTypes(op, expandedType, collapsedType)))
|
|
return failure();
|
|
auto maps = getAffineMaps(op.reassociation());
|
|
MemRefType expectedType = computeReshapeCollapsedType(expandedType, maps);
|
|
if (collapsedType != expectedType)
|
|
return op.emitOpError("expected collapsed type to be ")
|
|
<< expectedType << ", but got " << collapsedType;
|
|
return success();
|
|
}
|
|
|
|
void ReshapeOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
|
|
MLIRContext *context) {
|
|
results.insert<CollapseReshapeOps<ReshapeOp>>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorReshapeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Compute the RankedTensorType obtained by applying `reassociation` to `type`.
|
|
static RankedTensorType
|
|
computeTensorReshapeCollapsedType(RankedTensorType type,
|
|
ArrayRef<AffineMap> reassociation) {
|
|
auto shape = type.getShape();
|
|
SmallVector<int64_t, 4> newShape;
|
|
newShape.reserve(reassociation.size());
|
|
|
|
// Use the fact that reassociation is valid to simplify the logic: only use
|
|
// each map's rank.
|
|
assert(isReassociationValid(reassociation) && "invalid reassociation");
|
|
unsigned currentDim = 0;
|
|
for (AffineMap m : reassociation) {
|
|
unsigned dim = m.getNumResults();
|
|
auto band = shape.slice(currentDim, dim);
|
|
int64_t size = 1;
|
|
if (llvm::is_contained(band, ShapedType::kDynamicSize))
|
|
size = ShapedType::kDynamicSize;
|
|
else
|
|
for (unsigned d = 0; d < dim; ++d)
|
|
size *= shape[currentDim + d];
|
|
newShape.push_back(size);
|
|
currentDim += dim;
|
|
}
|
|
|
|
return RankedTensorType::get(newShape, type.getElementType());
|
|
}
|
|
|
|
void mlir::linalg::TensorReshapeOp::build(
|
|
OpBuilder &b, OperationState &result, Value src,
|
|
ArrayRef<ReassociationExprs> reassociation,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
auto maps = getSymbolLessAffineMaps(reassociation);
|
|
auto resultType = computeTensorReshapeCollapsedType(
|
|
src.getType().cast<RankedTensorType>(), maps);
|
|
build(b, result, resultType, src, attrs);
|
|
result.addAttribute(TensorReshapeOp::getReassociationAttrName(),
|
|
b.getAffineMapArrayAttr(maps));
|
|
}
|
|
|
|
void mlir::linalg::TensorReshapeOp::build(
|
|
OpBuilder &b, OperationState &result, Type resultType, Value src,
|
|
ArrayRef<ReassociationExprs> reassociation,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
auto maps = getSymbolLessAffineMaps(reassociation);
|
|
build(b, result, resultType, src, attrs);
|
|
result.addAttribute(TensorReshapeOp::getReassociationAttrName(),
|
|
b.getAffineMapArrayAttr(maps));
|
|
}
|
|
|
|
static LogicalResult verify(TensorReshapeOp op) {
|
|
RankedTensorType expandedType, collapsedType;
|
|
if (failed(verifyReshapeLikeTypes(op, expandedType, collapsedType)))
|
|
return failure();
|
|
auto maps = getAffineMaps(op.reassociation());
|
|
// TODO: expanding a ? with a non-constant is under-specified. Error
|
|
// out.
|
|
RankedTensorType expectedType =
|
|
computeTensorReshapeCollapsedType(expandedType, maps);
|
|
if (collapsedType != expectedType)
|
|
return op.emitOpError("expected collapsed type to be ")
|
|
<< expectedType << ", but got " << collapsedType;
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Reshape of a splat constant can be replaced with a constant of the result
|
|
/// type.
|
|
struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> {
|
|
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
DenseElementsAttr attr;
|
|
if (!matchPattern(reshapeOp.src(), m_Constant(&attr)))
|
|
return failure();
|
|
if (!attr || !attr.isSplat())
|
|
return failure();
|
|
DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer(
|
|
reshapeOp.getResultType(), attr.getRawData(), true);
|
|
rewriter.replaceOpWithNewOp<ConstantOp>(reshapeOp, newAttr);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void TensorReshapeOp::getCanonicalizationPatterns(
|
|
OwningRewritePatternList &results, MLIRContext *context) {
|
|
results.insert<CollapseReshapeOps<TensorReshapeOp>, FoldReshapeWithConstant>(
|
|
context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SliceOp
|
|
//===----------------------------------------------------------------------===//
|
|
void mlir::linalg::SliceOp::build(OpBuilder &b, OperationState &result,
|
|
Value base, ValueRange indexings) {
|
|
result.addOperands(base);
|
|
result.addOperands(indexings);
|
|
|
|
auto memRefType = base.getType().cast<MemRefType>();
|
|
int64_t offset;
|
|
SmallVector<int64_t, 4> strides;
|
|
auto res = getStridesAndOffset(memRefType, strides, offset);
|
|
assert(succeeded(res) && strides.size() == indexings.size());
|
|
(void)res;
|
|
|
|
unsigned rank = memRefType.getRank();
|
|
// TODO: propagate static size and stride information when available.
|
|
SmallVector<int64_t, 4> sizes(rank, -1); // -1 encodes dynamic size.
|
|
result.addTypes({MemRefType::Builder(memRefType)
|
|
.setShape(sizes)
|
|
.setAffineMaps(makeStridedLinearLayoutMap(
|
|
strides, offset, b.getContext()))});
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, SliceOp op) {
|
|
auto indexings = op.indexings();
|
|
p << SliceOp::getOperationName() << " " << op.view() << "[" << indexings
|
|
<< "] ";
|
|
p.printOptionalAttrDict(op.getAttrs());
|
|
p << " : " << op.getBaseViewType();
|
|
if (!indexings.empty())
|
|
p << ", " << op.indexings().getTypes();
|
|
p << ", " << op.getType();
|
|
}
|
|
|
|
static ParseResult parseSliceOp(OpAsmParser &parser, OperationState &result) {
|
|
OpAsmParser::OperandType baseInfo;
|
|
SmallVector<OpAsmParser::OperandType, 8> operands;
|
|
SmallVector<Type, 8> types;
|
|
if (parser.parseOperand(baseInfo) ||
|
|
parser.parseOperandList(operands, OpAsmParser::Delimiter::Square) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonTypeList(types))
|
|
return failure();
|
|
|
|
if (types.size() < 2)
|
|
return parser.emitError(parser.getCurrentLocation(),
|
|
"expected at least input and result view types");
|
|
|
|
ArrayRef<Type> indexingTypes = ArrayRef<Type>(types).drop_front().drop_back();
|
|
return failure(
|
|
parser.resolveOperand(baseInfo, types.front(), result.operands) ||
|
|
(!operands.empty() &&
|
|
parser.resolveOperands(operands, indexingTypes,
|
|
operands.front().location, result.operands)) ||
|
|
parser.addTypeToList(types.back(), result.types));
|
|
}
|
|
|
|
static LogicalResult verify(SliceOp op) {
|
|
unsigned rank = op.getBaseViewRank();
|
|
if (rank != llvm::size(op.indexings()))
|
|
return op.emitOpError("expected ")
|
|
<< rank << " indexings, got " << llvm::size(op.indexings());
|
|
unsigned index = 0;
|
|
for (auto indexing : op.indexings()) {
|
|
if (indexing.getType().isa<IndexType>())
|
|
--rank;
|
|
++index;
|
|
}
|
|
if (op.getRank() != rank)
|
|
return op.emitOpError() << "expected rank of the view(" << op.getRank()
|
|
<< ") to be the number of ranges(" << rank << ")";
|
|
return success();
|
|
}
|
|
|
|
Value SliceOp::getViewSource() { return view(); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// YieldOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void print(OpAsmPrinter &p, linalg::YieldOp op) {
|
|
p << op.getOperationName();
|
|
if (op.getNumOperands() > 0)
|
|
p << ' ' << op.getOperands();
|
|
p.printOptionalAttrDict(op.getAttrs());
|
|
if (op.getNumOperands() > 0)
|
|
p << " : " << op.getOperandTypes();
|
|
}
|
|
|
|
static ParseResult parseYieldOp(OpAsmParser &parser, OperationState &result) {
|
|
SmallVector<OpAsmParser::OperandType, 2> opInfo;
|
|
SmallVector<Type, 2> types;
|
|
llvm::SMLoc loc = parser.getCurrentLocation();
|
|
return failure(parser.parseOperandList(opInfo) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
(!opInfo.empty() && parser.parseColonTypeList(types)) ||
|
|
parser.resolveOperands(opInfo, types, loc, result.operands));
|
|
}
|
|
|
|
// Check the operand number and types must match the element types of the
|
|
// LinalgOp interface's shaped operands.
|
|
static LogicalResult verifyYield(linalg::YieldOp op,
|
|
LinalgOp linalgOpInterface) {
|
|
auto nOutputs = linalgOpInterface.getNumOutputs();
|
|
if (op.getNumOperands() != nOutputs)
|
|
return op.emitOpError("expected number of yield values (")
|
|
<< nOutputs << ") to match the number of operands of the enclosing "
|
|
<< "LinalgOp (" << op.getNumOperands() << ")";
|
|
|
|
for (unsigned i = 0; i != nOutputs; ++i) {
|
|
auto elementType =
|
|
linalgOpInterface.getOutputShapedType(i).getElementType();
|
|
if (op.getOperand(i).getType() != elementType)
|
|
return op.emitOpError("type of yield operand ")
|
|
<< (i + 1) << " (" << op.getOperand(i).getType()
|
|
<< ") doesn't match "
|
|
<< "the element type of the enclosing linalg.generic op ("
|
|
<< elementType << ")";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verify(linalg::YieldOp op) {
|
|
auto *parentOp = op->getParentOp();
|
|
if (parentOp->getNumRegions() != 1 || parentOp->getRegion(0).empty())
|
|
return op.emitOpError("expected single non-empty parent region");
|
|
|
|
if (auto linalgOp = dyn_cast<LinalgOp>(parentOp))
|
|
return verifyYield(op, cast<LinalgOp>(parentOp));
|
|
|
|
return op.emitOpError("expected parent op with LinalgOp interface");
|
|
}
|
|
|
|
/////// Operations corresponding to library calls defined with Tablegen ////////
|
|
|
|
void FillOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
effects.emplace_back(MemoryEffects::Write::get(), output(),
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
|
|
static LogicalResult verify(FillOp op) {
|
|
auto viewType = op.getOutputShapedType(0);
|
|
auto fillType = op.value().getType();
|
|
if (viewType.getElementType() != fillType)
|
|
return op.emitOpError("expects fill type to match view elemental type");
|
|
return success();
|
|
}
|
|
|
|
void CopyOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
effects.emplace_back(MemoryEffects::Read::get(), input(),
|
|
SideEffects::DefaultResource::get());
|
|
effects.emplace_back(MemoryEffects::Write::get(), output(),
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
|
|
static LogicalResult verify(CopyOp op) {
|
|
auto outputViewType = op.getOutputShapedType(0);
|
|
auto inputViewType = op.getInputShapedType(0);
|
|
if (inputViewType.getElementType() != outputViewType.getElementType())
|
|
return op.emitOpError("expects views of the same type");
|
|
if (inputViewType.getRank() != outputViewType.getRank())
|
|
return op.emitOpError("expects views of the same rank");
|
|
auto rank = op.getNumParallelLoops();
|
|
auto inputPermutationMap = op.inputPermutation();
|
|
if (inputPermutationMap) {
|
|
if (inputPermutationMap->getNumInputs() != rank)
|
|
return op.emitOpError("expects optional input_permutation map of rank ")
|
|
<< rank;
|
|
if (!inputPermutationMap->isPermutation())
|
|
return op.emitOpError(
|
|
"expects optional input_permutation map to be a permutation");
|
|
}
|
|
auto outputPermutationMap = op.outputPermutation();
|
|
if (outputPermutationMap) {
|
|
if (outputPermutationMap->getNumInputs() != rank)
|
|
return op.emitOpError("expects optional output_permutation map of rank ")
|
|
<< rank;
|
|
if (!outputPermutationMap->isPermutation())
|
|
return op.emitOpError(
|
|
"expects optional output_permutation map to be a permutation");
|
|
}
|
|
if (rank == 0 && inputPermutationMap)
|
|
return op.emitOpError("expected no input permutation when rank == 0");
|
|
if (rank == 0 && outputPermutationMap)
|
|
return op.emitOpError("expected no output permutation when rank == 0");
|
|
return success();
|
|
}
|
|
|
|
template <typename LinalgPoolingOp>
|
|
static LogicalResult verifyStrideOrDilation(LinalgPoolingOp op,
|
|
ArrayRef<Attribute> attrs,
|
|
bool isStride) {
|
|
auto strideOrDilation = isStride ? "stride" : "dilation";
|
|
if (attrs.size() != op.getNumWindowLoops())
|
|
return op.emitOpError("expects num ")
|
|
<< strideOrDilation
|
|
<< "s equal to number of window dimensions: " << attrs.size()
|
|
<< " vs " << op.getNumWindowLoops();
|
|
return success();
|
|
}
|
|
|
|
void ConvOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
effects.emplace_back(MemoryEffects::Read::get(), input(),
|
|
SideEffects::DefaultResource::get());
|
|
effects.emplace_back(MemoryEffects::Read::get(), filter(),
|
|
SideEffects::DefaultResource::get());
|
|
effects.emplace_back(MemoryEffects::Write::get(), output(),
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
|
|
static LogicalResult verify(ConvOp op) {
|
|
auto oType = op.output().getType().cast<MemRefType>();
|
|
auto fType = op.filter().getType().cast<MemRefType>();
|
|
auto iType = op.input().getType().cast<MemRefType>();
|
|
if (oType.getElementType() != iType.getElementType() ||
|
|
oType.getElementType() != fType.getElementType())
|
|
return op.emitOpError("expects memref elemental types to match");
|
|
if (oType.getRank() != iType.getRank() || oType.getRank() != fType.getRank())
|
|
return op.emitOpError("expects memref ranks to match");
|
|
if (oType.getRank() <= 2)
|
|
return op.emitOpError("expects memref ranks to be greater than 2");
|
|
if (auto strides = op.strides()) {
|
|
if (failed(
|
|
verifyStrideOrDilation(op, strides->getValue(), /*isStride=*/true)))
|
|
return failure();
|
|
}
|
|
if (auto dilations = op.dilations()) {
|
|
if (failed(verifyStrideOrDilation(op, dilations->getValue(),
|
|
/*isStride=*/false)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
template <typename PoolingOp>
|
|
static LogicalResult verifySingleInputPoolingOp(PoolingOp op) {
|
|
auto inputType = op.input().getType().template cast<MemRefType>();
|
|
auto outputType = op.output().getType().template cast<MemRefType>();
|
|
if (outputType.getElementType() != inputType.getElementType())
|
|
return op.emitOpError("expects memref elemental types to match");
|
|
|
|
auto windowDimsType = op.windowDims().getType().template cast<MemRefType>();
|
|
if (outputType.getRank() != inputType.getRank() ||
|
|
outputType.getRank() != windowDimsType.getRank())
|
|
return op.emitOpError("expects memref ranks to match");
|
|
|
|
if (auto strides = op.strides()) {
|
|
if (failed(
|
|
verifyStrideOrDilation(op, strides->getValue(), /*isStride=*/true)))
|
|
return failure();
|
|
}
|
|
if (auto dilations = op.dilations()) {
|
|
if (failed(verifyStrideOrDilation(op, dilations->getValue(),
|
|
/*isStride=*/false)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
#define DEFINE_POOLING_OP_GET_EFFECTS(OP_NAME) \
|
|
void OP_NAME::getEffects( \
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> \
|
|
&effects) { \
|
|
effects.emplace_back(MemoryEffects::Read::get(), input(), \
|
|
SideEffects::DefaultResource::get()); \
|
|
effects.emplace_back(MemoryEffects::Write::get(), output(), \
|
|
SideEffects::DefaultResource::get()); \
|
|
}
|
|
|
|
static LogicalResult verify(PoolingMaxOp op) {
|
|
return verifySingleInputPoolingOp(op);
|
|
}
|
|
static LogicalResult verify(PoolingMinOp op) {
|
|
return verifySingleInputPoolingOp(op);
|
|
}
|
|
static LogicalResult verify(PoolingSumOp op) {
|
|
return verifySingleInputPoolingOp(op);
|
|
}
|
|
|
|
DEFINE_POOLING_OP_GET_EFFECTS(PoolingMaxOp)
|
|
DEFINE_POOLING_OP_GET_EFFECTS(PoolingMinOp)
|
|
DEFINE_POOLING_OP_GET_EFFECTS(PoolingSumOp)
|
|
|
|
namespace {
|
|
struct EraseDeadLinalgOp;
|
|
struct FoldTensorCastOp;
|
|
} // namespace
|
|
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterfaces.cpp.inc"
|
|
|
|
#include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.cpp.inc"
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.cpp.inc"
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
|
|
/// Return the dims that are `iteratorTypeName` loops in the LinalgOp `op`.
|
|
/// Assumes `op` is a LinalgOp.
|
|
void mlir::linalg::getDimsOfType(Operation *op, StringRef iteratorTypeName,
|
|
SmallVectorImpl<AffineExpr> &res) {
|
|
if (!cast<LinalgOp>(op).iterator_types())
|
|
return;
|
|
|
|
unsigned dim = 0;
|
|
MLIRContext *ctx = op->getContext();
|
|
for (auto tn :
|
|
cast<LinalgOp>(op).iterator_types().getAsValueRange<StringAttr>()) {
|
|
if (tn == iteratorTypeName)
|
|
res.push_back(getAffineDimExpr(dim, ctx));
|
|
++dim;
|
|
}
|
|
}
|
|
|
|
AffineMap mlir::linalg::extractOrIdentityMap(Optional<AffineMap> maybeMap,
|
|
unsigned rank,
|
|
MLIRContext *context) {
|
|
if (maybeMap)
|
|
return maybeMap.getValue();
|
|
if (rank == 0)
|
|
return AffineMap::get(context);
|
|
return AffineMap::getMultiDimIdentityMap(rank, context);
|
|
}
|
|
|
|
SmallVector<AffineExpr, 4>
|
|
mlir::linalg::makeAffineDimExprs(unsigned num, unsigned &startIdx,
|
|
MLIRContext *context) {
|
|
SmallVector<AffineExpr, 4> res;
|
|
res.reserve(num);
|
|
for (unsigned i = 0; i < num; ++i)
|
|
res.push_back(getAffineDimExpr(startIdx++, context));
|
|
return res;
|
|
}
|
|
|
|
template <typename PoolingOp>
|
|
SmallVector<AffineExpr, 4>
|
|
mlir::linalg::weightedPoolingInputIndex(PoolingOp op,
|
|
ArrayRef<AffineExpr> outputDims,
|
|
ArrayRef<AffineExpr> windowDims) {
|
|
assert(outputDims.size() == windowDims.size());
|
|
SmallVector<AffineExpr, 4> res;
|
|
res.reserve(outputDims.size());
|
|
for (unsigned i = 0, e = outputDims.size(); i < e; ++i) {
|
|
// TODO: add a level of indirection to linalg.generic.
|
|
auto expr = op.getStride(i) * outputDims[i] +
|
|
op.getDilation(i) * windowDims[i] - op.getLowPad(i);
|
|
res.push_back(expr);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(OP_TYPE) \
|
|
template SmallVector<AffineExpr, 4> \
|
|
mlir::linalg::weightedPoolingInputIndex<OP_TYPE>( \
|
|
OP_TYPE op, ArrayRef<AffineExpr> outputDims, \
|
|
ArrayRef<AffineExpr> windowDims);
|
|
|
|
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(ConvOp)
|
|
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(PoolingMaxOp)
|
|
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(PoolingMinOp)
|
|
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(PoolingSumOp)
|
|
|
|
SmallVector<AffineExpr, 4> mlir::linalg::concat(ArrayRef<AffineExpr> a,
|
|
ArrayRef<AffineExpr> b) {
|
|
auto rangeA = llvm::make_range(a.begin(), a.end());
|
|
auto rangeB = llvm::make_range(b.begin(), b.end());
|
|
auto concatRanges = llvm::concat<const AffineExpr>(rangeA, rangeB);
|
|
return llvm::to_vector<4>(concatRanges);
|
|
}
|
|
|
|
static void appendMangledType(llvm::raw_string_ostream &ss, Type t) {
|
|
if (auto memref = t.dyn_cast<MemRefType>()) {
|
|
ss << "view";
|
|
for (auto size : memref.getShape())
|
|
if (size < 0)
|
|
ss << "sx";
|
|
else
|
|
ss << size << "x";
|
|
appendMangledType(ss, memref.getElementType());
|
|
} else if (auto vec = t.dyn_cast<VectorType>()) {
|
|
ss << "vector";
|
|
llvm::interleave(
|
|
vec.getShape(), [&](int64_t i) { ss << i; }, [&]() { ss << "x"; });
|
|
appendMangledType(ss, vec.getElementType());
|
|
} else if (t.isSignlessIntOrIndexOrFloat()) {
|
|
ss << t;
|
|
} else {
|
|
llvm_unreachable("Invalid type for linalg library name mangling");
|
|
}
|
|
}
|
|
|
|
std::string mlir::linalg::generateLibraryCallName(Operation *op) {
|
|
assert(isa<LinalgOp>(op));
|
|
std::string name(op->getName().getStringRef().str());
|
|
name.reserve(128);
|
|
std::replace(name.begin(), name.end(), '.', '_');
|
|
llvm::raw_string_ostream ss(name);
|
|
ss << "_";
|
|
auto types = op->getOperandTypes();
|
|
llvm::interleave(
|
|
types.begin(), types.end(), [&](Type t) { appendMangledType(ss, t); },
|
|
[&]() { ss << "_"; });
|
|
return ss.str();
|
|
}
|
|
|
|
// TODO: Consider making all this boilerplate easy to autogenerate
|
|
// with Tablegen. This seems a desirable property in the context of
|
|
// OpInterfaces where a Linalg "named" op **isa** LinalgOp.
|
|
OpFoldResult ReshapeOp::fold(ArrayRef<Attribute> operands) {
|
|
if (succeeded(foldMemRefCast(*this)))
|
|
return getResult();
|
|
return foldReshapeOp(*this, operands);
|
|
}
|
|
OpFoldResult SliceOp::fold(ArrayRef<Attribute>) {
|
|
if (succeeded(foldMemRefCast(*this)))
|
|
return getResult();
|
|
return {};
|
|
}
|
|
OpFoldResult TensorReshapeOp::fold(ArrayRef<Attribute> operands) {
|
|
return foldReshapeOp(*this, operands);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Auto-generated Linalg named ops.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static void buildNamedStructuredOpRegionAndAttributesImpl(
|
|
OpBuilder &opBuilder, Region ®ion, TypeRange inputTypes,
|
|
TypeRange outputBufferTypes, TypeRange initTensorTypes,
|
|
TypeRange resultTypes,
|
|
std::function<void(unsigned, unsigned)> errorHandler) {
|
|
// TODO: atm all operands go through getElementTypeOrSelf,
|
|
// reconsider when we have evidence we need to.
|
|
SmallVector<Type, 8> argTypes;
|
|
for (auto containers : {inputTypes, outputBufferTypes, resultTypes})
|
|
for (auto t : containers)
|
|
argTypes.push_back(getElementTypeOrSelf(t));
|
|
|
|
// RAII.
|
|
OpBuilder::InsertionGuard guard(opBuilder);
|
|
Block *body = opBuilder.createBlock(®ion, {}, argTypes);
|
|
unsigned actual = body->getNumArguments();
|
|
unsigned expected = NamedStructuredOpType::getNumRegionArgs();
|
|
if (expected != actual)
|
|
return errorHandler(expected, actual);
|
|
|
|
opBuilder.setInsertionPointToStart(body);
|
|
mlir::edsc::ScopedContext scope(opBuilder, opBuilder.getUnknownLoc());
|
|
NamedStructuredOpType::regionBuilder(*body);
|
|
|
|
// indexing_maps is an auto-generated method.
|
|
|
|
// iterator_types is an auto-generated method.
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
void buildNamedStructuredOpRegionAndAttributes(OpBuilder &opBuilder,
|
|
OperationState &result,
|
|
TypeRange inputTypes,
|
|
TypeRange outputBufferTypes,
|
|
TypeRange initTensorTypes,
|
|
TypeRange resultTypes) {
|
|
Region ®ion = *result.addRegion();
|
|
buildNamedStructuredOpRegionAndAttributesImpl<NamedStructuredOpType>(
|
|
opBuilder, region, inputTypes, outputBufferTypes, initTensorTypes,
|
|
resultTypes, [&](unsigned expected, unsigned actual) {
|
|
llvm::errs() << "region expects " << expected << " args, got "
|
|
<< actual;
|
|
assert(expected != actual && "incorrect number of arguments");
|
|
});
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static ParseResult
|
|
parseNamedStructuredOpRegion(OpAsmParser &parser, Region ®ion,
|
|
TypeRange inputTypes, TypeRange outputBufferTypes,
|
|
TypeRange initTensorTypes, TypeRange resultTypes) {
|
|
ParseResult res = success();
|
|
OpBuilder opBuilder(parser.getBuilder().getContext());
|
|
buildNamedStructuredOpRegionAndAttributesImpl<NamedStructuredOpType>(
|
|
opBuilder, region, inputTypes, outputBufferTypes, initTensorTypes,
|
|
resultTypes, [&](unsigned expected, unsigned actual) {
|
|
res = parser.emitError(parser.getCurrentLocation(),
|
|
llvm::formatv("region expects {0} args, got {1}",
|
|
expected, actual));
|
|
});
|
|
return res;
|
|
}
|
|
|
|
static ParseResult
|
|
parseNamedStructuredOpResults(OpAsmParser &parser,
|
|
SmallVectorImpl<Type> &resultTypes) {
|
|
if (succeeded(parser.parseOptionalArrow()))
|
|
if (parser.parseTypeList(resultTypes))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
static ParseResult
|
|
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
|
|
SmallVectorImpl<Type> &inputTypes,
|
|
SmallVectorImpl<Type> &outputBufferTypes,
|
|
SmallVectorImpl<Type> &initTensorTypes) {
|
|
llvm::SMLoc inputsOperandsLoc, outputBuffersOperandsLoc,
|
|
initTensorsOperandsLoc;
|
|
SmallVector<OpAsmParser::OperandType, 4> inputsOperands,
|
|
outputBuffersOperands, initTensorsOperands;
|
|
|
|
parser.parseOptionalAttrDict(result.attributes);
|
|
|
|
if (succeeded(parser.parseOptionalKeyword("ins"))) {
|
|
if (parser.parseLParen())
|
|
return failure();
|
|
|
|
inputsOperandsLoc = parser.getCurrentLocation();
|
|
if (parser.parseOperandList(inputsOperands) ||
|
|
parser.parseColonTypeList(inputTypes) || parser.parseRParen())
|
|
return failure();
|
|
}
|
|
|
|
if (succeeded(parser.parseOptionalKeyword("outs"))) {
|
|
outputBuffersOperandsLoc = parser.getCurrentLocation();
|
|
if (parser.parseLParen() ||
|
|
parser.parseOperandList(outputBuffersOperands) ||
|
|
parser.parseColonTypeList(outputBufferTypes) || parser.parseRParen())
|
|
return failure();
|
|
}
|
|
if (succeeded(parser.parseOptionalKeyword("init"))) {
|
|
initTensorsOperandsLoc = parser.getCurrentLocation();
|
|
if (parser.parseLParen() || parser.parseOperandList(initTensorsOperands) ||
|
|
parser.parseColonTypeList(initTensorTypes) || parser.parseRParen())
|
|
return failure();
|
|
}
|
|
|
|
if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
|
|
result.operands) ||
|
|
parser.resolveOperands(outputBuffersOperands, outputBufferTypes,
|
|
outputBuffersOperandsLoc, result.operands) ||
|
|
parser.resolveOperands(initTensorsOperands, initTensorTypes,
|
|
initTensorsOperandsLoc, result.operands))
|
|
return failure();
|
|
|
|
result.addAttribute("operand_segment_sizes",
|
|
parser.getBuilder().getI32VectorAttr(
|
|
{static_cast<int32_t>(inputsOperands.size()),
|
|
static_cast<int32_t>(outputBuffersOperands.size()),
|
|
static_cast<int32_t>(initTensorsOperands.size())}));
|
|
return success();
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
SmallVector<Type, 1> inputTypes, outputBufferTypes, initTensorTypes;
|
|
if (parseCommonStructuredOpParts(parser, result, inputTypes,
|
|
outputBufferTypes, initTensorTypes))
|
|
return failure();
|
|
|
|
// TODO: consider merging results parsing into region parsing.
|
|
// Need to wait for declarative assembly resolution to decide.
|
|
SmallVector<Type, 1> outputTensorsTypes;
|
|
if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
|
|
return failure();
|
|
result.addTypes(outputTensorsTypes);
|
|
|
|
std::unique_ptr<Region> region = std::make_unique<Region>();
|
|
if (parseNamedStructuredOpRegion<NamedStructuredOpType>(
|
|
parser, *region, inputTypes, outputBufferTypes, initTensorTypes,
|
|
outputTensorsTypes))
|
|
return failure();
|
|
result.addRegion(std::move(region));
|
|
|
|
return success();
|
|
}
|
|
|
|
static void printNamedStructuredOpResults(OpAsmPrinter &p,
|
|
TypeRange resultTypes) {
|
|
if (resultTypes.empty())
|
|
return;
|
|
p.printOptionalArrowTypeList(resultTypes);
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static void printCommonStructuredOpParts(OpAsmPrinter &p,
|
|
NamedStructuredOpType op) {
|
|
if (!op.inputs().empty())
|
|
p << " ins(" << op.inputs() << " : " << op.inputs().getTypes() << ")";
|
|
if (!op.output_buffers().empty())
|
|
p << " outs(" << op.output_buffers() << " : "
|
|
<< op.output_buffers().getTypes() << ")";
|
|
if (!op.init_tensors().empty())
|
|
p << " init(" << op.init_tensors() << " : " << op.init_tensors().getTypes()
|
|
<< ") ";
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op) {
|
|
p << op.getOperationName();
|
|
p.printOptionalAttrDict(op.getAttrs(),
|
|
/*elidedAttrs=*/{"operand_segment_sizes"});
|
|
|
|
// Printing is shared with generic ops, except for the region and
|
|
// attributes.
|
|
printCommonStructuredOpParts(p, op);
|
|
|
|
// Results printing.
|
|
printNamedStructuredOpResults(p, op.result_tensors().getTypes());
|
|
|
|
// Region is elided.
|
|
}
|
|
|
|
template <typename NamedStructuredOpType>
|
|
static LogicalResult verifyNamedStructuredOp(NamedStructuredOpType op) {
|
|
return verifyGenericOp<NamedStructuredOpType>(op);
|
|
}
|
|
|
|
namespace {
|
|
struct EraseDeadLinalgOp : public RewritePattern {
|
|
EraseDeadLinalgOp(PatternBenefit benefit = 1)
|
|
: RewritePattern(benefit, MatchAnyOpTypeTag()) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto linalgOp = dyn_cast<LinalgOp>(op);
|
|
if (!linalgOp)
|
|
return failure();
|
|
for (Value v : linalgOp.getInputsAndOutputBuffers()) {
|
|
// Linalg "inputs" may be either tensor or memref type.
|
|
// tensor<0xelt_type> is a convention that may not always mean
|
|
// "0 iterations". Only erase in cases we see memref<...x0x...>.
|
|
auto mt = v.getType().dyn_cast<MemRefType>();
|
|
if (!mt)
|
|
continue;
|
|
if (llvm::is_contained(mt.getShape(), 0)) {
|
|
rewriter.eraseOp(linalgOp);
|
|
return success();
|
|
}
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
struct FoldTensorCastOp : public RewritePattern {
|
|
FoldTensorCastOp(PatternBenefit benefit = 1)
|
|
: RewritePattern(benefit, MatchAnyOpTypeTag()) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto linalgOp = dyn_cast<LinalgOp>(op);
|
|
if (!linalgOp)
|
|
return failure();
|
|
|
|
// If no operand comes from a TensorCastOp and can be folded then fail.
|
|
bool hasTensorCastOperand =
|
|
llvm::any_of(linalgOp.getShapedOperands(), [&](Value v) {
|
|
if (v.isa<BlockArgument>())
|
|
return false;
|
|
auto castOp = v.getDefiningOp<TensorCastOp>();
|
|
return castOp && canFoldIntoConsumerOp(castOp);
|
|
});
|
|
if (!hasTensorCastOperand)
|
|
return failure();
|
|
|
|
SmallVector<Type, 4> newResultTypes;
|
|
newResultTypes.reserve(op->getNumResults());
|
|
SmallVector<Value, 4> newOperands;
|
|
newOperands.reserve(op->getNumOperands());
|
|
// Inputs may fold.
|
|
for (Value v : linalgOp.getInputs()) {
|
|
auto tensorCastOp = v.getDefiningOp<TensorCastOp>();
|
|
newOperands.push_back(
|
|
canFoldIntoConsumerOp(tensorCastOp) ? tensorCastOp.source() : v);
|
|
}
|
|
// Output buffers are memrefs, they don't fold.
|
|
newOperands.append(linalgOp.getOutputBuffers().begin(),
|
|
linalgOp.getOutputBuffers().end());
|
|
// Init tensors may fold, in which case the resultType must also change.
|
|
for (Value v : linalgOp.getInitTensors()) {
|
|
auto tensorCastOp = v.getDefiningOp<TensorCastOp>();
|
|
bool fold = canFoldIntoConsumerOp(tensorCastOp);
|
|
newOperands.push_back(fold ? tensorCastOp.getOperand() : v);
|
|
newResultTypes.push_back(newOperands.back().getType());
|
|
}
|
|
auto extraOperands = linalgOp.getAssumedNonShapedOperands();
|
|
newOperands.append(extraOperands.begin(), extraOperands.end());
|
|
// Clone op.
|
|
Operation *newOp =
|
|
linalgOp.clone(rewriter, op->getLoc(), newResultTypes, newOperands);
|
|
rewriter.replaceOp(op, newOp->getResults());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Deduplicate redundant args of a linalg op.
|
|
// An arg is redundant if it has the same Value and indexing map as another.
|
|
struct DeduplicateInputs : public RewritePattern {
|
|
DeduplicateInputs(PatternBenefit benefit = 1)
|
|
: RewritePattern(benefit, MatchAnyOpTypeTag()) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
// This pattern reduces the number of arguments of an op, which breaks
|
|
// the invariants of semantically charged named ops.
|
|
if (!isa<GenericOp, IndexedGenericOp>(op))
|
|
return failure();
|
|
auto linalgOp = cast<LinalgOp>(op);
|
|
|
|
// Associate each input to an equivalent "canonical" input that has the same
|
|
// Value and indexing map.
|
|
//
|
|
// In the non-duplicate case, input `i` will have canonical input `i`. But
|
|
// in the case of duplicated inputs, the canonical input could be some other
|
|
// input `< i`. That is, a later input will have some earlier input as its
|
|
// canonical input.
|
|
llvm::SmallDenseMap<std::pair<Value, AffineMap>, int> canonicalInput;
|
|
// For later remapping tasks like deduplicating payload block arguments,
|
|
// having a simple "inputIndex -> canonicalInputIndex" integer mapping is
|
|
// convenient.
|
|
SmallVector<int, 6> canonicalInputIndices;
|
|
for (int i = 0, e = linalgOp.getNumInputs(); i != e; i++) {
|
|
Value input = linalgOp.getInput(i);
|
|
AffineMap indexingMap = linalgOp.getInputIndexingMap(i);
|
|
// STL-like maps have a convenient behavior for our use case here. In the
|
|
// case of duplicate keys, the insertion is rejected, and the returned
|
|
// iterator gives access to the value already in the map.
|
|
auto pair = canonicalInput.insert({{input, indexingMap}, i});
|
|
canonicalInputIndices.push_back(pair.first->second);
|
|
}
|
|
|
|
// If there are no duplicate args, then bail out.
|
|
if (canonicalInput.size() == linalgOp.getNumInputs())
|
|
return failure();
|
|
|
|
// The operands for the newly canonicalized op.
|
|
SmallVector<Value, 6> newOperands;
|
|
for (auto v : llvm::enumerate(linalgOp.getInputs()))
|
|
if (canonicalInputIndices[v.index()] == static_cast<int>(v.index()))
|
|
newOperands.push_back(v.value());
|
|
llvm::append_range(newOperands, linalgOp.getOutputBuffers());
|
|
llvm::append_range(newOperands, linalgOp.getInitTensors());
|
|
llvm::append_range(newOperands, linalgOp.getAssumedNonShapedOperands());
|
|
|
|
// Clone the old op with new operands.
|
|
Operation *newOp = linalgOp.clone(rewriter, op->getLoc(),
|
|
op->getResultTypes(), newOperands);
|
|
auto newLinalgOp = cast<LinalgOp>(newOp);
|
|
|
|
// Repair the indexing maps by filtering out the ones that have been
|
|
// eliminated.
|
|
SmallVector<AffineMap, 6> newIndexingMaps;
|
|
for (int i = 0, e = newLinalgOp.getNumInputs(); i != e; i++)
|
|
if (canonicalInputIndices[i] == i)
|
|
newIndexingMaps.push_back(newLinalgOp.getIndexingMap(i));
|
|
for (int i = 0, e = newLinalgOp.getNumOutputs(); i != e; i++)
|
|
newIndexingMaps.push_back(newLinalgOp.getOutputIndexingMap(i));
|
|
newOp->setAttr("indexing_maps",
|
|
rewriter.getAffineMapArrayAttr(newIndexingMaps));
|
|
|
|
// Set the number of inputs to the new value. The `clone` call above kept
|
|
// the value from the original op.
|
|
newLinalgOp.setNumInputs(canonicalInput.size());
|
|
|
|
// linalg.indexed_generic payloads have additional arguments prepended to
|
|
// the block arg list. The number of such args is one per dimension of the
|
|
// iteration space.
|
|
int bbArgBaseOffset = 0;
|
|
if (isa<IndexedGenericOp>(op))
|
|
bbArgBaseOffset = newIndexingMaps[0].getNumInputs();
|
|
|
|
// Repair the payload entry block by RAUW'ing redundant arguments and
|
|
// erasing them.
|
|
Block &payload = newOp->getRegion(0).front();
|
|
for (int i = 0, e = linalgOp.getNumInputs(); i < e; i++) {
|
|
// Iterate in reverse, so that we erase later args first, preventing the
|
|
// argument list from shifting unexpectedly and invalidating all our
|
|
// indices.
|
|
int reversed = e - i - 1;
|
|
int canonicalIndex = canonicalInputIndices[reversed];
|
|
if (canonicalInputIndices[reversed] == reversed)
|
|
continue;
|
|
payload.getArgument(bbArgBaseOffset + reversed)
|
|
.replaceAllUsesWith(
|
|
payload.getArgument(bbArgBaseOffset + canonicalIndex));
|
|
payload.eraseArgument(bbArgBaseOffset + reversed);
|
|
}
|
|
|
|
rewriter.replaceOp(op, newOp->getResults());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
#define CANONICALIZERS_AND_FOLDERS(XXX) \
|
|
void XXX::getCanonicalizationPatterns(OwningRewritePatternList &results, \
|
|
MLIRContext *context) { \
|
|
results.insert<EraseDeadLinalgOp>(); \
|
|
results.insert<FoldTensorCastOp>(); \
|
|
results.insert<DeduplicateInputs>(); \
|
|
} \
|
|
\
|
|
LogicalResult XXX::fold(ArrayRef<Attribute>, \
|
|
SmallVectorImpl<OpFoldResult> &) { \
|
|
return foldMemRefCast(*this); \
|
|
}
|
|
|
|
CANONICALIZERS_AND_FOLDERS(ConvOp)
|
|
CANONICALIZERS_AND_FOLDERS(PoolingMaxOp)
|
|
CANONICALIZERS_AND_FOLDERS(PoolingMinOp)
|
|
CANONICALIZERS_AND_FOLDERS(PoolingSumOp)
|
|
CANONICALIZERS_AND_FOLDERS(CopyOp)
|
|
CANONICALIZERS_AND_FOLDERS(FillOp)
|
|
CANONICALIZERS_AND_FOLDERS(GenericOp)
|
|
CANONICALIZERS_AND_FOLDERS(IndexedGenericOp)
|
|
|
|
// All named ops canonicalizers and folders are auto-generated in the
|
|
// .cpp.inc.
|